Chapter 3

Duality

Convex Optimization for Computer Vision SS 2016

Michael Moeller
Thomas Möllenhoff
Emanuel Laude
Computer Vision Group
Department of Computer Science
TU München

Duality

Michael Moeller Thomas Möllenhoff Emanuel Laude

Duality

Motivation

Convex Conjugation Fenchel Duality

updated 10.05.2016

Duality

Michael Moeller Thomas Möllenhoff Emanuel Laude

Motivation

Convex Conjugation Fenchel Duality

Duality

Summary: descent methods

For energies of the form

$$u^* \in \arg\min_{u \in \mathbb{R}^n} E(u),$$

for $E : \mathbb{R}^n \to \mathbb{R} \cup \{\infty\}$ proper, closed, convex, we discussed

Gradient descent:

- dom $E = \mathbb{R}^n$
- For $E \in \mathcal{F}^{1,1}_{L}(\mathbb{R}^n)$ energy convergence in $\mathcal{O}(1/k)$
- For $E \in \mathcal{S}^{1,1}_{m,L}(\mathbb{R}^n)$ energy and iterate convergence in $\mathcal{O}(c^k)$

Subgradient descent:

- $dom(E) = \mathbb{R}^n$
- Applicable to any Lipschitz-continuous convex energy
- Usually rather slow

Gradient projection: Generalizes gradient descent to arbitrary (nonempty, closed, convex) dom(E).

Duality

Michael Moeller Thomas Möllenhoff Emanuel Laude

Duality

Motivation

How powerful is the gradient projection algorithm?

Consider the total variation denoising problem

$$u^* \in \operatorname*{argmin}_{u} \frac{1}{2} \|u - f\|_2^2 + \alpha \|Du\|_{2,1},$$

with the finite difference operator $D: \mathbb{R}^{n \times m \times c} \to \mathbb{R}^{nm \times 2c}$.

Is subgradient descent really the best we can do despite the "nice" strongly convex energy?

Let's try something crazy to try to find a better algorithm:

$$\|g\| = \max_{|q| \le 1} \langle q, g \rangle$$

Duality

Michael Moeller Thomas Möllenhoff Emanuel Laude

Duality

Motivation

Following the crazy idea...

The previous simple observation tells us that

$$\begin{split} \|g\|_{2,1} &= \sum_{i} \|g_{i}\| = \sum_{i} \max_{|q_{i}| \leq 1} \langle q_{i}, g_{i} \rangle \\ &= \max_{|q_{i}| \leq 1} \underbrace{\sum_{i} \langle q_{i}, g_{i} \rangle}_{=:\langle g, q \rangle} \\ &= \max_{\max_{i} \|q_{i}\| \leq 1} \langle g, q \rangle = \max_{\|g\|_{2,\infty} \leq 1} \langle g, q \rangle \end{split}$$

We may write

$$\min_{u} \frac{1}{2} \|u - f\|_{2}^{2} + \alpha \|Du\|_{1} = \min_{u} \frac{1}{2} \|u - f\|_{2}^{2} + \alpha \max_{\|q\|_{2,\infty} \le 1} \langle Du, q \rangle$$

$$= \min_{u} \max_{\|q\|_{2,\infty} < 1} \frac{1}{2} \|u - f\|_{2}^{2} + \alpha \langle Du, q \rangle$$

Can we switch min and max?

Duality

Michael Moeller Thomas Möllenhoff Emanuel Laude

Duality

Motivation

TV Minimization

Saddle point problems¹

Let C and D be non-empty closed convex sets in \mathbb{R}^n and \mathbb{R}^m , respectively, and let S be a continuous finite concave-convex function on $C \times D$. If either C or D is bounded, one has

$$\inf_{v \in \mathcal{D}} \sup_{q \in \mathcal{C}} S(v,q) = \sup_{q \in \mathcal{C}} \inf_{v \in \mathcal{D}} S(v,q).$$

We can therefore compute

$$\begin{split} \min_{u} \frac{1}{2} \|u - f\|_{2}^{2} + \alpha \|Du\|_{1} &= \min_{u} \max_{\|q\|_{2,\infty} \le 1} \frac{1}{2} \|u - f\|_{2}^{2} + \alpha \langle Du, q \rangle \\ &= \max_{\|q\|_{2,\infty} \le 1} \min_{u} \frac{1}{2} \|u - f\|_{2}^{2} + \alpha \langle Du, q \rangle \end{split}$$

Duality

Michael Moeller Thomas Möllenhoff Emanuel Laude

Duality

Motivation

¹Rockafellar, Convex Analysis, Corollary 37.3.2

TV Minimization

Now the inner minimization problem obtains its optimum at

$$0 = u - f + \alpha D^* q,$$

$$\Rightarrow u = f - \alpha D^* q.$$

The remaining problem in q becomes

$$\begin{split} & \max_{\|q\|_{2,\infty} \le 1} \frac{1}{2} \|f - \alpha D^* q - f\|_2^2 + \alpha \langle D(f - \alpha D^* q), q \rangle \\ &= \max_{\|q\|_{2,\infty} \le 1} \frac{1}{2} \|\alpha D^* q\|_2^2 + \alpha \langle Df, q \rangle - \|\alpha D^* q\|_2^2 \\ &= \max_{\|q\|_{2,\infty} \le 1} - \frac{1}{2} \|\alpha D^* q - f\|_2^2 \end{split}$$

Duality

Michael Moeller Thomas Möllenhoff Emanuel Laude

Duality

Motivation

TV Minimization

Michael Moeller
Thomas Möllenhoff
Emanuel Laude

Duality

Duality

Motivation

Convex Conjugation Fenchel Duality

Since we prefer minimizations over maximizations, we write

$$\begin{split} \hat{q} &= \underset{\|q\|_{2,\infty} \leq 1}{\operatorname{argmax}} - \frac{1}{2} \|\alpha D^* q - f\|_2^2 \\ &= \underset{\|q\|_{2,\infty} \leq 1}{\operatorname{argmin}} \frac{1}{2} \left\| D^* q - \frac{f}{\alpha} \right\|_2^2 \end{split}$$

This is a problem we know how to solve! An *L*-smooth function over a simple convex set: Gradient projection

$$q^{k+1} = \pi_C \left(q^k - \tau D \left(D^* q^k - \frac{f}{\alpha} \right) \right),$$

where $C = \{q \in \mathbb{R}^{nm \times 2c} \mid ||q||_{2,\infty} \leq 1\}.$

A conceptual way to reformulate energy minimization problems?

Maybe our idea

$$\|g\| = \max_{|q| \le 1} \langle q, g \rangle$$

was not so crazy but rather conceptual?

Definition: Convex Conjugate

We define the convex conjugate of the function

 $E: \mathbb{R}^n \to \mathbb{R} \cup \{\infty\}$ to be

$$E^*(p) = \sup_{u \in \mathbb{R}^n} (\langle u, p \rangle - E(u)).$$

Duality

Michael Moeller Thomas Möllenhoff Emanuel Laude

Duality

Motivation

Convex conjugates

Duality

Michael Moeller Thomas Möllenhoff Emanuel Laude

Motivation

Convex Conjugation

Fenchel Duality

Convexity of the Convex Conjugate

The convex conjugate E^* of any proper function $E: \mathbb{R}^n \to \mathbb{R} \cup \{\infty\}$ is convex.

Proof: Board

Convexity of the Convex Conjugate

The convex conjugate E^* of any proper function $E: \mathbb{R}^n \to \mathbb{R} \cup \{\infty\}$ is closed.

Proof: Linear functions are closed and arbitrary intersections of closed sets are closed.

Convex conjugates rules

Scalar multiplication :

$$E(u) = \alpha \tilde{E}(u) \Rightarrow E^*(p) = \alpha \tilde{E}^*(p/\alpha)$$

Separable sum:

$$E(u_1, u_2) = E_1(u_1) + E_2(u_2) \Rightarrow E^*(p_1, p_2) = E_1^*(p_1) + E_2^*(p_2)$$

Careful: Only separable sums work this way!
 Sum rule for E₁, E₂ closed, convex, proper:

$$E(u) = E_1(u) + E_2(u) \Rightarrow E^*(p) = \inf_{p=p_1+p_2} E_1^*(p_1) + E_2^*(p_2).$$

Translation:

$$E(u) = \tilde{E}(u-b) \Rightarrow E^*(p) = \tilde{E}^*(p) + \langle p, b \rangle$$

Additional affine functions:

$$E(u) = \tilde{E}(u) + \langle b, u \rangle + a \Rightarrow E^*(p) = \tilde{E}^*(p-b) - a$$

Duality

Michael Moeller Thomas Möllenhoff Emanuel Laude

Duality

Motivation

Convex Conjugation

Convex conjugates

Examples:

•
$$E(u) = \frac{1}{2}u^2$$
 leads to $E^*(p) = \frac{1}{2}p^2$

•
$$E(u) = ||u||_2$$
 leads to $E^*(p) = \begin{cases} 0 & \text{if } ||p||_2 \le 1, \\ \infty & \text{else.} \end{cases}$

•
$$E(u) = ||u||_1$$
 leads to $E^*(p) = \begin{cases} 0 & \text{if } ||p||_\infty \le 1, \\ \infty & \text{else.} \end{cases}$

•
$$E(u) = ||u||_{\infty}$$
 leads to $E^*(p) = \begin{cases} 0 & \text{if } ||p||_1 \le 1, \\ \infty & \text{else.} \end{cases}$

•
$$E(u) = \begin{cases} 0 & \text{if } ||u||_2 \le 1, \\ \infty & \text{else.} \end{cases}$$
 leads to $E^*(p) = ||p||_2.$

•
$$E(u) = \begin{cases} \infty & \text{erse.} \\ 0 & \text{if } ||u||_{\infty} \le 1, \\ \infty & \text{else.} \end{cases}$$
 leads to $E^*(p) = ||p||_1.$

•
$$E(u) = \begin{cases} 0 & \text{if } ||u||_1 \leq 1, \\ \infty & \text{else.} \end{cases}$$
 leads to $E^*(p) = ||p||_{\infty}.$

Suspicion: $E^{**} = E$?

Duality

Michael Moeller Thomas Möllenhoff Emanuel Laude

Duality

Motivation

Fenchel-Young Inequality

Duality

Michael Moeller Thomas Möllenhoff Emanuel Laude

Fenchel-Young Inequality²

Let E be proper, convex and closed, $u \in \text{dom}(E) \subset \mathbb{R}^n$, and $p \in \mathbb{R}^n$, then

$$E(u) + E^*(p) \ge \langle u, p \rangle.$$

Equality holds if and only if $p \in \partial E(u)$.

Proof: Board.

Motivation

Convex Conjugation

Duality

²Borwein, Zhu *Techniques of variational analysis*, Proposition 4.4.1

Biconjugate

Duality

Michael Moeller
Thomas Möllenhoff

Theorem: Biconjugate³

Let $E: \mathbb{R}^n \to \mathbb{R} \cup \{\infty\}$ be proper, convex and closed, then $E^{**} = E$.

First incomplete proof on the board.

For the full proof, quickly recall the geometric interpretation of the subgradient of chapter 1, and geometrically convince yourself that the separating hyperplane theorem makes sense. Motivation

Convex Conjugation

Duality

³Rockafellar, Convex Analysis, Theorem 12.2

Geometric interpretation of subgradients

Geometric interpretation of subgradients:

Any subgradient $p \in \partial E(u)$ represents a non-vertical supporting hyperplane to epi(E) at (u, E(u)).

Duality

Duality

Michael Moeller Thomas Möllenhoff

Emanuel Laude

Motivation Fenchel Duality

Convex Conjugation

Definition

A supporting hyperplane to a set $S \subset \mathbb{R}^n$ is a hyperplane $\{x \in \mathbb{R}^n \mid \langle a, x \rangle = b\}$, such that

- $S \subset \{x \in \mathbb{R}^n \mid \langle a, x \rangle \leq b\}$ or $S \subset \{x \in \mathbb{R}^n \mid \langle a, x \rangle \geq b\}$
- $\exists y \in \partial S$ (the boundary of S) such that $\langle a, y \rangle = b$.

Let $p \in \partial E(u)$. Then

$$E(v) - E(u) - \langle p, v - u \rangle \ge 0$$
 $\forall v \in \mathbb{R}^n$

$$\Rightarrow \quad \alpha - E(u) - \langle p, v - u \rangle \ge 0 \qquad \forall (v, \alpha) \in epi(E)$$

$$\Rightarrow \left\langle \begin{bmatrix} -\rho \\ 1 \end{bmatrix}, \begin{bmatrix} v \\ \alpha \end{bmatrix} - \begin{bmatrix} u \\ E(u) \end{bmatrix} \right\rangle \geq 0 \qquad \forall (v, \alpha) \in \operatorname{epi}(E).$$

updated 10.05.2016

Back to the biconjugate

Separating hyperplane theorem

Let $S \subset \mathbb{R}^n$ be a nonempty closed convex set, and $\mathbb{R}^n \ni u \notin S$. Then there exists a nonzero vector z and a number c < 0 such that

$$\langle z, v - u \rangle \leq c \quad \forall v \in S.$$

Duality

Michael Moeller Thomas Möllenhoff Emanuel Laude

Duality

Motivation

Convex Conjugation Fenchel Duality

Theorem: Biconjugate⁴

Let $E: \mathbb{R}^n \to \mathbb{R} \cup \{\infty\}$ be proper, convex and closed, then $E^{**} = E$.

Proof: Board.

Now we understand what we did for TV minimization: Replace $\|Du\|_{2,1}$ by

$$(\|\cdot\|_{2,1})^{**}(\mathit{Du}) = \sup_{p} \langle p, \mathit{Du} \rangle - \iota_{\|\cdot\|_{2,\infty} \leq 1}(p).$$

updated 10.05.2016

⁴Rockafellar, Convex Analysis, Theorem 12.2

Convex conjugation

Theorem: Subgradient of convex conjugate⁵

Let *E* be proper, convex and closed, then the following two conditions are equivalent:

- p ∈ ∂E(u)
- u ∈ ∂E*(p)

Proof: Board

Board: A quick way for repeating our TV-reformulation.

Conjugation of strongly convex functions

If $E: \mathbb{R}^n \to \overline{\mathbb{R}}$ is proper, closed and m-strongly convex, then $E^* \in \mathcal{F}^{1,1}_{\underline{1}}(\mathbb{R}^n)$.

Proof: Board

Duality

Michael Moeller Thomas Möllenhoff Emanuel Laude

Duality

Motivation

Convex Conjugation

Conjugation with linear operators

Definition: Image function

Let $A:\in\mathbb{R}^{n\times m}$ be a linear operator and $E:\mathbb{R}^m\to\bar{\mathbb{R}}$ an extended real valued function. We call $AE:\mathbb{R}^n\to\bar{\mathbb{R}}$ defined via

$$AE(u) := \left\{ egin{array}{ll} \inf_{v, Av = u} E(v) & \text{if } u \in \operatorname{range}(A), \\ \infty & \text{else.} \end{array} \right.$$

the image of E under A.

Conjugate of image functions

Let E be a proper extended real valued function and let A be a linear operator. Then it holds that

$$(AE)^* = (E^* \circ A^*).$$

Duality

Michael Moeller Thomas Möllenhoff Emanuel Laude

Duality

Motivation

Conjugation with linear operators

Conjugation with linear operators

Let E be a proper closed convex function and let A be a linear operator such that

$$im(A) \cap ri(dom(E)) \neq \emptyset$$
.

Then

$$(E^* \circ A^*)^* = AE,$$

Proof: Not carried out, but key is that the above assumption ensures that AE is proper and closed such that $(AE)^{**} = AE$.

For details on the question of why $\operatorname{im}(A) \cap \operatorname{ri}(\operatorname{dom}(E)) \neq \emptyset$ is sufficient for the closedness of AE you can consider "Fundamentals of Convex Analysis" by Jean-Baptiste Hiriart-Urruty, Claude Lemarechal, pp. 224–225, Lemma 2.2.2

Duality

Michael Moeller Thomas Möllenhoff Emanuel Laude

Duality Motivation

Convex Conjugation

Fenchel duality

Fenchel's Duality Theorem⁶

Let $H: \mathbb{R}^n \to \mathbb{R} \cup \{\infty\}$ and $R: \mathbb{R}^m \to \mathbb{R} \cup \{\infty\}$ be proper, closed, convex functions and let there exists a $u \in \text{ri}(\text{dom}(H))$ such that $Ku \in \text{ri}(\text{dom}(R))$. Then

$$\inf_{u} \qquad H(u) + R(Ku) \qquad \text{"Primal"}$$

$$= \inf_{u} \sup_{q} \qquad H(u) + \langle q, Ku \rangle - R^{*}(q) \qquad \text{"Saddle point"}$$

$$= \sup_{q} \inf_{u} \qquad H(u) + \langle q, Ku \rangle - R^{*}(q) \qquad \text{"Dual"}$$

Duality

Michael Moeller Thomas Möllenhoff Emanuel Laude

Duality

WOUVALION

Convex Conjugation
Fenchel Duality

. _ .

Proof: Board.

Applications and motivation of the next lecture

Assume we want to minimize

$$\min_{u} \frac{1}{2} ||u - f||_{2}^{2} \text{ s.t. } ||Du||_{\infty} \le c,$$

i.e. find the best approximation to the input data f under the constraint that Du must be bounded componentwise.

Dual problem:

$$\max_{p} -\frac{1}{2} ||D^*p||^2 - \langle p, f \rangle - c||p||_1$$

or

$$\hat{p} = \underset{p}{\operatorname{argmin}} \frac{1}{2} \|D^* p + f\|^2 + c \|p\|_1$$

We have seen how to solve such a problem by using $p = p_1 - p_2$ with $p_1, p_2 \ge 0$. Next two lectures: Solution without doubling the number of free variables!

Duality

Michael Moeller Thomas Möllenhoff Emanuel Laude

Duality

Motivation

Convex Conjugation