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Recap and Motivation

+ Last 3 lectures: PDHG method for minimizing structured
convex problems

min G(u) + F(Ku)

+ Unintuitive overrelaxation, rather involved convergence
analysis

+ Next lectures: simple and unified convergence analysis of
many different algorithms within a single approach

+ Key ideas: monotone operators, fixed point iterations

+ Give a new understanding of convex optimization
algorithms
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. Operator Splitting
Notation Methods

Michael Moeller
Thomas Méllenhoff

« Arelation R on R" is a subset of R" x R" Emanuel Laude

+ We will refer to it as a set-valued operator and overload
the usual matrix notation
Rolaiors

R(x)=Rx:={y eR"|(x,y) € R}.

Monotone Operators
Fixed Point Iterations

Proximal Point

« If Rx is a singleton or empty for all x, then R is a function Algorithm
(or single-valued operator) with domain PDHG Revisited
Douglas-Rachford
dom(R) := {x e R" | Rx # 0} Splting
Applications

+ Abuse of notation: identify singleton {x} with x, i.e., write
Rx = y instead of Rx > y if Ris function

« Concept: identifying functions with their graph
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Operator Splitting
Some Examples Methods
Michael Moeller
Thomas Méllenhoff
Emanuel Laude

+ Empty relation: ()
+ Identity: /:= {(u,u) | u € R"} -
« Zero: 0 := {(u,0) | u € R"}

Roatons

- Gradient relation:

Monotone Operators

VE = {(U, VE(U)) | ue Rn} Fixed Point lterations
Proximal Point
Algorithm
PDHG Revisited
+ Subdifferential relation: Douglas-Fachiord

Splitting

OE :={(u,g) | u e dom(E), E(v) > E(u)+(g, v—u),Vv € R"} Applcations

+ Another possible view: think of relations as a set valued
functions, e.g., 9E : R" — P(R")

updated 04.07.2016



Our Goal

Solve generalized equation (inclusion) problem
0 € R(u)
i.e., find u € R" such that (v,0) € R.

Examples:
+ Set R = JE, then the goal is to find 0 € E(u)
+ This are just the optimality conditions of our prototypical
optimization problem:

arg 52%1" E(uv)

+ Finding saddle-points (I, p) of
PD(u, p) = G(u) — F*(p) + (Ku, p)
corresponds to the inclusion problem
u
p

oe|oe KT
~K  OF
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- . O} tor Splittil
Operations on Relations Methods

Michael Moeller
Thomas Méllenhoff
Emanuel Laude

« Inverse R~ = {(y,x) | (x,y) € R}
« Exists for any relation -
+ Reduces to inverse function when R is injective function

« Additon R+ S={(x,y +2) | (x,y) € R, (x,2z) € S}

. Sca”ng AR — {(X, )\y) | (X,y) c R} Monotone Operators
Fixed Point Iterations

* Resolvent Jyg := (/ + AR) ™! -

Proximal Point
Algorithm

ExampIeS: PDHG Revisited

° I+ AR = {(X,X + )\_y) I (X, _y) S R} Douglas-Rachford
Splitting

s Jr={(x+A,x) | (x,y) € R}

« E closed, proper, convex: (0E)~! = 0E*

Applications

— Draw a picture for E(u) = |u|
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Operator Splitting
Monotone Operators Methods
Michael Moeller
Thomas Méllenhoff
Emanuel Laude

Definition

The set-valued operator T C R"” x R" is called monotone if

(u—v,Tu—Tv) >0, Yu,v e R". Notation'

Relations

An operator T is called maximally monotone if it is not Monotone Oporetors
contained in any other monotone operator. I R

Proximal Point
Algorithm

+ Maximal monotonicity is an important technical detail, but
we will be sloppy about it for the rest of the course

PDHG Revisited
Douglas-Rachford
Splitting

Examples of monotone operators:

Applications
+ Monotonically non-decreasing functions T : R — R
+ Any positive semi-definite matrix A: (Ax — Ay, x —y) >0
+ Subdifferential of a convex function of

* Proximity operators of convex functions prox_; : R” — R"

1This is again abuse of notation for (u — v,p—q) >0, Vp € Tu,vq € Tv updated 04.07.2016



Operator Splitting
Monotone Operators Methods

Michael Moeller

Thomas Méllenhoff

Emanuel Laude

Calculus rules (exercise):

« T monotone, A > 0 = AT monotone
« T monotone = T~' monotone Relations
* R, S monotone, A > 0 = R+ \Sis monotone  Monatone Operators

Fixed Point Iterations

Some important definitions/properties:

Proximal Point
Algorithm

+ Lipschitz operators (and in particular nonexpansive

. . PDHG Revisited
operators) are single-valued (functions) et

Douglas-Rachford
+ x is called fixed point of operator T if x = Tx Splittng

Applications

« If F is nonexpansive (Lipschitz constant L < 1) and
domT = R” then the set of fixed points (/ — F)~'(0) is
closed and convex (exercise)

updated 04.07.2016



Resolvent and Cayley Operators

* Let T ¢ R"” x R" be set-valued operator
« The resolvent operator of T is given as Jx1 := ([ + AT)~!
+ Special case: T = 9f, Jyy¢ is proximal operator of f

* From previous slide: resolvent is monotone if T is
monotone

« The Cayley operator (or reflection operator) of T is defined
as C)\T = 2J,\T —
Facts:
* 0e Txifandonly if x = Jhs7x = Cy7x

« If T is monotone, then J,7 and C, 1 are nonexpansive
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Operator Splitting
Methods
Michael Moeller

Thomas Méllenhoff
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Relations
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. . Operator Splitting
The Main Algorithm Methods
Michael Moeller
Thomas Méllenhoff
Emanuel Laude

+ Recall that u € R" is fixed point of F : R” — R", if u = Fu

+ The main algorithm of this chapter is the fixed point or RO
Picard iteration for some given u® € R": Monotone Operators
o ok B Fred P ferations
u - FU 9 k - Oa 1 ) 2a et Proximal Point
Algorithm

PDHG Revisited

Douglas-Rachford

+ We will see that many important convex optimization Spliting
algorithms can be written in this form Applications

+ Allows simple and unified analysis

updated 04.07.2016



Iteration of Contraction Mappings

Contraction Mapping Theorem

Suppose that F : R” — R is a contraction with Lipschitz
constant L < 1. Then the fixed point iteration

Ukt = Fuk,

also called contraction mapping algorithm, converges to the
unique fixed point of F.

— Proof: see literature?
+ Example: the gradient method can be written as
Ut = (1 = 7VE)uk
+ Suppose E is m-strongly convex and L-smooth, then
| — TV E is Lipschitz with Lgy = max{|1 —rm|, |1 — 7L|}

« | — 7VE is contractive for 7 € (0,2/L)

2This theorem is also known as the Banach fixed point theorem.
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Operator Splitting

Iteration of Averaged Nonexpansive Mappings Methods

Michael Moeller

* Recall that a mapping F : R” — R" is called nonexpansive  [remas lioleett

Emanuel Laude

if it is Lipschitz with constant L < 1.
+ Fixed point iteration of nonexpansive mapping doesn’t -
necessarily converge (example: rotation, reflection)

Relations

« The mapping F : R” — R" is called averaged if . .
lonotone Operators
F=(1-6)I+0T, for some nonexpansive operator T and T
6 € (0,1)

Proximal Point
Algorithm

Theorem: Krasnosel’skii-Mann PDHG Revisited

Douglas-Rachford

Let F: R” — R" be averaged, and denote the (non-empty) set Spliting
of fixed points of F as U. Then the sequence (u*) produced by  agpicaions
the iteration

uk+1 _ Fuk

converges to a fixed point u* € U, i.e., u* — u*.

— Proof: board! e



Operator Splitting

Example: gradient method Methods

Michael Moeller
Thomas Méllenhoff
Emanuel Laude

» Assume E is L-smooth but not strongly convex

+ Possible to show that the operator (/ — 7V E) is Lipschitz
continuous with parameter Lgy = max{1,|1 — 7L|}

Relations

Monotone Operators

« For 0 < 7 < 2/L, this operator is nonexpansive e Por eraons
+ It is also averaged for 0 < 7 < 2/L since Proximal Point
Algorithm
(I-—7VE)=(1-0)I+6(] - (2/L)VE), POHG Revsied
Douglas-Rachford
. Splitting
with § = 7L/2 < 1. poplcatons

» Hence, we get convergence of the gradient descent
method from the previous theorem

updated 04.07.2016
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The Proximal Point Algorithm

+ Recall our original goal of finding u € R” with
0ec Tu,

for T ¢ R™ x R” monotone.

+ We have seen that fixed points of resolvent operator J, 1
are the zeros of T

Definition: Proximal Point Algorithm (PPA) °

Given some maximally monotone operator T ¢ R” x R", and
some sequence (\x) > 0. Then the iteration

U = (14 2 T) Uk,

is called the proximal point algorithm.

SR. T. Rockafellar, Monotone Operators and the Proximal Point Algorithm,
SIAM J. Control and Optimization, 1976
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Operator Splitting

Intuition of the Proximal Point Algorithm # Methods
Michael Moeller
Thomas Méllenhoff
Laude

Relations
Monotone Operators
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4Eckstein, Splitting methods for monotone operators with applications to
paraIIeI optimzation, 1989, pp. 42 updated 04.07.2016



. . . Operator Splitting
Convergence of Proximal Point Algorithm Methods
Michael Moeller
Thomas Méllenhoff
Emanuel Laude

The resolvent Jy7 = (/+ AT)~' is an averaged operator

+ To see this, consider the reflection or Cayley operator

Relations

Monotone Operators

1 1
CAT = 2J)\T - s J,\T = EI"‘ ECAT Fixed Point Iterations

. Hence J)\T iS averaged Wlth 9 — %’ as we have seen in the PDHG Revisited
Douglas-Rachford

last lecture that C, 1 is nonexpansive Spiiting

Applications

+ Proximal Point algorithm converges as it is fixed point
iteration of averaged operator

updated 04.07.2016
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Operator Splitting

PDHG as Proximal Point Method Methods

Michael Moeller

* Remember that for convex-concave saddle point problems — thomas msennott

Emanuel Laude

PD(u, p) = G(u) — F*(p) + (Ku, p)
we have the following:

aG( a) + KTﬁ ] Relations

(&, p) = argminmax, p, PD(u, p) < [O] €

O —Kfl + 6F* (i)) Monotone Operators
. Fixed Point Iterations
=:T(0,p)
Proximal Point
Algorithm
» For convex F* and G, T is monotone PO Revsted
+ Idea: use the proximal point to find zero of T Douglas-Rachford
. n . Splittin:
« Stack primal and dual variables into vector z = (u, p)": Ping
Applications

M= (14 AT) 2K & 2K - 2T e AT
* Plugging things in yields
U — U e NG + AK T pr !
Pk — pH e NOF*(pF*H1) — AKUKH

updated 04.07.2016



Operator Splitting

PDHG as Proximal Point Method Methods
Michael Moeller
* Reformulating the following Thomas Méllenhoff

Emanuel Laude

0 uk+t — gk 3G(Uk+1) + KTpk+1
€ pk+1 _pk + 8F*(pk+1) _ Kuk+1

=:T(0,p) Relations
|eads tO: Monotone Operators
Fixed Point Iterations
K+1 _ —1,k T k1 N
u = (I -+ /\aG) (U —\K p ) :Ir;::rri?:romt
= prox,g(u* — AKTp") POHG Rovsied
P = (14 AF*) 7 (pF + AKUFTT) o
= prOX)\,_-* (pk + )\Kuk+1) Applications

+ Almost looks like the PDHG method, step size A

+ Problem: cannot implement this algorithm, since updates
in Ukt and p¥*! depend on each other

updated 04.07.2016



Operator Splitting

PDHG as Proximal Point Method Methods
+ Consider the following: Eﬂi’::lﬁi‘f:;;m
0c M uktt — yk 36(Uk+1) + KTpk+1
pk+1 _ pk 3F*(pk+1) — Kukt1

=:T(a,p)

Relations

Monotone Operators

+ Step size M € R(™m)x(n+m) is now a matrix
+ Take the following choice

Fixed Point Iterations

Proximal Point

] T Algorithm
1 —-K
mo| H oo
- 9 K - I Douglas-Rachford
Splittin:
+ Allows to recover PDHG as proximal point algorithm (PPA) A:p:c:ions

Ut = prox, g(uf — 7KTp"),
pk+1 = prox, g. (pk + JK(uk+1 + g(uk+1 _ Uk)))
+ This is called generalized or customized PPA:

0e MEZ -2+ TZH & 2K = (M + T)"TMZ¥

updated 04.07.2016



i H H Operator Splitti
Convergence of Customized Proximal Point Method Monods

Michael Moeller
Thomas Méllenhoff

+ For symmetric, positive definite M, we can write M = L' L, Emanuel Laude
L invertible (Cholesky decomposition)

« Apply classical PPA to operator 7" =L To To L1

yk+1 _ (I+ L_T o TO L_1)_1yk Relations

Monotone Operators

« T (maximally) monotone = L= o T o L~ (maximally) Fixed Point Herations
monotone 5 Proximal Point
Algorithm
- Define Lx =y, then0 e (L-ToToL ')y & 0¢e Tx PDHGRevsted
+ Writing out the algorithm in terms of x yields oot e
Applications

0 € M(xk+T — xk) 4 Txk+

* Hence customized PPA inherits convergence from
classical proximal point

5Bauschke, Combettes, Convex Analysis and Monotone Operator Theory in
Hilbert Spaces, Theorem 24.5 updated 04.07.2016



Convergence of PDHG
+ When is the step size matrix symmetric positive definite?

1y —KT]

M = 1
—0K 1

« Step size requirement for PDHG is 7o ||K||* < 1, 70 > 0
Lemma (Pock-Chambolle-2011 °)

Let 8 =1, T and ¥ symmetric positive definite maps satisfying

1 1 2
HZE KTz2|| <1,
then the block matrix
-1 T
M= T K
—9K Y1

is symmetric and positive definite.

6T. Pock, A. Chambolle, Diagonal Preconditioning for first-order primal-dual
algorithms in convex optimization, ICCV 2011
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Operator Splitting
Summary Methods

Michael Moeller
Thomas Méllenhoff
Emanuel Laude

+ Customized proximal point algorithms yield a whole family
of methods, many choices of M are concievable

Relation:
0 € M(ZK" — 2K) 4 T2+ e

Monotone Operators

+ PDHG corresponds to one particular choice of M giedionticratons

- Overrelaxation with # = 1 required to make M symmetric ot

+ Convergence follows from convergence of classical PoHG Rovsted
proximal point algorithm oot e

+ Classical proximal point converges as it is fixed point fplezims

iteration of averaged operator

+ Next lecture: Douglas-Rachford splitting and ADMM

updated 04.07.2016



Operator Splitting

Organizational Remarks Methods
Michael Moeller
Exams: Thomas Méllenhoff

Emanuel Laude

+ Important: Registration deadline 30.06. in TUMonline!
+ Exam (oral): 18.07. and 19.07.

* Repeat exam (oral): 05.10. and 06.10.

Relations

+ Sign up for timeslots in exercise class on Friday 17.06. Monotane Operators
Remaining lectures: Fixed Point lferations
- Next Monday 20.06. hints for getting started with the Aot
optimization challenge! POHG Revisied
- 22.06. Some practical considerations of PDHG/ADMM sonieg
+ 27.06. - 01.07. no lecture / exercises, repeat and review Aol

what you have learned!

+ 04.07. - 11.07. Miscellaneous topics on modifications and
accelerations, open research questions/challenges

+ Last lecture on 13.07. repeat of content, questions

updated 04.07.2016
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Motivation

« Last lecture: proximal point algorithm for finding the zero
of a monotone operator T

0cTu & u=(+T)'u

+ Often the resolvent Jy1 := (/ + AT)~" is hard to compute

* One remedy: matrix-valued step-size / customized PPA
Ut = (M4 T) "M

+ Another possibility are splitting methods
+ They exploit further structure of the problem:

T=A+B

* Resolvents Jy4 = (/I + ) A)~" and Jyg = (I + AB)~' can be
more easily evaluated than J,r
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Splitting methods

T = A+ B, Aand B maximal monotone

Cayley operators Cq = 2Js — land Cg = 2J, — [ are
nonexpansive

Composition C,Cp also nonexpansive

Main result: (— board!)

0cAu+Bu & CsCgv=v, u=dgv

Hence, solutions can be found from fixed point of the

operator C,Cpg

— Draw a picture for T = 0.¢, + J¢¢,!
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Splitting Methods

» Peaceman-Rachford splitting is undamped iteration

+ Doesn’t converge in the general case, needs either C, or

Vit = CCavk

Cg to be a contraction

« Douglas-Rachford splitting 7 is the damped iteration

VR = (

1
2

|+ ;CACB> Vk7

* Recover solution by u* = Jgv*

+ Always converges if there exists a solution 0 € Au* + Bu*,
since it’s fixed point iteration of averaged operator

7J. Douglas, H. H. Rachford, On the numerical solution of heat conduction
problems in two and three space variables. Transactions of the AMS, 1956.
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. Operator Splitti
Douglas-Rachford Splitting (DRS) Methods
Michael Moeller
Thomas Méllenhoff
Emanuel Laude

« The Douglas-Rachford iteration v/+! = (11 + 1CaCg) v¥
can be written as

Relations

k+1 __ k Monotone Operators
ug™t = Jp(v"),
VAT =208 — vk,

U§+1 _ JA(\~/k+1 )7

Fixed Point Iterations

Proximal Point
Algorithm

PDHG Revisited

T o
+ uk and uf can be thought of estimates to a solution Appications

+ vk running sum of residuals, drives uX and uf together

updated 04.07.2016



Application to Convex Optimization

Let’s apply DRS to minimize

EE%Q" G(u)+ F(u)

* G:R" > RU{o0}, F:R" — RU {0} closed, proper, cvx.
+ Optimality conditions (assuming ri(domG) Nri(domF) # ():

0 € T0G(u) + TOF (u)

Find zeroof T=A+ B, A= 70F, B= 710G

« The algorithm becomes (after slight simplifications):

U = proxo(v¥),

VK = prox, g(2uF T — vK) 4 vE — ftT

Operator Splitting
Methods

Michael Moeller
Thomas Méllenhoff
Emanuel Laude

Relations
Monotone Operators
Fixed Point Iterations

Proximal Point
Algorithm

PDHG Revisited

Applications

updated 04.07.2016



Reformulation of DRS

+ We can rewrite the step in vkt using Moreau’s Identity

U = prox, o(v5),
vkt = prox_p(2uftT — vK) 4 vE — gkt
U 4 7prox 1/T)F*((2Uk+1 v)/7)
+ Introduce variable pf = £=Y" & vk = yk — 7pk, o = 1/r

o = proxTG<uk "),

P = prox, e. (0 + o(20%H — 1K)

* Looks familiar? :-)

+ Applying DRS on the primal problem min, G(u) + F(u) is

equivalent to PDHG!
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Operator Splitting

Optimization Problems with Compositions Methods

Michael Moeller
Thomas Méllenhoff

+ Ideally we'd like to solve problems of the form (B L

mJn G(u)+ F(w), st w=Ku -

+ In many applications we would actually like to minimize

Relations

Monotone Operators

m|n G + Z F; (K u Fixed Point lterations
i=1 Proximal Point
* Rewrite using trick: Algorithm

PDHG Revisited

. B K — PPN 3 — F( W) = Z FI(VVI) Applications
Wiy KN i=1

+ Virtually any convex optimization problem fits into this form

+ Even problems looking very complicated at first glance can
be split up into many simple substeps

updated 04.07.2016



i i i it Operator Splitti
Option 1: Graph Projection Splitting Methods
Michael Moeller
Thomas Méllenhoff
Emanuel Laude

+ We want to minimize for K : R” — R™

min  G(u)+ F(w) st Ku=w -
ueR”,weR™

+ Rewrite problem using (u, w) € R™™ as Relations
. . Monotone Operators
Tlmf/] G(u,w) + F(u,w) Fixed Point lterations
~ Proximal Point
° Set G(U, W) - G(U) + F(W) Algorithm
PDHG Revisited
- 0 if Ku=w
Fen = (] o=
oo, else.

Applications

+ Proximal operator for Gis simple if proximal operators for
F and G are simple

+ Proximal operator for Fis projection onto the graph of
Ku = w (solving a least squares problem)

updated 04.07.2016



Option 1: Graph Projection Splitting
« lterations can be written as 8

(K172, Wh1/2) = (proxg(u* — %), proxg(wk — %)) |

(uk—H7 Wk+1) — n(uk+1/2 + uk’ Wk+1/2 + '7|/k)7

(Elk+1, Wk+1) _ (ak + uk+1/2 o Uk+1, |7Vk + Wk+1/2 _ Wk+1).

* Projection is given as:

N(c,d) = A" A=

)

0 K -1
+ Can use (preconditioned) conjugate gradient to
approximately compute projection

c+ATd / KT]

* Important: warm-start linear system solver with solution
from previous iteration

+ Other possibility: factorization caching

8N. Parikh, S. Boyd, Block Splitting for Distributed Optimization, 2014
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Option 2: DRS for Problems with Compositions

+ Consider the dual problem to min, G(u) + F(Ku)
min G*(—K"p) + F*(p) = (G" o —K™)(p) + F*(p)
+ Applying DRS yields the following:

k+1 K
U = prox,(geo—k-)(v"),

VAT = prox, . (2uF T — vK) 4 vk gkt

« Reorder slightly with new variable w/+"

Ukt = P"OXU(G*O—K*)(V’()a

K
P
VAT — ket t gk  ghet

1 = prox, g. (UK — V),
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Option 2: DRS for Problems with Compositions
+ The prox involving the composition is given by:
ProX,(go—k=)(V) = vV + aKargmm G(u)+ = HKu+ —H

+ Often expensive or difficult to evaluate due to the Ku-term
* Iteration can be written as

kN2
. v
U = argmin G(u) + = HKu+ —I
u g
U = vk 4 oKUK,
Pkt = prox, . (20K — vK),
VR — phet ke
+ Alternatively this can be simplified to
k 2
Taas fargmlnG HKU+ ;
k! = prox, g. (V¥ +20Ku"+1),

L
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Option 2: DRS for Problems with Compositions et T

Michael Moeller
Thomas Méllenhoff
Emanuel Laude

+ Even more simple:

K _ o Kuk |12
U+ = argmin G(u) + = ‘ Ku+ =700 -
u 2 o
pk+1 = proxo’F* (pk + O'K(2Uk+1 - uk))7 Relations
Monotone Operators
. . . . Fixed Point Iterations
+ Optimality conditions for the iterates: broximal Point
Algorithm
1 i,
0e 3G(Uk+1) + O’l‘(T(l{UlFH —+ 7(pk — O'Kuk)) PDHG Revisited
g
j s
0e aF*(pk-H) + 7(pk+1 _pk _ 0_K2uk+1 —i—aKuk) ot
g ications

+ Adding and substracting K p**" to first line yields
0¢ 6G(uk+1) + KTpk+1 _|_O,KTK(uk+1 _ Uk) _ KT(pk+1 _pk)

0 € OF*(p'M") — KUk — K(uF™" — uk) + ;(pk“ o)
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Relation to PDHG

Previous iterations can be written as PPA, z = (u,p)":

oG KT uk+1 1/ _KT Uk+1 _ Uk
0e T
—K OF* pk+1 + K j;l pk+1 _ pk
Tzk+1 M ZkH1 _ gk

Matrix M only positive semidefinite, our convergence
result for Proximal Point algorithm does not apply directly

PDHG with 6 = 1 can be seen as inexact/approximative
DRS,
oKTK ~ 1
T
Often makes iterations much cheaper

For semi-orthogonal (K7 K = v/) this approximation is
exact

Operator Splitting
Methods

Michael Moeller
Thomas Méllenhoff
Emanuel Laude

Relations
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Fixed Point Iterations

Proximal Point
Algorithm

PDHG Revisited

Applications
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Alternating Direction Method of Multipliers (ADMM)

* Recall this formulation

k 2

)

Ukt = argmin G(u) + = HKU+ —_
u 2 o

P = prox, g. (VK + 20 Kuk™),

VR — et e

« Apply Moreau’s identity to step in p**'

o Vi P
U = argmin G(u) + = HKU +—
u 2 o

)

k+1
p

vk — pk+1 — oKyt

k
v

= vk + 20 KUK+ — oprox, g(— + 2Kuk 1),
g
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Alternating Direction Method of Multipliers (ADMM)

+ Make new variable for prox, c-step, write prox as argmin:

k 2

= argmln Gu) + - ”Ku +—

)

o vk 2
wkt = argmin F(w) + = HW — — —2Kukt |||
w 2 g
P = VK 4 20 KUkt — gkt
1 g oKy
+ Replacing the variable v* in the u**' update yields
P — oKuk|?

U+ = argmin G(u) + 2 HKu +
u 2 o

Operator Splitting
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Alternating Direction Method of Multipliers (ADMM) e

Michael Moeller
Thomas Méllenhoff

+ Replace variable p¥ in all update steps Emanuel Laude

vE=1 4 oKUK — owk

U1 = argmin G(u) + % HKU -
u

g
vk 2
. g Relations
wkt! = argmin F(w) + = ||w — — — 2KuFHT||
w 2 ag Monotone Operators
Vk+1 _ Vk + O_(Kuk+1 o Wk+1) Fixed Point Iterations
Proximal Point
Algorithm

PDHG Revisited

rewe s o

2
vE=1 4+ o Kuk
ag

o Applications

2

U1 = argmin G(u) + HKU —wk+
u

2
Kt vE + o Kuk+!
o

wk w— Ku

2

Vk+1 _ Vk +0_(Kuk+1 _ Wk+1)

1 = argmin F(w) + 2 ‘
w
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Alternating Direction Method of Multipliers (ADMM)

+ Using the following fact we can further rewrite the updates:
2 ag
—argmin — (a,b) + = ||a|®
a 2

argmin g

a— —
g

* Pulling terms of the squared norm:

k

Ukt = argmin G(u) + (Ku, vk=' + o Ku¥) + % HKu — wkH27
u

Wk+1

argmin F(w) — (w, vk + o KU + % HW— Kuk* HZ,
W

k+1

v

vE o (Kukt! — wht)
« Reintroduce pt' = vk + o Ku**1, can be rewritten as:

k

Uk = argmin G(u) + (Ku, p*) + % HKU — WkHZ,
u

2
wk+1 = argmin F(w) — (w, p"*1) + % HW — Kut H :
w

pk+1 — pk +O_(Kuk+1 _ Wk)
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Alternating Direction Method of Multipliers (ADMM)

o Let wkt! = wk:

Operator Splitting
Methods

Michael Moeller
Thomas Méllenhoff
Emanuel Laude

u* 1 = argmin G(u) + (Ku, p*) HKu T H ,
u
k2 - kity | O k1|2 ,
w T = argmin F(w) — (w,p"" ") + = HW — Ku H , Relations
w 2 Monotone Operators
pk+1 = pk + g(KukjL1 — Wk+1) Fixed Point lterations

« Change order of first two iterates:

wkt1 = argmin F(w) — (w, p*)
w

U1 = argmin G(u) + (Ku, p*)
u

pk+1 _ pk + O_(Kuk—H _ V—Vk+1)

o 2
e W—KUkH ,
+2H

Proximal Point
Algorithm

PDHG Revisited

Applications

2
A
ML
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Alternating Direction Method of Multipliers (ADMM)

* Final update equations:

wk+! = argmin F(w) — (w, p*) + % HW - KukH27
w
= argmln G(u) + (Ku, p¥) HKU — whH! H2 ;
p =p +0_(Kuk+1 k+1)

+ Alternating minimization of the augmented Lagrangian:

Liug(u, w, p) = G(u) + F(w) + (p, Ku — w) +

» The method in this form is called Alternating Direction
Method of Multipliers (ADMM)

« It has gained enormous popularity recently °, over 3458
citations in 5 years

9Boyd et al., Distributed optimization and statistical learning via the
alternating direction method of multipliers, 2011

T 2
Ky —
Iy~ w|
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. Operator Splitting
Conclusion Methods

Michael Moeller
Thomas Méllenhoff
Emanuel Laude

+ Splitting methods split problem into simpler subproblems -

« Many other splitting approaches exist that can explicitly
handle differentiable functions (Forward-Backward,
Forward-Backward-Forward, Davis-Yin, ...)

Relations
Monotone Operators
Fixed Point lterations
+ Many relations exist between the primal-dual algorithms, Proximal Point

. Algorithm
often special cases of one another
PDHG Revisited

+ Depending on the problem structure, better to use either -
Graph Projection/DRS/ADMM or PDHG (more next week!)

* Rule of thumb: Graph Projection/DRS/ADMM few
expensive iterations, PDHG many cheap iterations

Applications
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Recalling customized
proximal point methods

Operator Splitting
Methods

Michael Moeller
Thomas Méllenhoff
Emanuel Laude

Relations
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Proximal Point
Algorithm

PDHG Revisited

Applications
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Method review

Primal problem
mJn G(u) + F(Ku)

Primal-Dual form

mJn mgx G(u)+)Ku, p(—F*(p)

Primal dual hybrid gradient

k+1 K —k
Pt = prox, . (p* + o KT"),
Ut = prox g(uf — TK* Pk,
Dk+1 _ 2uk+1 o Uk.

Operator Splitting
Methods

Michael Moeller
Thomas Méllenhoff
Emanuel Laude

Relations
Monotone Operators
Fixed Point Iterations

Proximal Point
Algorithm

PDHG Revisited

Applications

updated 04.07.2016



. Operator Splitting
Method review Methods

Michael Moeller
Thomas Méllenhoff
Emanuel Laude

Primal problem
muin G(u) + F(Ku)

Augmented Lagrangian

Relations
Liug(U. W, p) = G(U) + F(w) + (p, Ku— w) + 3 [Ku—w|®

Fixed Point Iterations

Proximal Point

Alternating directions method of multipliers (ADMM) on primal e
Uk+1 _ argmln L (U W p ) PDHG Revisited
- aug -
Wk+1 = argmln Laug( k+1 ? W’ pk)7 (ADMM) Applications

p _ p +r (Kuk+1 k+1)

= Douglas-Rachford Splitting (DRS) on the dual.
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Various reformulations!

Note that various reformulations lead to many different
algorithms under the same name!

For example:
* F(u) = G*(-K"u), G(u) = F*(u),

min G(u) + F(Ku)

is the dual problem.
« K= (K,=I), 0= (u,w), F =6, G(li) = F(w) + G(u):

muin G(0) + F(K)

leads to "graph projection” methods.

Operator Splitting
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Relations
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Proximal Point
Algorithm

PDHG Revisited
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Operator Splitting
Methods

Michael Moeller
Thomas Méllenhoff
Emanuel Laude

Application of

Monotone Operators

Customized PP algorithms Fixed Point Iterations

Proximal Point
Algorithm

to computer vision problems

Douglas-Rachford
Splitting
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Single view 3D reconstruction

Let Q be the image domain, S C Q an object.

From: Finding Nemo, https://ohmy.disney.com/movies/2015/12/20/dory-finding—nemo-hero/

Goal: Estimate a 3D model

Operator Splitting
Methods

Michael Moeller
Thomas Méllenhoff
Emanuel Laude

Relations
Monotone Operators
Fixed Point Iterations

Proximal Point
Algorithm

PDHG Revisited

Douglas-Rachford
Splitting

updated 04.07.2016


https://ohmy.disney.com/movies/2015/12/20/dory-finding-nemo-hero/

- . . . . O tor Splitti
First version: Single view 2.5D reconstruction Methods

Michael Moeller

Oswald, Toppe, Cremers CVPR 2012: Find a height map that T 2 I i

Emanuel Laude
has minimal surface for fixed volume and respects the contour.
Mathematically for height map uv: S — R -
* Jsu(x) dx =V, where V is a user given volume Relations

« Constrain U|6S =0 Monotone Operators

Fixed Point lterations
* Minimize [4+/1+ [Vu(x)|? dx (surface area)

Proximal Point
Algorithm

Discrete form PDHG Revisited

Douglas-Rachford

. Splitting
MR 2V DU+ ) [
]

for a suitable gradient operator D (respecting ujgs = 0),

ZV:{UER‘S| | ZU,‘Z V}
i
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Single view 2.5D reconstruction

How can we minimize

E(uy= Y /1+|(Du)il2 + 6z,(u) ?

One option: Gradient projection.

+ Descent on the term that does not have an easy prox:

Duk .
ukt1/2 — k1 Drvk, V. = (Du”)i:

T /1 [(DUR); 2
for suitable 7, with D : R" — R"%2,

* Project onto constraint set:
. o1 5
projs, (v) = argmin EHu — V|3 + 0%, ()
u

Board: How does the projection look like?
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Single view 2.5D reconstruction

1 1
argmin §||u — v||5 + 05, (u) = argmin 5||u —V|Z+0_v((1,u)
u u
Optimality condition
0=0-v+1p, peds_y((1,D)

=V
i
Take inner product of the above equation with 1:

0=V-> vi+np,
i

1
=p=-_ (V—Zv,-),
I
which yields

N 1 4
b=v-1_ (VZV,) = v —mean(v)1+1-

Operator Splitting
Methods

Michael Moeller
Thomas Méllenhoff
Emanuel Laude

Relations
Monotone Operators
Fixed Point Iterations

Proximal Point
Algorithm

PDHG Revisited

Douglas-Rachford
Splitting

updated 04.07.2016



Single view 2.5D reconstruction

It works! :-)

https://ohmy.disney.com/movies/2015/12/20/dory~finding-nemo-hero/

Oringinal image from: Finding Nemo,
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https://ohmy.disney.com/movies/2015/12/20/dory-finding-nemo-hero/

Single view 2.5D reconstruction

What about our primal-dual/splitting methods?

min /1 +(Du)i? + 6z, (u),

Natural reformulation:

rp’ip Z \/1+1di2+05,(u), Du=d.
I

Butis F(d) = Y_; /1 + |di|?> simple?

+ Somewhat yes, as it reduces to a 1D problem.

« Somewhat no, as there is no (easy) closed form solution.

Reformulation that makes the prox operator really easy?
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Single view 2.5D reconstruction

Let’s start with

r&iy 21/1 +|di]2 + 05, (u), Du=d.
!

Note that

1+ |dif2 = ‘(d,-, 1)T’
Idea: Introduce variable e with constraint e; = 1 for all J!

i |2 — —
min Z\/e,?+|d,| +65,(u), Du=d,e=1

=[(d,e)7|

=[/(d,€)ll2,1
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. . . O tor Splitti
Single view 2.5D reconstruction Methods

Michael Moeller
Thomas Méllenhoff
Emanuel Laude

min ||(d,e)|l2,1 +dx,(u), Du=d,e=1

u,d,e

Now the proximity operators of the two functions are simple!

Relations

u Monotone Operators
. p\ (-D I ©
- 1 ixed Point Iterations
H]dlgng%xu(d7 e)||2,1+6):v(u)+<<q> 7( 0 0 | z <q7 >F d Point lterat

Proximal Point
Algorithm

PDHG Revisited

Option 1: Use (PDHG) now!

Douglas-Rachford

Splitting
(dual var)*™" = prox, r. ((dual var) ¥ + oK (primal var)®), Applcations
(primal var)*™" = prox_g((primal var)* — rK* (dual var)**),
(primal var)k+1 = (primal var)’”r1 — (primal var)k.

— Board!
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Single view 2.5D reconstruction

We have

dk — Duk

K (primal var)k = ok

and by identifying the relevant parts of the energy we obtain

F*(p.q) ={q,1)
= pk+1 _ pk + 0,(ak _ Duk)

1 _
gt =argmin 5 |lq - (q" + 08")|* + (g, 1)
q

= qk+1 — qk+0(ék _1)
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Single view 2.5D reconstruction

We have
—-D* 0 Kt _D*pk+1
K* (dualvar)*" = 1 0 <pk+1> = pk+t
0 / q qk+1

and by identifying the relevant parts of the energy we obtain

G(u,d,e) = |(d, e)ll2.1 + 0z, (u)

= U =prox;, (uf+7D°p )
4
= Ut =uf + D P + (n — mean (uk + TD*p"”)) 1

(d, €)" = prox, .y, , ((d,€)" = 7(p.q)**")
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Single view 2.5D reconstruction

Complete algorithm:
pk+1 _ pk —‘r—J(ak _ DL_Ik)
qk+1 _ qk +0(ék . 1)
Ut = uf DR 4 (Z — mean (u" - TD*p"“)) 1
(d7 e)k+1 = prOXT||-||211 ((d? e)k - T(p? q)k+1)
Dk+1 _ 2uk+1 o uk

gk+1 — ogk+t _ gk
BhH1 _ gkt _ gk
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Single view 2.5D reconstruction

Operator Splitting
Methods
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Emanuel Laude
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Operator Splitting

Single view 2.5D reconstruction Methods

Michael Moeller
Thomas Méllenhoff
Emanuel Laude

It still works! :-)

Relations
Monotone Operators
Fixed Point Iterations

Proximal Point
Algorithm

PDHG Revisited

Douglas-Rachford
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. . . [o] tor Splitti
Single view 2.5D reconstruction Methods

Michael Moeller
Thomas Méllenhoff
Emanuel Laude

Let’s get back to the original formulation:

min ||(da e)||2,1 + 6):\/(“), DU = d7 e=1 Relations

u,d,e Monotone Operators

Now the proximity operators of the two functions are simple! Fixed Point fterations

Proximal Point

Algorithm
u
. p -D | 0 PDHG Revisited
min max (d, e)||2,1+<5>:v(U)+< <q> , ( o 0 | d (q,1) -
e plitting

Can we reduce the number of variables?
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Single view 2.5D reconstruction

min max ||(d, €)||2,1+ds, (u)+

u,d,e p,q

Rewritten:

Lr’n(;n I’T,laX H(d e)||21 +52v(u)+ < (5) ) (Z) > - <p7 DU> - <qa1>

Switching min and max (without an explicit proof)

min max <min II(d, e)|l2,1 + < <,O> ) <d> >>
u  pgq d,e q €

+ (SzV(U) - <p7 DU> - <q’ 1>

= minmax — (|| - [24)"((=p, —a)) + 0z, (u) — (p, Du) — {q.1)

Operator Splitting
Methods
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Thomas Méllenhoff
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-

Relations
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. . . Operator Splitting
Single view 2.5D reconstruction Methods
Michael Moeller
Thomas Méllenhoff

After substituting p — —p, g — —q: Emanuel Laude
minmax ds, (u) + (p, D) + (@, 1) = (|- [21)*((p. ) -
or in explicit primal-dual form Relations
Monotone Operators
min max 62‘/(”) + (5” “2 o<1 (p’ ) Fixed Point Iterations
u p.q Proximal Point
Algorithm
K

PDHG Revisited

Douglas-Rachford
We saved two variables! Let’s apply (PDHG)! Spiting
oostons
(dual var)**’

K+
)

— prox, . ((dual var) * + oK {primal van"),

k+1 )

(primal var = prox, g((primal var) — 7K™ (dual var)

K+
)

(primal var)k+1 = (primal var — (primal var) .
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. . . Operator Splitti
Single view 2.5D reconstruction Methods

Michael Moeller
We have Thomas Méllenhoff

Emanuel Laude

ok
o 7 Fo~

and by identifying the relevant parts of the energy we obtain

Relations

F* (p7 q) :6H'H2,oo<1 (p7 q) _ <q7 1> Monotone Operators
Fixed Point Iterations

= (p? q)k+1 argmln ||(pa q) - ((pk7 qk) + O.(Uk, O))||2 Proximal Point
(p q) Algorithm
+0.5H \|2m<1(p7 q) _ U<q71> PDHG Revisited

Douglas-Rachford
Splitting

(p,q)*"" =argmin II(p, q) — ((P*, g) + o(T*, 1))|12
(p.q) Applcations

+ 5\|‘||2,ooS1 (p’ q)

And similar to before:

U = gk DR (: — mean (uk _TD*pk+1)> 1
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. . . O tor Splitti
Single view 2.5D reconstruction Methods

Michael Moeller

A side note: We could have had the (re-)formulation Thomas Méllenhoft

Emanuel Laude

i () () o0 R

much faster by seeing it’s direct equivalence to
Relations

mJn oz, (u) + ||(Du, 1)“2,1 .

Monotone Operators

Fixed Point Iterations

This is an interesting general concept that shows the strong ot
relation between (augmented) Lagrangian and (PDHG): .
Douglas-Rachford
Splitting
min G(u) + F(Ku) = min G(u) + F(d) pplations
u u,d,Ku=d

= miap m;)':lx G(u) + F(d) + (p, Ku — d)
u

)

= muin mglx G(u) + (p, Ku) + mdin(F(d) —{(p,d))

= muin m;;:\x G(u) + (p, Ku) — F*(p)
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. . . Operator Splitti
Single view 2.5D reconstruction Methods

Michael Moell
How does ADMM work on e

Emanuel Laude

min 6z, (u) + [1(Du, )]l - -
Introduce a new variable

Relations

Tlg] 52\/(”) + ||d||2,1 s.t. d = (DU, 1) Monotone Operators
’ Fixed Point Iterations

And the augmented Lagrangian Proximal Point

Algorithm

)\ evisiter
L(u,d,p) = ds,(u) + |ldllp4 + (p,d — (Du,1)) + E”d — (Du,1)||p  PoveRessted

Douglas-Rachford
Splitting

Compute s

U1 = argmin L(u, d¥, p¥),
u

d**" = argmin L(u**1, d, p¥),
d

pk+1 _ pk + )\(Duk+1 . dk+1).
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. . . O tor Splitti
Single view 2.5D reconstruction Methods

Michael Moeller
Thomas Méllenhoff
Emanuel Laude

A
L(u, . p) = b, (u) + |d] + (P, (Du, 1) — o) + 5 |d — (Du, 1) -

ADMM:

e By B Relations

o .

u* ! = argmin L(u, d*, p), o
u

Fixed Point Iterations

Proximal Point
Algorithm

d**" = argmin L(u**1, d, p¥),
d

pk+1 = pk + )‘(Duk+1 - dk+1 ) PDHG Revisited
Douglas-Rachford
The update in d is easy (a prox we are very familiar with). But spiting

what about u? Applcaions

U1 = argmin b, (u) + {f, Du) + 5o — Dul?
u

1 2
= argmin ds, (u) + % HDU —df + Xpﬁ‘
u
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Single view 2.5D reconstruction

2

1
U = argminés, (u) + % HDU —df + pr
u

+ ldeal case: 1 € ker(D) (unfortunately not true here)
« Let (1, A) be an orthonormal basis of R". Then any u can
be represented as
n—1
U=apl+ Zaiah
i=1

via aj = (a;, u). Thus we may solve

A = 1

ofT= argmin S |ID(aol+ ) g | —df + <pf
o, i€{T,n—1} 2 pr A

2

= argmin

A HDAa+aoo1 —df+ 1p1k
a, i€{1,.,n—1} 2 A

subject to g = V/n.
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. . . Operator Splitting
Single view 2.5D reconstruction Methods

Michael Moeller
Thomas Méllenhoff
Emanuel Laude

Relations
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Operator Splitting

Single view 2.5D reconstruction Methods

Michael Moeller
Thomas Méllenhoff
Emanuel Laude

It still works! :-)

- Relations
Monotone Operators
Fixed Point Iterations

Proximal Point
Algorithm

PDHG Revisited

Douglas-Rachford
Splitting
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