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Convex energy minimization problems

This lecture is all about

û ∈ arg min
u∈C

E(u),

where C ⊂ Rn convex set, E : C → R convex function.

1. What is a convex set?

Definition

A set C ⊂ Rn is called convex, if

αx + (1− α)y ∈ C, ∀x , y ∈ C, ∀α ∈ [0,1].

→ Draw a picture.

→ Online TED.



Convex Analysis

Michael Moeller
Thomas Möllenhoff
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Convex set - summary of online TED
Definitions and things to recall from analysis 1:

Definitions

• A set C ⊂ Rn is called open if for all x ∈ C there exists a
ε > 0 such that the ball with radius ε around x , B(x , ε), is
contained in C: B(x , ε) ⊂ C.

• A set C ⊂ Rn is called closed if its complement is open.
• A set is closed if and only if it contains all its limit points.
• The closure of a set C ⊂ Rn is

C = {x | there exists a convergent sequence (xn)n ⊂ C
such that lim

n→∞
xn = x}

• The interior of a set C ⊂ Rn is

C̊ = {x ∈ C | there exists ε > 0
such that B(x , ε) ⊂ C}
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Convex set - summary of online TED

The following operations preserve the convexity of a set
• Intersection
• Vector sum
• Closure
• Interior
• Linear Transformation

The union of convex sets is not convex in general.

Polyhedral sets are always convex, cones are not necessarily
convex.
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Convex energy minimization problems

Let’s get back to what the lecture is all about:

û ∈ arg min
u∈C

E(u),

where C ⊂ Rn convex set, E : C → R convex function.

1. What is a convex set? We know this now!

2. What is a convex function?

Definition: Convex Function

We call E : C → R a convex function if C is a convex set and
for all u, v ∈ C and all θ ∈ [0,1] it holds that

E(θu + (1− θ)v) ≤ θE(u) + (1− θ)E(v)

We call E strictly convex, if the inequality is strict for all
θ ∈]0,1[, and v 6= u.

→ Draw a picture.
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û ∈ arg min
u∈C

E(u),

where C ⊂ Rn convex set, E : C → R convex function.

1. What is a convex set? We know this now!

2. What is a convex function?

Definition: Convex Function

We call E : C → R a convex function if C is a convex set and
for all u, v ∈ C and all θ ∈ [0,1] it holds that

E(θu + (1− θ)v) ≤ θE(u) + (1− θ)E(v)

We call E strictly convex, if the inequality is strict for all
θ ∈]0,1[, and v 6= u.

→ Draw a picture.



Convex Analysis

Michael Moeller
Thomas Möllenhoff
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Convex functions - summary of online TED

The following operations do preserve the convexity of a
function

• Summation
• Linear Transformation

The following operations do not preserve the convexity of a
function

• Multiplication, Division, Difference
• Composition

The sum of a convex function and a strictly convex function is
strictly convex.

Remember to check two conditions to show that a function is
convex!
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Thomas Möllenhoff
Emanuel Laude

Basics
Convex sets

Convex functions

Existence

Uniqueness

Optimality conditions
Derivative

Subdifferential

updated 13.04.2016

Convex functions - summary of online TED

The following operations do preserve the convexity of a
function

• Summation
• Linear Transformation

The following operations do not preserve the convexity of a
function

• Multiplication, Division, Difference
• Composition

The sum of a convex function and a strictly convex function is
strictly convex.

Remember to check two conditions to show that a function is
convex!



Convex Analysis

Michael Moeller
Thomas Möllenhoff
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Convex energy minimization problems
Let’s get back to what the lecture is all about:

û ∈ arg min
u∈C

E(u), (1)

where C ⊂ Rn convex set, E : C → R convex function.

It is sometimes convenient to “introduce” the constraint u ∈ C
into the energy function E itself. We therefore introduce the
notion of extended real valued functions.

E : Rn → R := R ∪ {∞}.

The minimization problem (1) can then be written as

û ∈ arg min
u∈Rn

Ẽ(u),

by defining

Ẽ(u) =

{
E(u) if u ∈ C,
∞ else.
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û ∈ arg min
u∈Rn
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Extended real valued functions

Definition

• For E : Rn → R, we call

dom(E) := {u ∈ Rn | E(u) <∞}

the domain of E .
• We call E proper if dom(E) 6= ∅.

Revisiting the definition of convex functions

We call E : Rn → R a convex function if

1 dom(E) is a convex set.

2 For all u, v ∈ dom(E) and all θ ∈ [0,1] it holds that

E(θu + (1− θ)v) ≤ θE(u) + (1− θ)E(v)

We call E strictly convex, if the inequality in 2 is strict for all
θ ∈]0,1[, and v 6= u.
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First example of an imaging problem: Inpainting

Example: Inpainting

min
u∈Rn×m

∑
i,j

(ui,j − ui−1,j )
2 + (ui,j − ui,j−1)2 s.t. ui,j = fi,j ∀(i , j) ∈ I

with index set I of pixels to keep and suitable boundary
conditions.

→ Discuss convexity.
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