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Thomas Möllenhoff

Emanuel Laude
Computer Vision Group

Department of Computer Science
TU München



Convex Analysis

Michael Moeller
Thomas Möllenhoff
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Convex energy minimization problems

This lecture is all about

û ∈ arg min
u∈C

E(u),

where C ⊂ Rn convex set, E : C → R convex function.

1. What is a convex set?

Definition

A set C ⊂ Rn is called convex, if

αx + (1− α)y ∈ C, ∀x , y ∈ C, ∀α ∈ [0,1].

→ Draw a picture.

→ Online TED.
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Convex set - summary of online TED
Definitions and things to recall from analysis 1:

Definitions

• A set C ⊂ Rn is called open if for all x ∈ C there exists a
ε > 0 such that the ball with radius ε around x , B(x , ε), is
contained in C: B(x , ε) ⊂ C.

• A set C ⊂ Rn is called closed if its complement is open.
• A set is closed if and only if it contains all its limit points.
• The closure of a set C ⊂ Rn is

C = {x | there exists a convergent sequence (xn)n ⊂ C
such that lim

n→∞
xn = x}

• The interior of a set C ⊂ Rn is

C̊ = {x ∈ C | there exists ε > 0
such that B(x , ε) ⊂ C}
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Convex set - summary of online TED

The following operations preserve the convexity of a set
• Intersection
• Vector sum
• Closure
• Interior
• Linear Transformation

The union of convex sets is not convex in general.

Polyhedral sets are always convex, cones are not necessarily
convex.
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Thomas Möllenhoff
Emanuel Laude

Basics
Convex sets

Convex functions

Existence

Uniqueness

Optimality conditions
Derivative

Subdifferential

updated 18.04.2016

Convex energy minimization problems

Let’s get back to what the lecture is all about:

û ∈ arg min
u∈C

E(u),

where C ⊂ Rn convex set, E : C → R convex function.

1. What is a convex set? We know this now!

2. What is a convex function?

Definition: Convex Function

We call E : C → R a convex function if C is a convex set and
for all u, v ∈ C and all θ ∈ [0,1] it holds that

E(θu + (1− θ)v) ≤ θE(u) + (1− θ)E(v)

We call E strictly convex, if the inequality is strict for all
θ ∈]0,1[, and v 6= u.

→ Draw a picture.
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Convex functions - summary of online TED

The following operations do preserve the convexity of a
function

• Summation
• Linear Transformation

The following operations do not preserve the convexity of a
function

• Multiplication, Division, Difference
• Composition

The sum of a convex function and a strictly convex function is
strictly convex.

Remember to check two conditions to show that a function is
convex!
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Convex energy minimization problems
Let’s get back to what the lecture is all about:

û ∈ arg min
u∈C

E(u), (1)

where C ⊂ Rn convex set, E : C → R convex function.

It is sometimes convenient to “introduce” the constraint u ∈ C
into the energy function E itself. We therefore introduce the
notion of extended real valued functions.

E : Rn → R := R ∪ {∞}.

The minimization problem (1) can then be written as

û ∈ arg min
u∈Rn

Ẽ(u),

by defining

Ẽ(u) =

{
E(u) if u ∈ C,
∞ else.
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Extended real valued functions

Definition

• For E : Rn → R, we call

dom(E) := {u ∈ Rn | E(u) <∞}

the domain of E .
• We call E proper if dom(E) 6= ∅.

Revisiting the definition of convex functions

We call E : Rn → R a convex function if

1 dom(E) is a convex set.

2 For all u, v ∈ dom(E) and all θ ∈ [0,1] it holds that

E(θu + (1− θ)v) ≤ θE(u) + (1− θ)E(v)

We call E strictly convex, if the inequality in 2 is strict for all
θ ∈]0,1[, and v 6= u.
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First example of an imaging problem: Inpainting
Example: Inpainting

min
u∈Rn×m

∑
i,j

(ui,j − ui−1,j )
2 + (ui,j − ui,j−1)2 s.t. ui,j = fi,j ∀(i , j) ∈ I

with index set I of pixels to keep and suitable boundary
conditions.

→ Discuss convexity.
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Epigraph of a function

Is there a connection between convex sets and functions?

Defintion: Epigraph

Let E : Rn → R be a proper function mapping into the extended
real line. Then

epi(E) := {(u, α) | E(u) ≤ α}

is called the epigraph of the function E .

→ Draw a picture.

Theorem

A proper function E : Rn → R is convex if and only if it’s
epigraph is convex

Proof: First exercise sheet.
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Properties of convex functions
What is so special about convex functions?

Theorem

Let E : Rn → R be convex. Any local minimum of E is global.

Proof: Board.

Theorem: Monotonicity of the gradient

Let E : Rn → R be proper, convex and differentiable at
u ∈ dom(E).

E(v)− E(u)− 〈∇E(u), v − u〉 ≥ 0 ∀v ∈ Rn

Proof: Later.

Conclusion

Let E : Rn → R be proper, convex and differentiable at
u ∈ dom(E). If ∇E(u) = 0 then u is a global minimum of E .

Illustration on the board.
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Convex energy minimization problems

We said this lecture is all about

û ∈ arg min
u∈Rn

E(u),

where E : Rn → R is a convex function.

Does a minimizer of such a function even exist?
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Existence of minimizers

Defintion: Lower semi-continuity (l.s.c.)

We call the function E : Rn → R lower semi-continuous (l.s.c.),
if for all u it holds that

lim inf
v→u

E(v) ≥ E(u).

Theorem: Existence of minimizers

Let E : Rn → R be l.s.c. and let there exist an α such that the
sublevelset

{u ∈ Rn | E(u) ≤ α}

is nonempty and bounded, then

û ∈ arg min
u

E(u)

exists.

Proof: Board.
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Closedness and lower semi-continuity

Defintion: Closed function

We call the function E : Rn → R closed if it’s epigraph is closed.

Theorem: Equivalence of l.s.c. and closedness

For E : Rn → R the following two statements are equivalent
• E is lower semi-continuous (l.s.c.).
• E is closed.

Proof: Board.

OnlineTED!
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Continuity of convex functions

Continuity of Convex Functions

If E : Rn → R ∪ {∞} is convex, then E is locally Lipschitz (and
hence continuous) on int(dom(E)).

Proof in 1d: Exercise for yourself (solution will be online)

→ Board: Considering the interior is important!

Conclusion

If E : Rn → R is convex, then E is continuous.
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Existence of minimizers part II

Definition: Coercivity

A function E : Rn → R ∪ {∞} is called coercive if E(vn)→∞
for all sequences (vn)n with ‖vn‖ → ∞.

Remark: Coercivity implies that there exists a bounded
sublevelset.

Existence of a minimizer for function with full domain

Let E : Rn → R be convex and coercive, then an element
û ∈ arg minu E(u) exists.

Proof:
• dom(E) = Rn, E convex⇒ E is continuous.
• E is coercive, i.e. there exists a non-empty bounded

sublevelset.
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Thomas Möllenhoff
Emanuel Laude

Basics
Convex sets

Convex functions

Existence

Uniqueness

Optimality conditions
Derivative

Subdifferential

updated 18.04.2016

Uniqueness

When is
û ∈ arg min

u∈Rn
E(u)

unique?

Theorem: Uniqueness

If E : Rn → R is strictly convex, then there exists at most one
local minimum which is the unique global minimum.

Proof: Simple computation.
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Optimality conditions

How can we determine if

û ∈ arg min
u∈Rn

E(u)? (1)

In other words,

what is the optimality condition for (1)?

Consider a differentiable E and remember analysis I:

Necessary condition for local extremum is

∇E(û) = 0

Sufficient condition? Convexity!
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Optimality conditions
Example why convex functions are great
(stealing from Thomas’ examples)

min
u

1
2
‖u − f‖2

2 + αR(∇u)

with

R(d) =

{ 1
2‖d‖

2
2 if ‖d‖2 ≤ ε

ε‖d‖ − 1
2ε

2 else.



Convex Analysis

Michael Moeller
Thomas Möllenhoff
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Examples: Derivatives of convex functions

Getting back: What are the optimality conditions for ...

... E(u) = ‖u − f‖2
2 =

∑n
i=1(ui − fi )2?

... E(u) = ‖Au − f‖2
2 for a matrix A ∈ Rm×n?

... E(u) = ‖u‖1 =
∑n

i=1 |ui |?

We need a theory for non-differentiable functions!

Illustrate `1 case for discussion.
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The subdifferential

Definition: Subdifferential

Let E : Rn → R be convex. We call

∂E(u) = {p ∈ Rn | E(v)− E(u)− 〈p, v − u〉 ≥ 0, ∀v ∈ Rn}

the subdifferential of E at u.
• Elements of ∂E(u) are called subgradients.
• If ∂E(u) 6= ∅, we call E subdifferentiable at u.
• By convention, ∂E(u) = ∅ for u 6= dom(E).

Theorem: Optimality condition

Let 0 ∈ ∂E(û). Then û ∈ arg minu E(u).
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The subdifferential

Examples for non-differentiable functions:
• The absolute value function.
• Functional

E(u) =

{
0 if u ≥ 0
∞ else.

• E(u) = 1
2‖u‖

2

Subdifferential and derivatives

Let the convex function E : Rn → R ∪ {∞} be differentiable at
u ∈ int(dom(E)). Then

∂E(u) = {∇E(u)}.

Proof: Exercise.

This also proves the “Theorem: Monotonicity of the gradient”.
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Thomas Möllenhoff
Emanuel Laude

Basics
Convex sets

Convex functions

Existence

Uniqueness

Optimality conditions
Derivative

Subdifferential

updated 18.04.2016

The subdifferential

Geometric interpretation of subgradients:

Any subgradient p ∈ ∂E(u) represents a non-vertical
supporting hyperplane to epi(E) at (u,E(u)).

Definition

A supporting hyperplane to a set S ⊂ Rn is a hyperplane
{x ∈ Rn | 〈a, x〉 = b}, such that

• S ⊂ {x ∈ Rn | 〈a, x〉 ≤ b} or S ⊂ {x ∈ Rn | 〈a, x〉 ≥ b}
• ∃y ∈ ∂S (the boundary of S) such that 〈a, y〉 = b.

Let p ∈ ∂E(u). Then

E(v)− E(u)− 〈p, v − u〉 ≥ 0 ∀v ∈ Rn

⇒ α− E(u)− 〈p, v − u〉 ≥ 0 ∀(v , α) ∈ epi(E)

⇒
〈[
−p
1

]
,

[
v
α

]
−
[

u
E(u)

]〉
≥ 0 ∀(v , α) ∈ epi(E).

→ Draw image on the board.
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The subdifferential

Is any convex E subdifferentiable at x ∈ dom(E)?

E(u) =

{
−
√

u if u ≥ 0
∞ else.

Definition: Relative Interior

The relative interior of a convex set M is defined as

ri(M) := {x ∈ M | ∀y ∈ M, ∃λ > 1, s.t. λx + (1− λ)y ∈ M}

Theorem: Subdifferentiability1

If E is a proper convex function and u ∈ ri(dom(E)), then
∂E(u) is non-empty and bounded.

Partial proof on the board, full proof Rockafellar.

1Rockafellar, Convex Analysis, Theorem 23.4
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Subdifferential rules

Theorem: Sum rule2

Let E1, E2 be convex functions such that

ri(dom(E1)) ∩ ri(dom(E2)) 6= ∅,

then it holds that

∂(E1 + E2)(u) = ∂E1(u) + ∂E2(u).

Example: Minimize (u − f )2 + ιu≥0(u).

Example: Minimize 0.5(u − f )2 + α|u|.

2Rockafellar, Convex Analysis, Theorem 23.8
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Subdifferential rules

Theorem: Chain rule3

If A ∈ Rm×n, E : Rm → R ∪ {∞} is convex, and
ri(dom(E)) ∩ range(A) 6= ∅, then

∂(E ◦ A)(u) = A∗∂E(Au)

Example: Minimize ‖Au − f‖2
2.

3Rockafellar, Convex Analysis, Theorem 23.9
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Subdifferential rules

We have seen the example of `1 minimization/denoising

min
u

1
2
‖u − f‖2

2 + α‖u‖1

More interesting for imaging: Change of basis, e.g. orthogonal
wavelet basis

min
u

1
2
‖u − f‖2

2 + α‖Wu‖1

Show example in Matlab!
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Thomas Möllenhoff
Emanuel Laude

Basics
Convex sets

Convex functions

Existence

Uniqueness

Optimality conditions
Derivative

Subdifferential

updated 18.04.2016

Summary

• Convex functions
• Every local minimum is global
• First order optimality condition is sufficient

• The optimality condition for û to minimize E is

0 ∈ ∂E(û)

• The subdifferential ∂E(u)
• is set valued.
• generalizes the derivative.
• ∂E(u) = {∇E(u)} is E is differentiable at u.
• can be identified with supporting hyperplanes to epi(E).
• Obeys the “usual” sum and chain rules.

We now have all tools that are necessary to discuss a first
class of minimization algorithms for determining

û ∈ argmin
u

E(u)

Next lecture: Implementation, convergence, applications!


