Remarks about inf-sup and min-max problems

The equality

inf sup S(v,q) = sup inf S(v,q).
Jf, sup (v,9) sup fnf) (v,9)

is absolutely non-trivial and only holds under certain assumptions. For a counter-example consider
S(v,q) = cos(v+ q), D =C =R. One thing that does hold in general is

inf sup S(v,q) > inf supinf S(7,q)
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For “friendly” saddle point problems arising from “friendly” convex minimization problems the equality

holds as we will later see in Fenchel’s Duality Theorem.

Fenchel-Young Inequality

By definition
E*(p) = Sup<uap> - E(U),

such that the inequality immediately follows. Left to show is the equality statement. We have one
inequality, such that we need
E(u) + E*(p) < (u,p),

or, in other words,
E(u) + {p,2) — E(2) < (u,p), Vz.

Rewritten, the above is nothing but
E(Z) - E(’LL) - <p,Z - U> > 07 vz7

or p € 0E(u).
Biconjugate

We'll show two proofs - one is incomplete (as it only considers the relative interior) but gives a quick
intuition of why the statement makes sense. The other proof is complete but based on the separating
hyperplane theorem (which we will not prove).

First of all, note that it always holds that

E*(u) = sgp<p7 u) — E*(p) < Sl;p<p, u) — ((p,u) — E(u)) = E(u),

by the Fenchel-Young Inequality.
Version 1: If E is subdifferentiable at u, let ¢ € FE(u). We readily obtain

B (u) = Sl;p<p, u) — E*(p) > (q,u) — E*(¢q) = E(u),

by the equality of the Fenchel-Young Inequality. In combination with E**(u) < E(u) as shown above,
this yields E**(u) = E(u).
Version 2: We need a particular version of the separating hyperplane theorem.

Theorem 1. Let S C R™ be a nonempty closed convex set, and R™ > u ¢ S. Then there exists a nonzero
vector z and a number ¢ < 0 such that

(z,0—u) <e¢ Yv € S.



Now let us assume that E** # E. We already know that E**(u) < E(u) for all u, i.e. epi(E) C
epi(E**). Therefore, our assumption leads to epi(E) & epi(E**), i.e. there exists a u such that
(u, E**(u)) ¢ epi(E). By the separating hyperplane theorem there exists a vector (a,b) € R*™! and
a constant ¢ < 0 such that

<<b> ’ (a . 15*3(u>>> <c<0  V(va) € epi(B).

We can readily exclude b > 0 by choosing v = u and let a go to inﬁnity.
For b = 0 we choose p € dom(E*) and add ¢(p, to (a,b), i
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=c+e((p,v) —a+ E"(u) + (p,u))
<cte((p,v) = E(v) + E*(u) + (p,u)
<c+e(E*(p)+ E™(u) + (p,u)

<0 V(v, ) € epi(E), for e sufficiently small.

Therefore, w.r.o.g. b < 0.
For b < 0 divide the whole inequality by —b, define z = a/(—b) and find

(z,v—u) — (a— E™(u)) <c¢/(-b) <0 Y(v,a) € epi(E),
which means

(z,v) = E(v) — (z,u) + E™(u) < ¢/(-=b) <0 Yo € R"
=FE*(z)+ B (u) — (z,u) <0

which contradicts Fenchel’s inequality.

Subgradient of convex conjugate

Let p € OE(u). By the Fenchel-Young Inequality we know that
E(u) + E*(p) = (u, p).
On the other hand, ' = E** such that
E™(u) + E*(p) = (u,p),
and the Fenchel-Young Inequality tells us that v € E*(p). Similarly, u € OE*(p) implies p € 0E(u).
Conjugate of a strongly convex function
For a proper, closed, strongly convex function

max(u, p) — E(u) = — min B(u) — (u,p)
u u
exists and is unique. The optimality condition immediately yields that the maximum/minimum is at-
tained for p € OE(u), i.e. for u € JE*(p). Since the optimal u was unique, the subdifferential dE*(p) is
single valued for all p, which yields the differentiability of £*.
Remark: To see the latter in more detail, one could consider directional derivatives, i.e.

V,E(u) := inf Elute) - E(u)

e>0 €

The convexity of F allows to show that the above expression is monotonically decreasing in €. Since we
know that the expression is also bounded from below by (p, v), one can conclude the directional derivative
is also equal to
E(u+ev) — E(u
Vo E() = lim Z0te) = B

e—0t €




We always get the lower bound V,E(u) > (p,v). If equality did not hold in the above case, one could
show that the subdifferential is not single-valued.
Continuing with the proof, the convexity of E — Zt|| - ||* yields that

(u—v,p—q) =mlu—vl|>  Vp€IE(u),q€IE®),
or in other words
(VE*(p) = VE*(q),p — q) > m|VE*(p) — VE*(¢)|>  Vp.q,

which is called co-coercivity and yields the %—smoothness of E* by the Cauchy-Schwarz inequality.

Fenchel’s Duality Theorem
First note that the dual problem is always less or equal to the primal one (see remark at the top of this
document).

Let us first do a little sanity check: Let us assume a minimum is attained at some %. Then our
assumptions yield that we may apply the sum rule and the optimality condition is

g+ K*'p=0 q€0H(a), p€ IR(KQ).
This implies that u € 0H*(—K*p) and Ku € OR(p) such that
0=Ku— Kuec -KOH*(—K"p) — dR(p),

which is the optimality condition for maximizing —H*(—Kp) — R(p).



