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Customized proximal point algorithms

Structured optimization methods for

min
u

G(u) + F (Ku)

under the assumption of F and G being simple or - in the
ADMM case - (∂G + 1

τ K T K )−1 being easy to compute.

Goal: Find pair (û, p̂) with

−K T p̂ ∈ ∂G(û), K û ∈ ∂F ∗(p̂)

Primal Dual-Hybrid Gradient (PDHG) method:

0 ∈

[
∂G K T

−K ∂F ∗

][
uk+1

pk+1

]
+

[
1
τ I −K T

−K 1
σ I

][
uk+1 − uk

pk+1 − pk

]

What is a good stopping criterion?
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Stopping customized proximal point algorithms

Generic form:

0 ∈

[
∂G K T

−K ∂F ∗

][
uk+1

pk+1

]
+

[
M1 −K T

−K M2

]
︸ ︷︷ ︸

=:M

[
uk+1 − uk

pk+1 − pk

]

such that the matrix M is positive (semi-)definite.

Natural considerations:

• How close is −K T pk+1 to being an element of ∂G(uk+1)?

• How close is Kuk+1 to being an element of ∂F ∗(pk+1)?

We define the primal and dual residuals:

r k+1
p = M2(pk+1 − pk )− K (uk+1 − uk )

r k+1
d = M1(uk+1 − uk )− K T (pk+1 − pk )
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Primal and dual residuals

Based on the primal and dual residuals:

r k+1
p = M2(pk+1 − pk )− K (uk+1 − uk )

r k+1
d = M1(uk+1 − uk )− K T (pk+1 − pk )

we could consider our algorithm to be convergent if
‖r k+1

d ‖2 + ‖r k+1
p ‖2 → 0, because this implies

dist(−K T pk+1, ∂G(uk+1))→ 0,

dist(Kuk+1, ∂F ∗(pk+1))→ 0.

Note that this notion of convergences does not imply
convergence of uk and pk yet!

Nevertheless, we know PDHG and ADMM do converge, and
‖r k+1

d ‖ and ‖r k+1
p ‖ are good measures for convergence!
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Upper bounds on the residuals

How should we use ‖r k+1
d ‖ and ‖r k+1

p ‖ to formalize a stopping
criterion?

• Simple option: Iterator until ‖r k+1
d ‖ ≤ ε and ‖r k+1

p ‖ ≤ ε.

• Could be unfair, if uk ∈ Rn and pk ∈ Rm and e.g. n >> m.
Use ‖r k+1

d ‖ ≤
√

n ε and ‖r k+1
p ‖ ≤

√
m ε.

• Could be unfair for different scales! Introduce absolute and
relative error criteria:

‖r k+1
d ‖ ≤

√
n εabs + dual scale factor · εrel

‖r k+1
p ‖ ≤

√
m εabs + primal scale factor · εrel

But what are reasonable scale factors?
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Scaling the primal residuum

The primal residual

r k+1
p = M2(pk+1 − pk )− K (uk+1 − uk )

measures how far Kuk+1 is away from a particular element in
∂F ∗(pk+1), and therefore scales with the magnitude of
elements in ∂F ∗(pk+1).

More precisely:

0 ∈ ∂F ∗(pk+1)− Kuk+1 + r k+1
p

⇒0 ∈ ∂F ∗(pk+1)− K T (2uk+1 − uk ) + M2(pk+1 − pk ).

⇒ M2(pk − pk+1) + K T (2uk+1 − uk )︸ ︷︷ ︸
=:zk+1

∈ ∂F ∗(pk+1)

Thus, we can use

‖r k+1
p ‖ ≤

√
m εabs + ‖zk+1‖ · εrel

to be scale-independent.
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Scaling the dual residuum

The dual residual

r k+1
d = M1(uk+1 − uk )− K T (pk+1 − pk )

measures how far −K T pk+1 is away from a particular element
in ∂G(uk+1), and therefore scales with the magnitude of
elements in ∂G(uk+1).

More precisely:

0 ∈ ∂G(uk+1) + K T pk+1 + r k+1
d .

⇒ 0 ∈ ∂G(uk+1) + K T pk + M1(uk+1 − uk )

⇒ M1(uk − uk+1)− K T pk︸ ︷︷ ︸
=:vk+1

∈ ∂G(uk+1)

Thus, we can use

‖r k+1
d ‖ ≤

√
n εabs + ‖vk+1‖ · εrel

to be scale-independent.
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A scaled absolute and relative stopping criterion

In summary, a good stopping criterion is

‖r k+1
p ‖ ≤

√
m εabs + ‖zk+1‖ · εrel ,

‖r k+1
d ‖ ≤

√
n εabs + ‖vk+1‖ · εrel .

Interesting observation in our previous considerations:
ADMM, Douglas Rachford, PDHG, and any other ”customized
proximal point” algorithm actually generates iterates
(uk+1,pk+1, vk+1, zk+1) with

vk+1 ∈ ∂G(uk+1), zk+1 ∈ ∂F ∗(pk+1).

The goal of all algorithms is to achieve convergence

‖ zk+1 − Kuk+1︸ ︷︷ ︸
=r k+1

p

‖ → 0 and ‖ vk+1 + K T pk+1︸ ︷︷ ︸
=r k+1

d

‖ → 0!

Note that z is exactly the ”split” variable in the augmented
Lagrangian based derivation of ADMM!
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Adaptive stepsizes

r k+1
p and r k+1

d determine the convergence of the algorithm.

Can we also use rd and rp to accelerate the algorithm?

Adaptive stepsizes:

0 ∈

[
∂G K T

−K ∂F ∗

][
uk+1

pk+1

]
+

[
1
τ k M1 −K T

−K 1
σk M2

][
uk+1 − uk

pk+1 − pk

]

Base the choices of τ k and σk on the residuals r k
p and r k

d ?
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Residual balancing

First option: Residual balancing! Let (M1,−K T ;−K ,M2) be
positive definite. Pick τ0 and σ0 with τ0σ0 < 1 as well as µ > 1,
α > 1:

• If ‖r k
p ‖ > µ‖r k

d ‖, do

τ k+1 =
1
α
τ k , σk+1 = ασk

• If ‖r k
d ‖ > µ‖r k

p ‖, do

τ k+1 = ατ k , σk+1 =
1
α
σk

• Keep τ k+1 = τ k and σk+1 = σk otherwise.

Why could this make sense?



Stopping criteria,
adaptivity,
accelerations

Michael Moeller
Thomas Möllenhoff
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Unbalanced adaption

Second option: Fougner, Boyd ’15: Let (M1,−K T ;−K ,M2) be
positive definite. Pick τ0 and σ0 with τ0σ0 < 1 as well as µ > 1,
α > 1:

• If ‖r k
d ‖ < εthresh and k > µkprev

1 , do

τ k+1 =
1
α
τ k , σk+1 = ασk , kprev

1 ← k .

• If ‖r k
p ‖ < εthresh and k > µkprev

2 , do

τ k+1 = ατ k , σk+1 =
1
α
σk , kprev

2 ← k .

• Keep τ k+1 = τ k and σk+1 = σk otherwise.
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Convergence guarantees?

The previous two adaptive step size methods are heuristics
that work well in practice.

In general, they have no convergence guarantees!

Common trick: Changing the parameters finitely many times
only, reestablishes the convergence guarantees!

More appealing from a theoretical point of view: Decreasing
the adaptivity of the stepsizes fast enough.
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Convergence guarantees with adaptive step sizes

Goldstein et al. 2015

Consider M1 = 1
τ̃ I, M2 = 1

σ̃ I with σ̃τ̃ < ‖K‖2, and define

δk = min
{
τ k+1

τ k ,
σk+1

σk ,1
}
, φk = 1− δk

Let the following three conditions hold:

1 The sequences {τ k}, {σk} remain bounded.

2 The sequence φk is summable.

3 It holds that τ kσk < c < 1.

Then the resulting adaptive PDHG algorithm converges.

Conjecture (for you to prove)

The same result holds for arbitrary M1, M2 provided that the
matrix (M1,−K T ;−K ,M2) is positive definite.



Stopping criteria,
adaptivity,
accelerations

Michael Moeller
Thomas Möllenhoff
Emanuel Laude

Stopping criteria

Adaptive stepsizes

Accelerations

Preconditioning

Heavy-ball schemes

Case study

updated 11.07.2016

Customized proximal point algorithms

Decreasing residual balancing: Let (M1,−K T ;−K ,M2) be
positive definite. Pick τ0 and σ0 with τ0σ0 < 1. Further choose
µ > 1, α0 < 1, β < 1 and adapt as follows

• If ‖r k
p ‖ > µ‖r k

d ‖, do

τ k+1 = (1− αk )τ k , σk+1 =
1

1− αk σ
k , αk+1 = αk · β.

• If ‖r k
d ‖ > µ‖r k

p ‖, do

τ k+1 =
1

1− αk τ
k , σk+1 = (1− αk )σk , αk+1 = αk · β.

• Keep τ k+1 = τ k , σk+1 = σk , and αk+1 = αk otherwise.

Convergence proof based on previous theorem.
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Sketch of proof

Sketch of the proof:

• The product τ kσk does not change, thus 3. holds.

• It holds that

φk =

{
0 if stepsizes were not updated,
αk if stepsizes were updated.

which means the j-th nonzero entry of {φk} is (α0)j .

•
∑

k φ
k =

∑
j∈I(α

0)j < C, thus condition 2 holds.

• Without restriction of generality we may drop those steps
where the stepsize remained unchanged. We find

τ j+1 ≤ 1
1− αj τ

j ≤
(

1
1− αj

)j

τ0 =
1

(1− α0β j )j τ
0

The factor (1− α0β j )j remains bounded from below and
thus condition 1 follows. (For x ≥ −1: (1 + x)n ≥ 1 + nx)
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Example plot of convergence for ROF model
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Example plot of convergence for ROF model
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Example plot of convergence for ROF model
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Backtracking

Condition 3 in the previous convergence result for adaptive
stepsizes can also be weakened to

3. The saddle point problem

min
u

max
p

G(u) + 〈Ku,p〉 − F ∗(p)

restricts either u or p to a bounded set. Furthermore there
exists a constant c such that for all k > 0〈[

uk+1 − uk

pk+1 − pk

]
,

[
1
τ k M1 −K T

−K 1
σk M2

][
uk+1 − uk

pk+1 − pk

]〉

≥ c

〈[
uk+1 − uk

pk+1 − pk

]
,

[
1
τ k M1 0

0 1
σk M2

][
uk+1 − uk

pk+1 − pk

]〉
.

Under this condition the convergence result still holds.
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Backtracking

The stability condition 3 from the previous slide can used to
define a backtracking algorithm that works without knowing the
constant ‖K‖2.

Define

bk =
2τ̃ σ̃τ kσk 〈pk+1 − pk ,K (uk+1 − uk )〉

γσ̃σk‖uk+1 − uk‖2 + γτ̃τ k‖pk+1 − pk‖2

for some γ ∈]0,1[.

If bk ≤ 1 keep iterating, if bk > 1 update

τ k+1 = βτ k/bk , σk+1 = βσk/bk

for β ∈]0,1[.

Key insight to prove convergence: bk > 1 can only happen
finitely many times.



Stopping criteria,
adaptivity,
accelerations

Michael Moeller
Thomas Möllenhoff
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Preconditioning

Generic customized proximal point algorithms:

0 ∈

[
∂G K T

−K ∂F ∗

][
uk+1

pk+1

]
+

[
M1 −K T

−K M2

][
uk+1 − uk

pk+1 − pk

]

overrelaxation on primal variable u

or

0 ∈

[
∂G K T

−K ∂F ∗

][
uk+1

pk+1

]
+

[
M1 K T

K M2

][
uk+1 − uk

pk+1 − pk

]

overrelaxation on dual variable p.

What choices can we make beyond M1 = 1
τ I and M2 = 1

σ I?
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Recalling some customized proximal point algorithms

A computation on the board shows
• Primal ADMM, u update first

0 ∈

[
∂G K T

−K ∂F ∗

][
uk+1

pk+1

]
+

[
λK T K K T

K 1
λ I

][
uk+1 − uk

pk+1 − pk

]
.

• Corresponding dual ADMM

0 ∈

[
∂G K T

−K ∂F ∗

][
uk+1

pk+1

]
+

[
1
λ I −K T

−K λKK T

][
uk+1 − uk

pk+1 − pk

]
.

• PDHG, overrelaxation on primal

0 ∈

[
∂G K T

−K ∂F ∗

][
uk+1

pk+1

]
+

[
1
τ I −K T

−K 1
σ I

][
uk+1 − uk

pk+1 − pk

]
.

• PDHG, overrelaxation on dual

0 ∈

[
∂G K T

−K ∂F ∗

][
uk+1

pk+1

]
+

[
1
τ I K T

K 1
σ I

][
uk+1 − uk

pk+1 − pk

]
.
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Recalling some customized proximal point algorithms

Practical experience:
ADMM makes more progress per iteration than PDHG!

Interpretation: PDHG approximates λK T K by 1
σ I.

→ Crude approximation!

Idea: Use

0 ∈

[
∂G K T

−K ∂F ∗

][
uk+1

pk+1

]
+

[
M1 −K T

−K M2

][
uk+1 − uk

pk+1 − pk

]

for matrices M1, M2 that introduce more knowledge about K !

To avoid the difficult resolvents: Use diagonal M1 and M2!
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Preconditioning matrices

Pock, Chambolle 2011

Let M1 and M2 be symmetric positive definite maps that satisfy∥∥∥M−1/2
2 KM−1/2

1

∥∥∥2
< 1,

then the matrix

M :=

[
M1 −K T

−K M2

]

is positive definite.
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Preconditioning matrices

Pock, Chambolle 2011

Let M1 = diag(m1
j ) and M2 = diag(m2

i ) with

m1
j =

∑
i

|Ki,j |2−α, m2
i =

∑
j

|Ki,j |α.

Then
‖M−1/2

2 KM−1/2
1 ‖2 ≤ 1

holds for all α ∈ [0,2].

The above theorem provides an easy way of determining
diagonal preconditioners!

To get a strict inequality we can multiply M1 and/or M2 by any
factor > 1.



Stopping criteria,
adaptivity,
accelerations

Michael Moeller
Thomas Möllenhoff
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When does preconditioning make sense?

For K ≈ ∇ this preconditioning has (almost) no effect!

If the row sums or the column sums of K differ a lot, then the
previous preconditioning has a strong effect:

From Pock, Chambolle 2011: Diagonal preconditioning for first order primal-dual algorithms in convex optimization.
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Open research questions

• Convergence for triangular matrices M1, M2?

• Symmetric non-diagonal preconditioner which still allow
efficient solutions?

• Iterative adaptation of diagonal preconditioners?

• Why does ”preconditioning” help beyond diagonal
matrices?

• Convergence estimates that reveal influence of
preconditioners?
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Gaining some momentum

Assume we look for a x̂ such that

0 ∈ (A + B)x̂

for maximally monotone operators A and B. Then the scheme

yk = xk + αk (xk − xk−1),

xk+1 = (M + λk A)−1(M − λk B)(yk ),

converges for certain choices of extrapolation parameter αk ,
positive (semi-)definite matrix M, and stepsize λk .

Example 1: A = 0, M = I, λk = τ , B = ∇E :

xk+1 = yk −∇E(yk )

Example 2: A = ∂E1, M = I, λk = τ , B = ∇E2:

xk+1 = proxτE1
(yk −∇E2(yk ))

These methods are optimal in the sense of Nesterov. Similar
techniques may also accelerate primal-dual algorithms.1

1Details: ”An inertial forward-backward algorithm for monotone inclusions”.
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Very brief desired topic:
ADMM and its convergence
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Possible convergence analysis of ADMM on 1 slide

• The subdifferential ∂E is a maximally monotone operator.

• The resolvent (I + A)−1 of a maximally monotone operator
A is non-expansive.

• An operator F is called averaged, if F = θT + (1− θ)I for
θ ∈]0,1[ and T being non-expansive.

• If F is an averaged operator, the fixed point iteration
xk+1 = Fxk converges to some x∗ with x∗ = Fx∗.

• Specially structured problem: 0 ∈ ∂G(u) + K T∂F (Ku), i.e.
0 ∈ A(u) + B(u), for A and B being maximally monotone.

• For CA = 2(I + A)−1 − I denoting the Cayley operator,
CACB is a non-expansive operator!

• DRS/ADMM: Do a fixed point iteration with

F =
1
2

I +
1
2

CACB,

and u∗ = (I + B)−1x∗ will meet 0 ∈ A(u∗) + B(u∗).
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Case study:
Single view 3d reconstruction
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Remember 2.5d reconstruction?
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Remember 2.5d reconstruction?
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Remember 2.5d reconstruction?

Assumptions:

• Minimal surface

• User-defined volume

• No volume outside of the contour

min
u

∑
i

√
1 + |(Du)i |2 + δΣV (u)
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What about full 3d reconstruction?

First question: How do we represent the surface/volume?

Common technique: u : Ω× R→ {0,1}.
• u(x) = 1 means this voxel is occupied with the object

• u(x) = 0 means there is no object at this pixel

Via the celebrated co-area formula, one may show that if

u(x) =

{
1 if x ∈ M,

0 otherwise,

one has
TV (u) :=

∫
‖Du‖ = Area(M).

For details see e.g. Chambolle et at. 2009, An introduction to
Total Variation for Image Analysis.
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Single image 3D reconstruction

What is a reasonable first model for single image 3D
reconstruction given a silhouette S?

•
∫

Ω×R u(x) dx = V , where V is a user given volume.

• Constraint: u(x1, x2, z) = 0 ∀z if (x1, x2) /∈ S.

• Constraint: u(x1, x2,0) = 1 ∀z if (x1, x2) ∈ S.

• Find the minimal surface, i.e. minimize∫
Ω×R
|∇u(x)| dx

• Or with prior information possibly use a weighting∫
Ω×R

g(x)|∇u(x)| dx

• Since the constraint u(x) ∈ {0,1} is difficult, use u ∈ [0,1].
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Single image 3D reconstruction

Discretized model:

min
u∈Rny×nx×nd

∑
i,j,k

gi,j,k · |(Du)i,j,k |+ δΣV (u) + δui,j,nd /2=1(u) + δ[0,1](u)

Let us apply the PDHG method to minimize the above energy.

First step: Bring the energy into a suitable saddle point form

Note that one can absorb the gi,j,k into D by multiplying D with
a diagonal matrix with the gi,j,k on the diagonal.
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Single image 3D reconstruction

Discretized model:

min
u∈Rny×nx×nd

‖Du‖2,1 + δΣV (u) + δui,j,nd /2=1(u) + δ[0,1](u)

As usual we reformulate

min
u

max
p
〈p,Du〉 − δ‖·‖2,∞(p) + δΣV (u) + δui,j,nd /2=1(u) + δ[0,1](u)

We know the δ‖·‖2,∞(p) prox is easy. What about the remaining
problem in u?

At least as difficult as a non-negative `1 projection2, but with an
additional bound on each component of u! We should simplify
further!

2See Duchi et al. 2008
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Single image 3D reconstruction

min
u

max
p
〈p,Du〉 − δ‖·‖2,∞(p) + δΣV (u) + δui,j,nd /2=1(u) + δ[0,1](u)

One could ”dualize” either δ[0,1](u) or δΣV (u) and the remaining
prox in u would be easy!

Lets use
δΣV (u) = sup

q∈R
q(1T u − V )
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Single image 3D reconstruction

We arrive at

min
u

max
p,q
〈p,Du〉−δ‖·‖2,∞≤1(p)+q(1T u−V )+δui,j,nd /2=1(u)+δ[0,1](u)

or equivalently

min
u

max
p,q

δui,j,nd /2=1(u) + δ[0,1](u) +

〈(
p
q

)
,

(
D
1T

)
u

〉
− qV − δ‖·‖2,∞≤1(p)

Let’s apply (PDHG)!

(dual var)k+1 = proxσF∗((dual var) k + σK (primal var)
k
),

(primal var)k+1 = proxτG((primal var)k − τK ∗ (dual var)k+1),

(primal var)
k+1

= 2(primal var)k+1 − (primal var)k .
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Single image 3D reconstruction

pk+1 = proxδ‖·‖2,∞≤1
(pk + σDūk )

qk+1 = argmin
q

0.5(q − qk − σ1T ūk )2 + σVq

= qk + σ(1T uk − V )

uk+1
i,j,l =

{
1 if l = nd/2
max(0,min(1,uk+1

i,j,l − τ(D∗pk+1 + qk+1 1))) else

ūk+1 = 2uk+1 − uk
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Single image 3D reconstruction

Sanity check:

with Volume = 4
3πradius3.
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Single image 3D reconstruction

Nice results, but some discretization artifacts...
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Single image 3D reconstruction

Nice results (except some remaining discretization artifacts).
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Single image 3D reconstruction

Results (with a restriction on the maximal thickness).


