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Customized proximal point algorithms

Structured optimization methods for

min
u

G(u) + F (Ku)

under the assumption of F and G being simple or - in the
ADMM case - (∂G + 1

τ K T K )−1 being easy to compute.

Goal: Find pair (û, p̂) with

−K T p̂ ∈ ∂G(û), K û ∈ ∂F ∗(p̂)

Primal Dual-Hybrid Gradient (PDHG) method:

0 ∈

[
∂G K T

−K ∂F ∗

][
uk+1

pk+1

]
+

[
1
τ I −K T

−K 1
σ I

][
uk+1 − uk

pk+1 − pk

]
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Customized proximal point algorithms

Primal ADMM or dual Douglas-Rachford

0 ∈

[
∂G K T

−K ∂F ∗

][
uk+1

pk+1

]
+

[
1
τ K T K −K T

−K τ I

][
uk+1 − uk

pk+1 − pk

]

Question for all these algorithms: What is a good stopping
criterion? How do we determine if an algorithm converges?
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Stopping customized proximal point algorithms

Generic form:

0 ∈

[
∂G K T

−K ∂F ∗

][
uk+1

pk+1

]
+

[
M1 −K T

−K M2

]
︸ ︷︷ ︸

=:M

[
uk+1 − uk

pk+1 − pk

]

such that the matrix M is positive (semi-)definite.

Natural considerations:

• How close is −K T pk+1 to being an element of ∂G(uk+1)?

• How close is Kuk+1 to being an element of ∂F ∗(pk+1)?

We define the primal and dual residuals:

r k+1
p = M2(pk+1 − pk )− K (uk+1 − uk )

r k+1
d = M1(uk+1 − uk )− K T (pk+1 − pk )
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Primal and dual residuals

Based on the primal and dual residuals:

r k+1
p = M2(pk+1 − pk )− K (uk+1 − uk )

r k+1
d = M1(uk+1 − uk )− K T (pk+1 − pk )

we could consider our algorithm to be convergent if
‖r k+1

d ‖2 + ‖r k+1
p ‖2 → 0, because this implies

dist(−K T pk+1, ∂G(uk+1))→ 0,

dist(Kuk+1, ∂F ∗(pk+1))→ 0.

Note that this notion of convergences does not imply
convergence of uk and pk yet!

Nevertheless, we know PDHG and ADMM do converge, and
‖r k+1

d ‖ and ‖r k+1
p ‖ are good measures for convergence!
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Upper bounds on the residuals

How should we use ‖r k+1
d ‖ and ‖r k+1

p ‖ to formalize a stopping
criterion?

• Simple option: Iterator until ‖r k+1
d ‖ ≤ ε and ‖r k+1

p ‖ ≤ ε.

• Could be unfair, if uk ∈ Rn and pk ∈ Rm and e.g. n >> m.
Use ‖r k+1

d ‖ ≤
√

n ε and ‖r k+1
p ‖ ≤

√
m ε.

• Could be unfair for different scales! Introduce absolute and
relative error criteria:

‖r k+1
d ‖ ≤

√
n εabs + dual scale factor · εrel

‖r k+1
p ‖ ≤

√
m εabs + primal scale factor · εrel

But what are reasonable scale factors?
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Scaling the primal residuum

The primal residual

r k+1
p = M2(pk+1 − pk )− K (uk+1 − uk )

measures how far Kuk+1 is away from a particular element in
∂F ∗(pk+1), and therefore scales with the magnitude of
elements in ∂F ∗(pk+1).

More precisely:

0 ∈ ∂F ∗(pk+1)− Kuk+1 + r k+1
p

⇒0 ∈ ∂F ∗(pk+1)− K T (2uk+1 − uk ) + M2(pk+1 − pk ).

⇒ M2(pk − pk+1) + K T (2uk+1 − uk )︸ ︷︷ ︸
=:zk+1

∈ ∂F ∗(pk+1)

Thus, we can use

‖r k+1
p ‖ ≤

√
m εabs + ‖zk+1‖ · εrel

to be scale-independent.
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Scaling the dual residuum

The dual residual

r k+1
d = M1(uk+1 − uk )− K T (pk+1 − pk )

measures how far −K T pk+1 is away from a particular element
in ∂G(uk+1), and therefore scales with the magnitude of
elements in ∂G(uk+1).

More precisely:

0 ∈ ∂G(uk+1) + K T pk+1 + r k+1
d .

⇒ 0 ∈ ∂G(uk+1) + K T pk + M1(uk+1 − uk )

⇒ M1(uk − uk+1)− K T pk︸ ︷︷ ︸
=:vk+1

∈ ∂G(uk+1)

Thus, we can use

‖r k+1
d ‖ ≤

√
n εabs + ‖vk+1‖ · εrel

to be scale-independent.
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A scaled absolute and relative stopping criterion

In summary, a good stopping criterion is

‖r k+1
p ‖ ≤

√
m εabs + ‖zk+1‖ · εrel ,

‖r k+1
d ‖ ≤

√
n εabs + ‖vk+1‖ · εrel .

Interesting observation in our previous considerations:
ADMM, Douglas Rachford, PDHG, and any other ”customized
proximal point” algorithm actually generates iterates
(uk+1,pk+1, vk+1, zk+1) with

vk+1 ∈ ∂G(uk+1), zk+1 ∈ ∂F ∗(pk+1).

The goal of all algorithms is to achieve convergence

‖ zk+1 − Kuk+1︸ ︷︷ ︸
=r k+1

p

‖ → 0 and ‖ vk+1 + K T pk+1︸ ︷︷ ︸
=r k+1

d

‖ → 0!

Note that z is exactly the ”split” variable in the augmented
Lagrangian based derivation of ADMM!
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Thomas Möllenhoff
Emanuel Laude

Stopping criteria

Adaptive stepsizes

Accelerations

Preconditioning

updated 04.07.2016

Adaptive stepsizes

r k+1
p and r k+1

d determine the convergence of the algorithm.

Can we also use rd and rp to accelerate the algorithm?

Adaptive stepsizes:

0 ∈

[
∂G K T

−K ∂F ∗

][
uk+1

pk+1

]
+

[
1
τ k M1 −K T

−K 1
σk M2

][
uk+1 − uk

pk+1 − pk

]

Base the choices of τ k and σk on the residuals r k
p and r k

d ?
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Residual balancing

First option: Residual balancing! Let (M1,−K T ;−K ,M2) be
positive definite. Pick τ0 and σ0 with τ0σ0 < 1 as well as µ > 1,
α > 1:

• If ‖r k
p ‖ > µ‖r k

d ‖, do

τ k+1 =
1
α
τ k , σk+1 = ασk

• If ‖r k
d ‖ > µ‖r k

p ‖, do

τ k+1 = ατ k , σk+1 =
1
α
σk

• Keep τ k+1 = τ k and σk+1 = σk otherwise.

Why could this make sense?
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Unbalanced adaption

Second option: Fougner, Boyd ’15: Let (M1,−K T ;−K ,M2) be
positive definite. Pick τ0 and σ0 with τ0σ0 < 1 as well as µ > 1,
α > 1:

• If ‖r k
d ‖ < εthresh and k > µkprev

1 , do

τ k+1 =
1
α
τ k , σk+1 = ασk , kprev

1 ← k .

• If ‖r k
p ‖ < εthresh and k > µkprev

2 , do

τ k+1 = ατ k , σk+1 =
1
α
σk , kprev

2 ← k .

• Keep τ k+1 = τ k and σk+1 = σk otherwise.
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Convergence guarantees?

The previous two adaptive step size methods are heuristics
that work well in practice.

In general, they have no convergence guarantees!

Common trick: Changing the parameters finitely many times
only, reestablishes the convergence guarantees!

More appealing from a theoretical point of view: Decreasing
the adaptivity of the stepsizes fast enough.



Stopping criteria,
adaptivity,
accelerations

Michael Moeller
Thomas Möllenhoff
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Convergence guarantees with adaptive step sizes

Goldstein et al. 2015

Consider M1 = 1
τ̃ I, M2 = 1

σ̃ I with σ̃τ̃ < ‖K‖2, and define

δk = min
{
τ k+1

τ k ,
σk+1

σk ,1
}
, φk = 1− δk

Let the following three conditions hold:

1 The sequences {τ k}, {σk} remain bounded.

2 The sequence φk is summable.

3 It holds that τ kσk < c < 1.

Then the resulting adaptive PDHG algorithm converges.

Conjecture (for you to prove)

The same result holds for arbitrary M1, M2 provided that the
matrix (M1,−K T ;−K ,M2) is positive definite.
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Customized proximal point algorithms

Decreasing residual balancing: Let (M1,−K T ;−K ,M2) be
positive definite. Pick τ0 and σ0 with τ0σ0 < 1. Further choose
µ > 1, α0 < 1, β < 1 and adapt as follows

• If ‖r k
p ‖ > µ‖r k

d ‖, do

τ k+1 = (1− αk )τ k , σk+1 =
1

1− αk σ
k , αk+1 = αk · β.

• If ‖r k
d ‖ > µ‖r k

p ‖, do

τ k+1 =
1

1− αk τ
k , σk+1 = (1− αk )σk , αk+1 = αk · β.

• Keep τ k+1 = τ k , σk+1 = σk , and αk+1 = αk otherwise.

Convergence proof based on previous theorem.
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Sketch of proof

Sketch of the proof:

• The product τ kσk does not change, thus 3. holds.

• It holds that

φk =

{
0 if stepsizes were not updated,
αk if stepsizes were updated.

which means the j-th nonzero entry of {φk} is (α0)j .

•
∑

k φ
k =

∑
j∈I(α

0)j < C, thus condition 2 holds.

• Without restriction of generality we may drop those steps
where the stepsize remained unchanged. We find

τ j+1 ≤ 1
1− αj τ

j ≤
(

1
1− αj

)j

τ0 =
1

(1− α0β j)j τ
0

The factor (1− α0β j)j remains bounded from below and
thus condition 1 follows. (For x ≥ −1: (1 + x)n ≥ 1 + nx)
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Example plot of convergence for ROF model
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Example plot of convergence for ROF model
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Example plot of convergence for ROF model
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Backtracking

Condition 3 in the previous convergence result for adaptive
stepsizes can also be weakened to

3. The saddle point problem

min
u

max
p

G(u) + 〈Ku,p〉 − F ∗(p)

restricts either u or p to a bounded set. Furthermore there
exists a constant c such that for all k > 0〈[

uk+1 − uk

pk+1 − pk

]
,

[
1
τ k M1 −K T

−K 1
σk M2

][
uk+1 − uk

pk+1 − pk

]〉

≥ c

〈[
uk+1 − uk

pk+1 − pk

]
,

[
1
τ k M1 0

0 1
σk M2

][
uk+1 − uk

pk+1 − pk

]〉
.

Under this condition the convergence result still holds.
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Backtracking

The stability condition 3 from the previous slide can used to
define a backtracking algorithm that works without knowing the
constant ‖K‖2.

Define

bk =
2τ̃ σ̃τ kσk 〈pk+1 − pk ,K (uk+1 − uk )〉

γσ̃σk‖uk+1 − uk‖2 + γτ̃τ k‖pk+1 − pk‖2

for some γ ∈]0,1[.

If bk ≤ 1 keep iterating, if bk > 1 update

τ k+1 = βτ k/bk , σk+1 = βσk/bk

for β ∈]0,1[.

Key insight to prove convergence: bk > 1 can only happen
finitely many times.
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Next lecture: Preconditioning

Generic customized proximal point algorithm:

0 ∈

[
∂G K T

−K ∂F ∗

][
uk+1

pk+1

]
+

[
M1 −K T

−K M2

][
uk+1 − uk

pk+1 − pk

]

We have seen:

• M1 = λK T K , M2 = 1
λ I yields ADMM

• M1 = 1
τ I, M2 = 1

σ I yields PDHG

Are there different choices for M1 and M2 that make sense and
are possibly more efficient?


