Existence (lf minimizers
Let £ : R™ — R be L.s.c. and let there exist an a such that the sublevelset

So i={u eR" | E(u) < a}

is nonempty and bounded, then
@ € argmin E(u)
u

exists.

Proof. Consider a sequence (uy)y) such that E(ux) — inf, E(u). (Remember that the infimum is the
largest lower bound on all possible values of E(u).)

We distinguish two cases: For o = inf, E(u) the non-emptyness of S, yields the assertion. For
a > inf,, F(u) it holds that from some sufficiently large ko on, we will have uy € S,. Since S, is bounded
there exists a convergent subsequence uj, — @. Due to the lower semi-continuity we find

inf E(u) = lim E(ug) = lim E(ug,) > E(a).
u k—oo l—o0
Since by definition inf, E(u) < FE(u) we obtain equality and hence there exists @ € argmin,, E(u). O

Remark: This is a fundamental strategy for showing the existence of minimizers since the arguments
do not only hold in R™ but in arbitrary topologies after replacing “bounded” by “precompact”!

Equivalence of l.s.c. and closedness
For E : R™ — R the following two statements are equivalent

e F is lower semi-continuous (L.s.c.).
e [ is closed.

Proof. Let E be closed and assume that E is not l.s.c.Then there exists a point u° and a sequence ((uy)g
with limy ux = u°® such that
limkinf E(uy) < E(u°).

In particular, there exists w € R and a subsequence ((u,)x, such that

1

E(uy,) < a < B(u®) Vk (1)

Obviously, (uy,,«) € epi(E) for all k; and uy,, a) — (u°, @), but according to (1) (u°,«) ¢ epi(E), which
contradicts the closedness of E.

Now let E be ls.c. and assume that E is not closed. Then there exists a sequence (uy, ax) € epi(E)
with (ug, az) — (u°,a®) ¢ epi(E). We find

limkinf E(uy) < lilgn ap =a® < E(u).

On the other hand, due to E being l.s.c. we have E(u®) < liminfy, E(uy), which is a contradiction. [

Convex functions are locally Lipschitz on int(dom(FE)).

Proof. Part 1: Let x,z1, 22 € int(dom(E)) such that z1 <z < zs. Then for a = ;2=% we have

1
ary + (1 —a)rg = a(z; — x2) + 29 = .
We can compute

E(z) — E(x1) < aE(z1) + (1 — a)E(x2) — E(x1)
= (1= a)(E(z2) — E(x1))
E(x2) = E(21)

=2 T (x—x).
T2 — I



On the other hand

E(xz2) — E(z) >

&

z3) — (@B(21) + (1 — @) E(22))

= a(E(z2) — E(21))
- E(miz :fl(xl)'(@ - ),
such that
Bla) ~ B(a1) _ B(as) = B@) _ Eas) = B(w)
T —x To — X1 To — X

Now for a given z € int(dom(FE)), pick a,b, 1,z € int(dom(F)) such that a < 21 < z < 2 <b. We
claim that E is Lipschitz on |x1,22[. For any y; < ya €]x1, x2] we have

Ely2) = E(y1) _ E() — E(y1) _ E(b) - E(x2)

< 2
Y2 — Y1 - b— 1 - b— 2 @
as well as
E(y2) — E(y1) > E(y2) — E(a) > E(x3) — E(a). 3)
Y2 — Y1 Y —a To9 —a
Using (2) and (3) we can conclude
E(zo) — E(a E(b) — E(x
E@aE@ngmm(‘(” ()| | E0) (2))mm,
To —a b— xo
such that E is Lipschitz on |z1, z2[. O

Example of a convex function that is not continuous.

u ifu>0
Euw)=< 1 ifu=0

oo else.



