Chapter 6 Stopping criteria, adaptivity, accelerations

Convex Optimization for Computer Vision SS 2016

> Michael Moeller Thomas Möllenhoff Emanuel Laude Computer Vision Group Department of Computer Science TU München

[Stopping criteria,](#page-21-0) adaptivity, accelerations

Michael Moeller Thomas Mollenhoff ¨ Emanuel Laude

[Stopping criteria](#page-3-0) [Adaptive stepsizes](#page-9-0) **[Accelerations](#page-21-0)** [Preconditioning](#page-21-0)

Customized proximal point algorithms

Structured optimization methods for

 $m_{\scriptscriptstyle U}^{\scriptscriptstyle \mathsf{lin}}$ *G*(*u*) + *F*(*Ku*)

under the assumption of *F* and *G* being simple or - in the ADMM case - $(\partial G + \frac{1}{\tau} K^T K)^{-1}$ being easy to compute.

Goal: Find pair (\hat{u}, \hat{p}) with

 $-K^{\mathcal{T}}\hat{\rho} \in \partial G(\hat{u}), \quad K\hat{u} \in \partial F^*(\hat{\rho})$

Primal Dual-Hybrid Gradient (PDHG) method:

$$
0 \in \begin{bmatrix} \partial G & K^T \\ -K & \partial F^* \end{bmatrix} \begin{bmatrix} u^{k+1} \\ p^{k+1} \end{bmatrix} + \begin{bmatrix} \frac{1}{\tau}I & -K^T \\ -K & \frac{1}{\sigma}I \end{bmatrix} \begin{bmatrix} u^{k+1} - u^k \\ p^{k+1} - p^k \end{bmatrix}
$$

[Stopping criteria,](#page-0-0) adaptivity, accelerations

Michael Moeller Thomas Mollenhoff ¨ Emanuel Laude

[Stopping criteria](#page-3-0) [Adaptive stepsizes](#page-9-0) **[Accelerations](#page-21-0)** [Preconditioning](#page-21-0)

Customized proximal point algorithms

Primal ADMM or dual Douglas-Rachford

$$
0 \in \begin{bmatrix} \partial G & K^T \\ -K & \partial F^* \end{bmatrix} \begin{bmatrix} u^{k+1} \\ p^{k+1} \end{bmatrix} + \begin{bmatrix} \frac{1}{\tau} K^T K & -K^T \\ -K & \tau I \end{bmatrix} \begin{bmatrix} u^{k+1} - u^k \\ p^{k+1} - p^k \end{bmatrix}
$$

Question for all these algorithms: What is a good stopping criterion? How do we determine if an algorithm converges? **[Stopping criteria,](#page-0-0) adaptivity, accelerations**

Michael Moeller Thomas Möllenhoff Emanuel Laude

[Stopping criteria](#page-3-0) [Adaptive stepsizes](#page-9-0) **[Accelerations](#page-21-0)** [Preconditioning](#page-21-0)

Stopping customized proximal point algorithms

Generic form:

$$
0 \in \begin{bmatrix} \partial G & K^T \\ -K & \partial F^* \end{bmatrix} \begin{bmatrix} u^{k+1} \\ p^{k+1} \end{bmatrix} + \underbrace{\begin{bmatrix} M_1 & -K^T \\ -K & M_2 \end{bmatrix}}_{=:M} \begin{bmatrix} u^{k+1} - u^k \\ p^{k+1} - p^k \end{bmatrix}
$$

such that the matrix *M* is positive (semi-)definite.

Natural considerations:

- How close is −*K T p k*+1 to being an element of ∂*G*(*u k*+1)?
- How close is *Ku^k*+¹ to being an element of ∂*F* ∗ (*p k*+1)?

We define the *primal and dual residuals*:

$$
r_p^{k+1} = M_2(p^{k+1} - p^k) - K(u^{k+1} - u^k)
$$

$$
r_d^{k+1} = M_1(u^{k+1} - u^k) - K^T(p^{k+1} - p^k)
$$

[Stopping criteria,](#page-0-0) adaptivity, accelerations

Michael Moeller Thomas Mollenhoff ¨ Emanuel Laude

[Stopping criteria](#page-3-0)

[Adaptive stepsizes](#page-9-0)

[Accelerations](#page-21-0)

Primal and dual residuals

Based on the *primal and dual residuals*:

$$
r_p^{k+1} = M_2(p^{k+1} - p^k) - K(u^{k+1} - u^k)
$$

$$
r_d^{k+1} = M_1(u^{k+1} - u^k) - K^T(p^{k+1} - p^k)
$$

we could consider our algorithm to be convergent if $||r_d^{k+1}||^2 + ||r_p^{k+1}||^2 \rightarrow 0$, because this implies

> $\mathsf{dist}(-\mathsf{K}^{\mathsf{T}} \mathsf{p}^{\mathsf{k}+1}, \partial \mathsf{G}(\mathsf{u}^{\mathsf{k}+1})) \rightarrow 0,$ $\mathsf{dist}(\mathsf{Ku}^{k+1},\partial \mathsf{F}^*(p^{k+1})) \to 0.$

Note that this notion of convergences does not imply convergence of u^k and p^k yet!

Nevertheless, we know PDHG and ADMM do converge, and $\|r_d^{k+1}\|$ and $\|r_p^{k+1}\|$ are good measures for convergence!

[Accelerations](#page-21-0)

Upper bounds on the residuals

How should we use $||r_d^{k+1}||$ and $||r_p^{k+1}||$ to formalize a stopping criterion?

- Simple option: Iterator until $||r_d^{k+1}|| \leq \epsilon$ and $||r_p^{k+1}|| \leq \epsilon$.
- Could be unfair, if $u^k \in \mathbb{R}^n$ and $p^k \in \mathbb{R}^m$ and e.g. $n >> m$. Use $||r_d^{k+1}|| \le \sqrt{n} \epsilon$ and $||r_p^{k+1}|| \le \sqrt{m} \epsilon$.
- Could be unfair for different scales! Introduce absolute and relative error criteria:

 $\|r_d^{k+1}\| \leq \sqrt{n} \ \epsilon^{abs} + \text{dual scale factor} \cdot \epsilon^{rel}$ $||r_b^{k+1}||$ ≤ \sqrt{m} ϵ^{abs} + primal scale factor · ϵ^{rel}

But what are reasonable scale factors?

[Stopping criteria,](#page-0-0) adaptivity, accelerations

Michael Moeller Thomas Mollenhoff ¨ Emanuel Laude

[Stopping criteria](#page-3-0) [Adaptive stepsizes](#page-9-0) **Accolorations** [Preconditioning](#page-21-0)

Scaling the primal residuum

The primal residual

$$
r_p^{k+1} = M_2(p^{k+1} - p^k) - K(u^{k+1} - u^k)
$$

measures how far *Ku^k*+¹ is away from a particular element in ∂F^{*}(p^{k+1}), and therefore scales with the magnitude of elements in $∂F^*(p^{k+1})$.

More precisely:

$$
0 \in \partial F^*(p^{k+1}) - K u^{k+1} + r_p^{k+1}
$$

\n
$$
\Rightarrow 0 \in \partial F^*(p^{k+1}) - K^T (2u^{k+1} - u^k) + M_2(p^{k+1} - p^k).
$$

\n
$$
\Rightarrow \underbrace{M_2(p^k - p^{k+1}) + K^T (2u^{k+1} - u^k)}_{=:z^{k+1}} \in \partial F^*(p^{k+1})
$$

Thus, we can use

$$
\|r_p^{k+1}\| \leq \sqrt{m} \,\epsilon^{abs} + \|z^{k+1}\| \cdot \epsilon^{rel}
$$

to be scale-independent.

[Stopping criteria,](#page-0-0) adaptivity, accelerations

Michael Moeller Thomas Mollenhoff ¨ Emanuel Laude

[Stopping criteria](#page-3-0)

[Adaptive stepsizes](#page-9-0)

[Accelerations](#page-21-0)

Scaling the dual residuum

The dual residual

$$
r_d^{k+1} = M_1(u^{k+1} - u^k) - K^T(p^{k+1} - p^k)
$$

measures how far $-K^{\mathcal{T}}\rho^{k+1}$ is away from a particular element in ∂*G*(*u k*+1), and therefore scales with the magnitude of elements in $\partial G(u^{k+1})$.

More precisely:

$$
0 \in \partial G(u^{k+1}) + K^T \rho^{k+1} + r_d^{k+1}.
$$

\n
$$
\Rightarrow 0 \in \partial G(u^{k+1}) + K^T \rho^k + M_1(u^{k+1} - u^k)
$$

\n
$$
\Rightarrow \underbrace{M_1(u^k - u^{k+1}) - K^T \rho^k}_{=:v^{k+1}} \in \partial G(u^{k+1})
$$

Thus, we can use

$$
\|r_d^{k+1}\| \leq \sqrt{n} \,\epsilon^{abs} + \|v^{k+1}\| \cdot \epsilon^{rel}
$$

to be scale-independent.

[Stopping criteria,](#page-0-0) adaptivity, accelerations

Michael Moeller Thomas Mollenhoff ¨ Emanuel Laude

[Stopping criteria](#page-3-0) [Adaptive stepsizes](#page-9-0)

[Accelerations](#page-21-0)

A scaled absolute and relative stopping criterion

In summary, a good stopping criterion is

$$
||r_p^{k+1}|| \le \sqrt{m} \epsilon^{abs} + ||z^{k+1}|| \cdot \epsilon^{rel},
$$

$$
||r_d^{k+1}|| \le \sqrt{n} \epsilon^{abs} + ||v^{k+1}|| \cdot \epsilon^{rel}.
$$

Interesting observation in our previous considerations: ADMM, Douglas Rachford, PDHG, and any other "customized proximal point" algorithm actually generates iterates $(u^{k+1}, p^{k+1}, v^{k+1}, z^{k+1})$ with

$$
v^{k+1} \in \partial G(u^{k+1}), \qquad z^{k+1} \in \partial F^*(p^{k+1}).
$$

The goal of all algorithms is to achieve convergence

$$
\|\underbrace{z^{k+1}-Ku^{k+1}}_{=r^{k+1}_{p}}\| \to 0 \text{ and } \|\underbrace{v^{k+1}+K^T\rho^{k+1}}_{=r^{k+1}_{d}}\| \to 0!
$$

Note that *z* is exactly the "split" variable in the augmented Lagrangian based derivation of ADMM!

Michael Moeller Thomas Mollenhoff ¨ Emanuel Laude

[Stopping criteria](#page-3-0)

[Adaptive stepsizes](#page-9-0)

[Accelerations](#page-21-0)

Adaptive stepsizes

 r_p^{k+1} and r_d^{k+1} determine the convergence of the algorithm. Can we also use r_d and r_p to accelerate the algorithm?

Adaptive stepsizes:

$$
0\in\begin{bmatrix}\partial G & K^T\\ -K & \partial F^*\end{bmatrix}\begin{bmatrix}u^{k+1}\\ p^{k+1}\end{bmatrix}+\begin{bmatrix}\frac{1}{\tau^k}M_1 & -K^T\\ -K & \frac{1}{\sigma^k}M_2\end{bmatrix}\begin{bmatrix}u^{k+1}-u^k\\ p^{k+1}-p^k\end{bmatrix}
$$

Base the choices of τ^k and σ^k on the residuals r^k_ρ and r^k_d ?

[Stopping criteria,](#page-0-0) adaptivity, accelerations

Michael Moeller Thomas Mollenhoff ¨ Emanuel Laude

[Stopping criteria](#page-3-0)

[Adaptive stepsizes](#page-9-0)

[Accelerations](#page-21-0)

Residual balancing

First option: Residual balancing! Let (*M*1, −*K T* ; −*K*, *M*2) be positive definite. Pick τ^0 and σ^0 with $\tau^0\sigma^0 < 1$ as well as $\mu > 1,$ $\alpha > 1$:

• If $||r_{p}^{k}|| > \mu ||r_{d}^{k}||$, do

$$
\tau^{k+1} = \frac{1}{\alpha} \tau^k, \quad \sigma^{k+1} = \alpha \sigma^k
$$

[Stopping criteria,](#page-0-0) adaptivity, accelerations

Michael Moeller Thomas Mollenhoff ¨ Emanuel Laude

[Stopping criteria](#page-3-0)

[Adaptive stepsizes](#page-9-0)

[Accelerations](#page-21-0)

[Preconditioning](#page-21-0)

• If $||r_d^k|| > \mu ||r_p^k||$, do

$$
\tau^{k+1} = \alpha \tau^k, \quad \sigma^{k+1} = \frac{1}{\alpha} \sigma^k
$$

• Keep $\tau^{k+1} = \tau^k$ and $\sigma^{k+1} = \sigma^k$ otherwise.

Why could this make sense?

updated 04.07.2016

Unbalanced adaption

Second option: Fougner, Boyd '15: Let (*M*1, −*K T* ; −*K*, *M*2) be positive definite. Pick τ^0 and σ^0 with $\tau^0\sigma^0 < 1$ as well as $\mu > 1,$ $\alpha > 1$:

• If
$$
||r_d^k|| < \epsilon^{thresh}
$$
 and $k > \mu k_1^{prev}$, do

$$
\tau^{k+1} = \frac{1}{\alpha} \tau^k, \quad \sigma^{k+1} = \alpha \sigma^k, \quad k_1^{prev} \leftarrow k.
$$

• If
$$
||r_p^k|| < \epsilon^{thresh}
$$
 and $k > \mu k_2^{prev}$, do

$$
\tau^{k+1} = \alpha \tau^k, \quad \sigma^{k+1} = \frac{1}{\alpha} \sigma^k, \quad k_2^{\text{prev}} \leftarrow k.
$$

• Keep
$$
\tau^{k+1} = \tau^k
$$
 and $\sigma^{k+1} = \sigma^k$ otherwise.

[Stopping criteria,](#page-0-0) adaptivity, accelerations

Michael Moeller Thomas Möllenhoff Emanuel Laude

[Stopping criteria](#page-3-0)

daptive stepsizes

[Accelerations](#page-21-0)

Convergence guarantees?

The previous two adaptive step size methods are heuristics that work well in practice.

In general, they have no convergence guarantees!

Common trick: Changing the parameters finitely many times only, reestablishes the convergence guarantees!

More appealing from a theoretical point of view: Decreasing the adaptivity of the stepsizes fast enough.

[Stopping criteria,](#page-0-0) adaptivity, accelerations

Michael Moeller Thomas Mollenhoff ¨ Emanuel Laude

[Stopping criteria](#page-3-0)

daptive stepsizes

[Accelerations](#page-21-0)

Convergence guarantees with adaptive step sizes

Goldstein et al. 2015

Consider
$$
M_1 = \frac{1}{\tilde{\tau}} I
$$
, $M_2 = \frac{1}{\tilde{\sigma}} I$ with $\tilde{\sigma}\tilde{\tau} < ||K||^2$, and define

$$
\delta^k = \min\left\{\frac{\tau^{k+1}}{\tau^k}, \frac{\sigma^{k+1}}{\sigma^k}, 1\right\}, \quad \phi^k = 1 - \delta^k
$$

Let the following three conditions hold:

- **1** The sequences $\{\tau^k\}$, $\{\sigma^k\}$ remain bounded.
- \bullet The sequence ϕ^k is summable.
- **3** It holds that $\tau^k \sigma^k < c < 1$.

Then the resulting adaptive PDHG algorithm converges.

Conjecture (for you to prove)

The same result holds for arbitrary M_1 , M_2 provided that the m atrix $(M_1, -K^T; -K, M_2)$ is positive definite.

[Stopping criteria,](#page-0-0) adaptivity, accelerations

Michael Moeller Thomas Mollenhoff ¨ Emanuel Laude

[Stopping criteria](#page-3-0)

daptive stepsizes

[Accelerations](#page-21-0)

Customized proximal point algorithms

Decreasing residual balancing: Let (*M*1, −*K T* ; −*K*, *M*2) be positive definite. Pick τ^0 and σ^0 with $\tau^0\sigma^0 <$ 1. Further choose $\mu>$ 1, $\alpha^{\textsf{0}}$ $<$ 1, β $<$ 1 and adapt as follows

• If $||r_{p}^{k}|| > \mu ||r_{d}^{k}||$, do

$$
\tau^{k+1} = (1 - \alpha^k)\tau^k, \quad \sigma^{k+1} = \frac{1}{1 - \alpha^k}\sigma^k, \quad \alpha^{k+1} = \alpha^k \cdot \beta.
$$

• If $||r_d^k|| > \mu ||r_p^k||$, do

$$
\tau^{k+1} = \frac{1}{1-\alpha^k} \tau^k, \quad \sigma^{k+1} = (1-\alpha^k)\sigma^k, \quad \alpha^{k+1} = \alpha^k \cdot \beta.
$$

• Keep
$$
\tau^{k+1} = \tau^k
$$
, $\sigma^{k+1} = \sigma^k$, and $\alpha^{k+1} = \alpha^k$ otherwise.

Convergence proof based on previous theorem.

Michael Moeller Thomas Mollenhoff ¨ Emanuel Laude

[Stopping criteria](#page-3-0)

[Adaptive stepsizes](#page-9-0) **[Accelerations](#page-21-0)**

Sketch of proof

Sketch of the proof:

- The product $\tau^k \sigma^k$ does not change, thus 3. holds.
- It holds that

$$
\phi^k = \begin{cases} 0 & \text{if stepsizes were not updated,} \\ \alpha^k & \text{if stepsizes were updated.} \end{cases}
$$

which means the *j*-th nonzero entry of $\{\phi^k\}$ is $(\alpha^0)^j.$

- \cdot $\sum_{k} \phi^{k} = \sum_{j \in I} (\alpha^{0})^{j} < C,$ thus condition 2 holds.
- Without restriction of generality we may drop those steps where the stepsize remained unchanged. We find

$$
\tau^{j+1} \le \frac{1}{1-\alpha^j}\tau^j \le \left(\frac{1}{1-\alpha^j}\right)^j\tau^0 = \frac{1}{(1-\alpha^0\beta^j)^j}\tau^0
$$

The factor $(1 - \alpha^0 \beta^j)^j$ remains bounded from below and thus condition 1 follows. (For $x \ge -1$: $(1 + x)^n \ge 1 + nx$) **[Stopping criteria,](#page-0-0) adaptivity, accelerations**

Michael Moeller Thomas Mollenhoff ¨ Emanuel Laude

[Stopping criteria](#page-3-0)

```
daptive stepsizes
```
[Accelerations](#page-21-0)

Example plot of convergence for ROF model

updated 04.07.2016

[Stopping criteria,](#page-0-0) adaptivity, accelerations Michael Moeller

 T homas Möllenhoff

Example plot of convergence for ROF model

[Stopping criteria,](#page-0-0) adaptivity, accelerations

Michael Moeller T homas Möllenhoff **Emanuel Laude**

updated 04.07.2016

Example plot of convergence for ROF model

[Stopping criteria,](#page-0-0) adaptivity, accelerations

Michael Moeller T homas Möllenhoff **Emanuel Laude**

[Stopping criteria](#page-3-0)

ptive stepsizes

[Accelerations](#page-21-0)

Backtracking

Condition 3 in the previous convergence result for adaptive stepsizes can also be weakened to

3. The saddle point problem

 $\min_{u} \max_{p} G(u) + \langle Ku, p \rangle - F^*(p)$ *p*

restricts either *u* or *p* to a bounded set. Furthermore there exists a constant *c* such that for all *k* > 0

$$
\left\langle \begin{bmatrix} u^{k+1}-u^k \\ p^{k+1}-p^k \end{bmatrix}, \begin{bmatrix} \frac{1}{\tau^k}M_1 & -K^T \\ -K & \frac{1}{\sigma^k}M_2 \end{bmatrix} \begin{bmatrix} u^{k+1}-u^k \\ p^{k+1}-p^k \end{bmatrix} \right\rangle \\ \geq c \left\langle \begin{bmatrix} u^{k+1}-u^k \\ p^{k+1}-p^k \end{bmatrix}, \begin{bmatrix} \frac{1}{\tau^k}M_1 & 0 \\ 0 & \frac{1}{\sigma^k}M_2 \end{bmatrix} \begin{bmatrix} u^{k+1}-u^k \\ p^{k+1}-p^k \end{bmatrix} \right\rangle.
$$

Under this condition the convergence result still holds.

Backtracking

The stability condition 3 from the previous slide can used to define a *backtracking* algorithm that works without knowing the constant $\|K\|^2$.

Define

$$
b^k = \frac{2\tilde{\tau}\tilde{\sigma}\tau^k\sigma^k\langle p^{k+1} - p^k, K(u^{k+1} - u^k) \rangle}{\gamma\tilde{\sigma}\sigma^k\|u^{k+1} - u^k\|^2 + \gamma\tilde{\tau}\tau^k\|p^{k+1} - p^k\|^2}
$$

for some $\gamma \in]0,1[$.

If $b^k \leq 1$ keep iterating, if $b^k > 1$ update

$$
\tau^{k+1} = \beta \tau^k / b^k, \quad \sigma^{k+1} = \beta \sigma^k / b^k
$$

for $\beta \in]0,1[$.

Key insight to prove convergence: $b^k > 1$ can only happen finitely many times.

[Stopping criteria,](#page-0-0) adaptivity, accelerations Michael Moeller

Next lecture: Preconditioning

Generic customized proximal point algorithm:

$$
0\in\begin{bmatrix}\partial G & K^T\\ -K & \partial F^*\end{bmatrix}\begin{bmatrix}u^{k+1}\\ p^{k+1}\end{bmatrix}+\begin{bmatrix}M_1 & -K^T\\ -K & M_2\end{bmatrix}\begin{bmatrix}u^{k+1}-u^k\\ p^{k+1}-p^k\end{bmatrix}
$$

We have seen:

•
$$
M_1 = \lambda K^T K
$$
, $M_2 = \frac{1}{\lambda} I$ yields ADMM

•
$$
M_1 = \frac{1}{\tau}I
$$
, $M_2 = \frac{1}{\sigma}I$ yields PDHG

Are there different choices for *M*¹ and *M*² that make sense and are possibly more efficient?

[Stopping criteria,](#page-0-0) adaptivity, accelerations

Michael Moeller Thomas Möllenhoff Emanuel Laude

[Adaptive stepsizes](#page-9-0)

[Accelerations](#page-21-0)