Chapter 1 Convex Analysis

Convex Optimization for Computer Vision SS 2016

Basics

Convex sets
Convex functions
Existence
Uniqueness
Optimality conditions
Derivative
Subdifferential

Michael Moeller Thomas Möllenhoff Emanuel Laude Computer Vision Group Department of Computer Science

TU München

Convexity

Basics

Convex sets
Convex functions
Existence
Uniqueness
Optimality conditions
Derivative
Subdifferential

Convex energy minimization problems

This lecture is all about
Michael Moeller
Thomas Möllenhoff Emanuel Laude

$$
\hat{u}=\arg \min _{u \in C} E(u)
$$

where $C \subset \mathbb{R}^{n}$ convex set, $E: C \rightarrow \mathbb{R}$ convex function.

Basics

Convex sets

Convex functions
Existence
Uniqueness
Optimality conditions
Derivative
Subdifferential

Convex energy minimization problems

This lecture is all about

$$
\hat{u}=\arg \min _{u \in C} E(u),
$$

where $C \subset \mathbb{R}^{n}$ convex set, $E: C \rightarrow \mathbb{R}$ convex function.

1. What is a convex set?

Definition

A set $C \subset \mathbb{R}^{n}$ is called convex, if

$$
\alpha x+(1-\alpha) y \in C, \quad \forall x, y \in C, \forall \alpha \in[0,1] .
$$

Convex energy minimization problems

This lecture is all about

$$
\hat{u}=\arg \min _{u \in C} E(u),
$$

where $C \subset \mathbb{R}^{n}$ convex set, $E: C \rightarrow \mathbb{R}$ convex function.

1. What is a convex set?

Definition

A set $C \subset \mathbb{R}^{n}$ is called convex, if

$$
\alpha x+(1-\alpha) y \in C, \quad \forall x, y \in C, \forall \alpha \in[0,1] .
$$

\rightarrow Draw a picture.
\rightarrow Online TED.

Convex set - summary of online TED

Definitions and things to recall from analysis 1:
Michael Moeller
Thomas Möllenhoff Emanuel Laude

Definitions

- A set $C \subset \mathbb{R}^{n}$ is called open if for all $x \in C$ there exists a $\epsilon>0$ such that the ball with radius ϵ around $x, B(x, \epsilon)$, is contained in $C: B(x, \epsilon) \subset C$.

Basics

Convex sets

Convex functions
Existence
Uniqueness
Optimality conditions

Convex set - summary of online TED

Definitions and things to recall from analysis 1:

Definitions

- A set $C \subset \mathbb{R}^{n}$ is called open if for all $x \in C$ there exists a $\epsilon>0$ such that the ball with radius ϵ around $x, B(x, \epsilon)$, is contained in $C: B(x, \epsilon) \subset C$.
- A set $C \subset \mathbb{R}^{n}$ is called closed if its complement is open.

Optimality conditions

Convex set - summary of online TED

Definitions and things to recall from analysis 1:

Definitions

- A set $C \subset \mathbb{R}^{n}$ is called open if for all $x \in C$ there exists a $\epsilon>0$ such that the ball with radius ϵ around $x, B(x, \epsilon)$, is contained in $C: B(x, \epsilon) \subset C$.
- A set $C \subset \mathbb{R}^{n}$ is called closed if its complement is open.
- A set is closed if and only if it contains all its limit points.

Convex set - summary of online TED

Definitions and things to recall from analysis 1 :
Michael Moeller
Thomas Möllenhoff Emanuel Laude

Definitions

- A set $C \subset \mathbb{R}^{n}$ is called open if for all $x \in C$ there exists a $\epsilon>0$ such that the ball with radius ϵ around $x, B(x, \epsilon)$, is contained in $C: B(x, \epsilon) \subset C$.
- A set $C \subset \mathbb{R}^{n}$ is called closed if its complement is open.
- A set is closed if and only if it contains all its limit points.
- The closure of a set $C \subset \mathbb{R}^{n}$ is
$\bar{C}=\left\{x \mid\right.$ there exists a convergent sequence $\left(x_{n}\right)_{n} \subset C$
such that $\left.\lim _{n \rightarrow \infty} x_{n}=x\right\}$

Convex set - summary of online TED

Definitions and things to recall from analysis 1 :

Definitions

- A set $C \subset \mathbb{R}^{n}$ is called open if for all $x \in C$ there exists a $\epsilon>0$ such that the ball with radius ϵ around $x, B(x, \epsilon)$, is contained in $C: B(x, \epsilon) \subset C$.
- A set $C \subset \mathbb{R}^{n}$ is called closed if its complement is open.
- A set is closed if and only if it contains all its limit points.
- The closure of a set $C \subset \mathbb{R}^{n}$ is

$$
\begin{gathered}
\bar{C}=\{x \mid \\
\text { there exists a convergent sequence }\left(x_{n}\right)_{n} \subset C \\
\text { such that } \left.\lim _{n \rightarrow \infty} x_{n}=x\right\}
\end{gathered}
$$

- The interior of a set $C \subset \mathbb{R}^{n}$ is

$$
\begin{aligned}
\stackrel{\circ}{C}=\{x \in C \mid & \text { there exists } \epsilon>0 \\
& \text { such that } B(x, \epsilon) \subset C\}
\end{aligned}
$$

Convex set - summary of online TED

- Closure
- Interior
- Linear Transformation

Existence
Uniqueness
Optimality conditions

The union of convex sets is not convex in general.

Polyhedral sets are always convex, cones are not necessarily convex.

Convex energy minimization problems

Let's get back to what the lecture is all about:
Michael Moeller
Thomas Möllenhoff Emanuel Laude

$$
\hat{u}=\arg \min _{u \in C} E(u)
$$

where $C \subset \mathbb{R}^{n}$ convex set, $E: C \rightarrow \mathbb{R}$ convex function.

Basics

Convex sets
Convex functions
Existence
Uniqueness
Optimality conditions

Convex energy minimization problems

Let's get back to what the lecture is all about:
Michael Moeller
Thomas Möllenhoff Emanuel Laude

$$
\hat{u}=\arg \min _{u \in C} E(u)
$$

where $C \subset \mathbb{R}^{n}$ convex set, $E: C \rightarrow \mathbb{R}$ convex function.

1. What is a convex set? We know this now!
2. What is a convex function?

Basics

Convex sets
Convex functions
Existence
Uniqueness
Optimality conditions
Derivative
Subdifferential

Convex energy minimization problems

Let's get back to what the lecture is all about:

$$
\hat{u}=\arg \min _{u \in C} E(u),
$$

where $C \subset \mathbb{R}^{n}$ convex set, $E: C \rightarrow \mathbb{R}$ convex function.

1. What is a convex set? We know this now!

2. What is a convex function?

Definition: Convex Function

We call $E: C \rightarrow \mathbb{R}$ a convex function if C is a convex set and for all $u, v \in C$ and all $\theta \in[0,1]$ it holds that

$$
E(\theta u+(1-\theta) v) \leq \theta E(u)+(1-\theta) E(v)
$$

We call E strictly convex, if the inequality is strict for all $\theta \in] 0,1[$, and $v \neq u$.
\rightarrow Draw a picture

Convex functions - summary of online TED

Michael Moeller Thomas Möllenhoff Emanuel Laude
The following operations do preserve the convexity of a function

- Summation
- Linear Transformation

Basics

Convex sets
Convex functions
Existence
Uniqueness
Optimality conditions

Subdifferentia

Convex functions - summary of online TED

Michael Moeller Thomas Möllenhoff Emanuel Laude
The following operations do preserve the convexity of a function

- Summation
- Linear Transformation

The following operations do not preserve the convexity of a function

- Multiplication, Division, Difference
- Composition

Convex functions - summary of online TED

The following operations do preserve the convexity of a function

- Summation
- Linear Transformation

The following operations do not preserve the convexity of a function

- Multiplication, Division, Difference
- Composition

The sum of a convex function and a strictly convex function is strictly convex.

Convex functions - summary of online TED

The following operations do preserve the convexity of a function

- Summation
- Linear Transformation

The following operations do not preserve the convexity of a function

- Multiplication, Division, Difference
- Composition

The sum of a convex function and a strictly convex function is strictly convex.

Remember to check two conditions to show that a function is convex!

Convex energy minimization problems

Let's get back to what the lecture is all about:
Michael Moeller
Thomas Möllenhoff Emanuel Laude

$$
\begin{equation*}
\hat{u}=\arg \min _{u \in C} E(u) \tag{1}
\end{equation*}
$$

where $C \subset \mathbb{R}^{n}$ convex set, $E: C \rightarrow \mathbb{R}$ convex function.

Basics

Convex sets
Convex functions
Existence
Uniqueness
Optimality conditions

Convex energy minimization problems

Let's get back to what the lecture is all about:

$$
\begin{equation*}
\hat{u}=\arg \min _{u \in C} E(u), \tag{1}
\end{equation*}
$$

where $C \subset \mathbb{R}^{n}$ convex set, $E: C \rightarrow \mathbb{R}$ convex function.
It is sometimes convenient to "introduce" the constraint $u \in C$ into the energy function E itself. We therefore introduce the notion of extended real valued functions.

$$
E: \mathbb{R}^{n} \rightarrow \overline{\mathbb{R}}:=\mathbb{R} \cup\{\infty\} .
$$

Basics

Convex sets
Convex functions
Existence
Uniqueness
Optimality conditions
Derivative
Subdifferential

Convex energy minimization problems

Let's get back to what the lecture is all about:

$$
\begin{equation*}
\hat{u}=\arg \min _{u \in C} E(u), \tag{1}
\end{equation*}
$$

where $C \subset \mathbb{R}^{n}$ convex set, $E: C \rightarrow \mathbb{R}$ convex function.
It is sometimes convenient to "introduce" the constraint $u \in C$ into the energy function E itself. We therefore introduce the notion of extended real valued functions.

$$
E: \mathbb{R}^{n} \rightarrow \overline{\mathbb{R}}:=\mathbb{R} \cup\{\infty\}
$$

The minimization problem (1) can then be written as

$$
\hat{u}=\arg \min _{u \in \mathbb{R}^{n}} \tilde{E}(u),
$$

by defining

$$
\tilde{E}(u)= \begin{cases}E(u) & \text { if } u \in C \\ \infty & \text { else } .\end{cases}
$$

Extended real valued functions

Definition

Michael Moeller
Thomas Möllenhoff Emanuel Laude

Basics

Convex sets

Optimality conditions

Extended real valued functions

Definition

- For $E: \mathbb{R}^{n} \rightarrow \overline{\mathbb{R}}$, we call

$$
\operatorname{dom}(E):=\left\{u \in \mathbb{R}^{n} \mid E(u)<\infty\right\}
$$

the domain of E.

- We call E proper if $\operatorname{dom}(E) \neq \emptyset$.

Revisiting the definition of convex functions

Basics

Convex sets
Convex functions
Existence
Uniqueness
Optimality conditions

We call $E: \mathbb{R}^{n} \rightarrow \overline{\mathbb{R}}$ a convex function if
(1) $\operatorname{dom}(E)$ is a convex set.
(2) For all $u, v \in \operatorname{dom}(E)$ and all $\theta \in[0,1]$ it holds that

$$
E(\theta u+(1-\theta) v) \leq \theta E(u)+(1-\theta) E(v)
$$

We call E strictly convex, if the inequality in 2 is strict for all $\theta \in] 0,1[$, and $v \neq u$.

First example of an imaging problem: Inpainting

Example: Inpainting

Basics

Convex sets

Convex functions

Existence
Uniqueness
Optimality conditions
Derivative
Subdifferential

First example of an imaging problem: Inpainting

Example: Inpainting

Basics
Convex sets
Convex functions
Existence
Uniqueness
Optimality conditions
Derivative
Subdifferential

First example of an imaging problem: Inpainting

Example: Inpainting

Basics

Convex sets
Convex functions
Existence
Uniqueness
Optimality conditions

$$
\min _{u \in \mathbb{R}^{n \times m}} \sum_{i, j}\left(u_{i, j}-u_{i-1, j}\right)^{2}+\left(u_{i, j}-u_{i, j-1}\right)^{2} \quad \text { s.t. } u_{i, j}=f_{i, j} \forall(i, j) \in I
$$

with index set I of pixels to keep and suitable boundary conditions.
\rightarrow Discuss convexity.

