
Nonexpansiveness of Resolvent Operator
Take (x, u) ∈ JλT (i.e. u = (I + λT )−1x) and (y, v) ∈ JλT , then by definition we have

u+ λTu 3 x, v + λTv 3 y.

Subtracting these yields

u− v + λ(Tu− Tv) 3 x− y

Taking inner product with u− v and using monotonicity of T gives

〈u− v, u− v〉+ λ〈u− v, Tu− Tv〉 = 〈u− v, x− y〉 (1)

‖u− v‖2 ≤ 〈u− v, x− y〉 ≤ ‖u− v‖‖x− y‖ (2)

‖u− v‖ ≤ ‖x− y‖ (3)

‖(I + λT )−1x− (I + λT )−1y‖ ≤ ‖x− y‖ (4)

(5)

Nonexpansiveness of Cayley Operator
Take again (x, u) ∈ JλT (i.e. u = (I + λT )−1x) and (y, v) ∈ JλT ,

‖CλTx− CλT y‖2 = ‖2(u− v)− (x− y)‖2 (6)

= 4‖u− v‖2 − 4〈x− y, u− v〉+ ‖x− y‖2 (7)

≤ 4〈x− y, u− v〉 − 4〈x− y, u− v〉+ ‖x− y‖2 (8)

= ‖x− y‖2 (9)

Convergence of Krasnosel’skii-Mann Iteration
We’ll make use of the identity

‖(1− θ)a+ θb‖2 = (1− θ)‖a‖2 + θ‖b‖2 − θ(1− θ)‖a− b‖2,

which holds for any θ ∈ R, a, b ∈ Rn.

Let F = (1 − θ)I + θT be averaged, where θ ∈ (0, 1) and T is nonexpansive. Note that T has the

same fixed points as F

u∗ = Tu∗ (10)

⇔ θu∗ = θTu∗ (11)

⇔ (1− θ)u∗ + θu∗ = (1− θ)u∗ + θTu∗ (12)

⇔ u∗ = [(1− θ)I + θT ]u∗ = Fu∗ (13)

We consider the fixed point iteration

uk+1 = Fuk = (1− θ)uk + θTuk.

Denote be U the (nonempty) set of fixed points of F and let u∗ ∈ U be a fixed point of F . Then we have

‖uk+1 − u∗‖2 = ‖(1− θ)(uk − u∗) + θ(Tuk − u∗)‖2

= (1− θ)‖uk − u∗‖2 + θ‖Tuk − u∗‖2 − θ(1− θ)‖Tuk − uk‖2

= (1− θ)‖uk − u∗‖2 + θ‖Tuk − Tu∗‖2 − θ(1− θ)‖Tuk − uk‖2

≤ (1− θ)‖uk − u∗‖2 + θ‖uk − u∗‖2 − θ(1− θ)‖Tuk − uk‖2

= ‖uk − u∗‖2 − θ(1− θ)‖Tuk − uk‖2

(*)
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This shows that the so called Fejèr monotonicity of the fixed point iteration, i.e., the distance to the

solution set (which is closed and convex) decreases at each step.

Applying the inequality k times yields

‖uk+1 − u∗‖2 ≤ ‖u0 − u∗‖2 − θ(1− θ)
k∑
j=0

‖Tuj − uj‖2

and hence
k∑
j=0

‖Tuj − uj‖2 ≤ ‖u
0 − u∗‖2

θ(1− θ)
,

which implies that ‖Tuk − uk‖ → 0, for k →∞.

From that we can also estimate a convergence rate of the fixed-point residual:

min
j=0...k

‖Tuj − uj‖2 ≤ ‖u0 − u∗‖2

(k + 1)θ(1− θ)
,

Since the iterates {uk}∞k=1 lie in the compact set (due to the Fejèr monotonicity)

{uk}∞k=1 ⊂ C =
{
v | ‖v − u∗‖ ≤ ‖u0 − u∗‖

}
,

there exists at least one subsequence {ukl}∞l=1 which converges to some point û.

Since Tukl−ukl → 0, we also have that Fukl−ukl = (F−I)ukl → 0. Since F−I is Lipschitz continuous

(as T is nonexpansive) and hence continuous, we have that Fû = û and hence the subsequence converges

to a point in û ∈ U .

As (*) holds for any point from u∗ ∈ U , we can apply it the point û our subsequence converges to. We

know that for the iterates of the original sequence the distance to this point is monotonically decreasing,

‖uk+1 − û‖ ≤ ‖uk − û‖.

Since a subsequence {ukl}∞l=1 of {uk}∞k=1 is converging to û, and ‖uk − û‖ is monotonically decreasing,

we have convergence of the entire sequence to û.

Positive definiteness of primal-dual step-size matrix

For θ = 1, symmetry immediately follows from the structure of the matrix. Define the following inner

products:

〈T−1u, u〉 = ‖u‖X
〈Σ−1p, p〉 = ‖p‖Y

We show positive definiteness directly by using the definition

〈(u, p),M(u, p)〉 = 〈T−1u, u〉+ 〈Σ−1p, p〉 − 2〈Ku, p〉 = ‖u‖2X + ‖p‖2Y − 2〈Ku, p〉 > 0

We have

− 2〈Ku, p〉 = −2〈Σ 1
2KT

1
2 T−

1
2u,Σ−

1
2 p〉

Using Cauchy-Schwarz and Young’s inequality 2ab ≤ ca2 + b2/c for any a, b, c > 0 we have

−2〈Ku, p〉 ≥ −2‖Σ 1
2KT

1
2 T−

1
2u‖‖Σ− 1

2 p‖

≥ −
(
c‖Σ 1

2KT
1
2 ‖2‖u‖2X +

‖p‖2Y
c

)
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Now since ‖Σ 1
2KT

1
2 ‖2 < 1 there exists some ε > 0 with (1 + ε)2‖Σ 1

2KT
1
2 ‖2 = 1.

Then picking c = 1 + ε = 1

‖Σ
1
2KT

1
2 ‖

= 1

(1+ε)‖Σ
1
2KT

1
2 ‖2

we have

−2〈Ku, p〉 ≥ −

(
‖Σ 1

2KT
1
2 ‖2‖u‖2X

(1 + ε)‖Σ 1
2KT

1
2 ‖2

+
‖p‖2Y

(1 + ε)

)

≥ −
(

1

1 + ε

)
(‖u‖2X + ‖p‖2Y ),

Inserting this estimate back, we have

〈u, u〉X + 〈p, p〉Y − 2〈Ku, p〉 ≥ ‖u‖2X + ‖p‖2Y −
(

1

1 + ε

)
(‖u‖2X + ‖p‖2Y ) =

ε

1 + ε

(
‖u‖2X + ‖p‖2Y

)
Since ε > 0, this term is bigger than 0 and hence M is positive definite.
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