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under the assumption of F and G being simple or - in the

ADMM case - (0G + %KTK)*1 being easy to compute. Stopping crteria
Adaptive stepsizes
Goal Flnd pa|r (07 ﬁ) W|th Accelerations

Preconditioning

—K™h e 0G(01), Kiie dF*(p)

Primal Dual-Hybrid Gradient (PDHG) method:

oG KT uk+1 %/ _KT Uk+1 _ Uk
pfH + _K %, piHt — pk

—K OF*
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Customized proximal point algorithms

Primal ADMM or dual Douglas-Rachford

uk+1 %KTK 7KT
pk+1 +

—-K Tl

0c 0G KT
-K OF*

gkt — uk]

pk+1 _ pk

Question for all these algorithms: What is a good stopping
criterion? How do we determine if an algorithm converges?
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Stopping customized proximal point algorithms
Generic form:

oG KT uk+1
—K OF*| |prt! +

such that the matrix M is positive (semi-)definite.

-K M, | |prtt

=M

Natural considerations:

M1 _KT uk+1 _
-p
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+ How close is —KTp**1 to being an element of 9G(u**1)?

« How close is Kuk*' to being an element of 0F*(pk+1)?

We define the primal and dual residuals:

rg+1 — Mz(pk+1 *,Ok) _ K(Uk+1 _ Uk)

f§+1 _ M1(Uk+1 _ Uk) _ KT(pk+1 _pk)
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Based on the primal and dual residuals:

rg+1 _ Mz(pk+1 *,Ok) _ K(Uk+1 _ Uk)
f§+1 _ M1(Uk+1 _ Uk) _ KT(pk+1 _pk)

we could consider our algorithm to be convergent if sopngortera
[[r&+ 12 4 || rf 1|2 — 0, because this implies Acspie stepeizes

Accelerations

Preconditioning

dist(—K"p**1 0G(u**1)) — 0,
dist(Ku ', aF*(p**1)) — 0.

Note that this notion of convergences does not imply
convergence of u* and p* yet!

Nevertheless, we know PDHG and ADMM do converge, and
|r&+1)| and [|rs ™| are good measures for convergence!
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Stopping criteria,

Upper bounds on the residuals adaptivity,
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How should we use ||r¥™|| and ||rf™"|| to formalize a stopping T e
criterion?

» Simple option: Iterator until ||rA™"(| < e and |[rf™"|| <.

Soppngerieria
+ Could be unfair, if uk € R” and p¥ € R™ and e.g. n >> m. Adeptive stepeizes
Use ||I’§+1 || g \/ﬁ € and ||rg+‘1 || S \/m €. Accelerations

Preconditioning

» Could be unfair for different scales! Introduce absolute and
relative error criteria:

51 <v/n €@ + dual scale factor - €

|Fk1)| <v/m €@ + primal scale factor - €

But what are reasonable scale factors?
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Scaling the primal residuum
The primal residual

rl/)(+1 — Mz(pk+1 _ ,Dk) _ K(Uk+1 _ Uk)

measures how far Ku**' is away from a particular element in
OF*(p**1), and therefore scales with the magnitude of
elements in 9F*(pk+1).

More precisely:
+ (k1 K+1 o pk+1
0 € OF (p") — Ku""' + rj*
=0 € OF*(P"") — KT(2uF+T — UF) + Ma(p"' — p).
= Mz(Pk _pk+1) + KT(2Uk+1 _ Uk) c 8F*(pk+1)

=:zk+1

Thus, we can use
Il < Vm e 4 |27 e

to be scale-independent.
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Scaling the dual residuum
The dual residual
f§+1 _ M1(Uk+1 _ Uk) _ KT(pk+1 _pk)

measures how far — K7 pf*1 is away from a particular element
in 9G(uk*"), and therefore scales with the magnitude of
elements in 9G(uk*1).

More precisely:
0 € OG(UM ) + KTpf ! 4 ket
= 0 € G + KTpK + My(uF*" — uk)
= M1(Uk _ Uk+1) _ KTpk c 8G(uk+1)

=:vk+1

Thus, we can use
||f§+1 ” < \/ﬁ 6{:Ibs + ||Vk+1 ” . 6re/

to be scale-independent.
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A scaled absolute and relative stopping criterion
In summary, a good stopping criterion is

||rﬁl>(+1|| < \/Eeabs + ||Zk+1|| . 6rel7

Hr‘lj<+1H < \/ﬁeabs + ||Vk+1|| . erel.

Interesting observation in our previous considerations:
ADMM, Douglas Rachford, PDHG, and any other "customized
proximal point” algorithm actually generates iterates

(uk+1 , ,Ok+1, yk+1 , Zk+1) with

Vk+1 e 8G(uk+‘), Zk+1 c 8F*(p"+‘).
The goal of all algorithms is to achieve convergence

| 2K — Kuk*' || = 0 and || v/ + KTp* T || — 0!
—_— N —

__pk+1 k+1
=ry

:I’d

Note that z is exactly the "split” variable in the augmented
Lagrangian based derivation of ADMM!
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Adaptive stepsizes

Kk+1

r5™ and rft! determine the convergence of the algorithm.

Can we also use ry and r, to accelerate the algorithm?

Adaptive stepsizes:

oG KT
-K OF*

uk+1 %M1 _KT

Tk M

Pkt piHt — pk

yk+ — uk‘|

Base the choices of 7% and o* on the residuals r¥ and rk?
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Residual balancing

First option: Residual balancing! Let (M, KT, —K, My) be
positive definite. Pick 70 and ¢° with 7%¢° < 1 as well as i > 1,

a>1:

* )izl > pllrgll, do

* gl > plirgll, do

1
Pt gk gkt — Lok

- Keep 7¢*1 = 7% and o**! = o otherwise.

Why could this make sense?
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Unbalanced adaption

Second option: Fougner, Boyd ’15: Let (M;, —KT; =K, M») be
positive definite. Pick 7° and ¢° with 7% < 1 as well as x> 1,
a>1:

- If ||rk| < efresh and k > k™, do

1
Tkt = gk gkt = ok, kfrev +— k.

«

o If || rk|| < ™esh and k > kB, do

k+1 k k+1 1 k kprev
2

T =art, o7 =—0d", + k.
@

 Keep 71 = 7K and o¥*1 = ¥ otherwise.
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The previous two adaptive step size methods are heuristics
that work well in practice.

Stopping criteria

In general, they have no convergence guarantees! Adapive sepsizes

Accelerations

Preconditioning

Common trick: Changing the parameters finitely many times
only, reestablishes the convergence guarantees!

More appealing from a theoretical point of view: Decreasing
the adaptivity of the stepsizes fast enough.
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Convergence guarantees with adaptive step sizes

Goldstein et al. 2015
Consider My = 11, M, = 1/ with 57 < ||K||2, and define

G

k+1 k+1
Jk_min{T d 1}, ¢ =1-sk

’7'k70'k7

Let the following three conditions hold:
© The sequences {7*}, {o*} remain bounded.
©® The sequence ¢* is summable.
® It holds that ¢k < ¢ < 1.

Then the resulting adaptive PDHG algorithm converges.

Conjecture (for you to prove)

The same result holds for arbitrary My, M, provided that the

matrix (My, —KT; —K, M) is positive definite.
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Stopping criteria,
adaptivity,
accelerations
Decreasing residual balancing: Let (M, —K™; —K, Mz) be Michael Mosller

Thomas Méllenhoff
positive definite. Pick 7° and ¢° with 7%¢° < 1. Further choose  Emanuel Laude

p>1,a% <1, 3 < 1and adapt as follows

Customized proximal point algorithms

* )il > pllrgll, do

Stopping criteria

1
(1 akyrk okt o Lk gk gk
1 - Accelerations
Preconditioning
* I {Irfll > plirgll, do
1
7_k+1 _ ] _0[1(7_k7 O_k+1 — (1 —ak)ak, ak+1 — ak ﬁ

+ Keep 7Ft1 = 7K, okt = oK and of*! = o otherwise.

Convergence proof based on previous theorem.
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Stopping orteria,
Sketch of proof Sopping crter

accelerations

Sketch of the proof: Michael Moeller

Thomas Méllenhoff
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« The product 7%o* does not change, thus 3. holds.

* |t holds that -

ok = { 0 if stepsizes were not updated,

ok if stepsizes were updated. Sloeprno erter
Adapive scpszes
which means the j-th nonzero entry of {¢*} is (a°). Aoceterations

Preconditioning

<Yk = Zie,(ao)j < C, thus condition 2 holds.

+ Without restriction of generality we may drop those steps
where the stepsize remained unchanged. We find

. 1 1\ 1
M~ dJ<(—= )= —— 0
ToE g = (1 —a/> g (1 —ozo,Bf)/T

The factor (1 — a°3/) remains bounded from below and
thus condition 1 follows. (For x > —1: (1 + x)" > 1 + nx)
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Example plot of convergence for ROF model
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Example plot of convergence for ROF model
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Example plot of convergence for ROF model
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Backtracking

Condition 3 in the previous convergence result for adaptive
stepsizes can also be weakened to

3. The saddle point problem
muin max G(u) + (Ku,p) — F*(p)
p

restricts either u or p to a bounded set. Furthermore there
exists a constant ¢ such that for all kK > 0

kK

pk+1 _ pk

Ui gk
(525,
ol [ PR
= ot —pk |0 ﬁMz pit — pk

Under this condition the convergence result still holds.

My —KT
-K  LMs

a
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Backtracking

The stability condition 3 from the previous slide can used to
define a backtracking algorithm that works without knowing the
constant ||K||2.

Define

bk - 27:5.7_k0.k<pk+1 _ pk’ K(uk+1 _ Uk)>
~ ORURT —UFE A F [T pe

for some v €]0, 1.
If b < 1 keep iterating, if b > 1 update

,]_k+1 _ ﬂ’l’k/bk, O_k+1 _ ﬁO’k/bk
for 5 €]0,1][.

Key insight to prove convergence: bX > 1 can only happen
finitely many times.
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Next lecture: Preconditioning

Generic customized proximal point algorithm:

G KT | |utt
Pl +

-K OF*

M, —KT
-K M

yk+ — uk‘|

pit — pk

We have seen:
« My = XMKTK, My = }Iyields ADMM
« My = }I, M, = j;/yields PDHG

Are there different choices for M; and M, that make sense and
are possibly more efficient?
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