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Summary: descent methods
For energies of the form

u* € argmin E(u
€ arg min E(u),

for E: R" — R U {oo} proper, closed, convex, we discussed

Gradient descent:
« dom E =R"
« For E € F}"'(R") energy convergence in O(1/k)
« For E € S, (R") energy and iterate convergence in O(c*)

Subgradient descent:
« dom(E) =R"
+ Applicable to any Lipschitz-continuous convex energy
* Usually rather slow

Gradient projection: Generalizes gradient descent to arbitrary
(nonempty, closed, convex) dom(E).
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How powerful is the gradient projection algorithm?

Consider the total variation denoising problem
.1
u* € argmin S f|u - fl13 + ||Dul|2.1,
u
with the finite difference operator D : R"*Mx¢ — RMx2¢,

Is subgradient descent really the best we can do despite the

“nice” strongly convex energy?

Let’s try something crazy to try to find a better algorithm:

lgll = max

q<1

(q.9)
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Following the crazy idea...

The previous simple observation tells us that

19ll2.1 = Z lgill =

max <q,, gi)

= max (i, gi>
i

[qi|<1

—_——
=:(9,9)

= max (
max; |qil| <1

We may write

9,9) =

(9,9)

HCIH2 oo<1

.1 1
mu|n§||u—f||§+a||Du||1:mJn§||u—f||§+a max (Du, q)

=min

u

Can we switch min and max?

max

llall2, e <1

Hq“2,oo§1
1
Jlu— 13+ a(Du.q)
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TV Minimization

Saddle point problems'’

Let C and D be non-empty closed convex sets in R” and R,
respectively, and let S be a continuous finite concave-convex
function on C x D. If either C or D is bounded, one has

inf f sup S(v,q) = sup inf S(v q).
veD gecC geC veD

We can therefore compute

1
m|n f||u — f|13 + || Dul4 _muln max f||u — f|2 + a(Du, q)

= max m|n7||u—f||2+a<Du q)

lallz,cc<1 U

"Rockafellar, Convex Analysis, Corollary 37.3.2
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TV Minimization

Now the inner minimization problem obtains its optimum at

0=u-f+aD*q,

=u="f-aD"q.
The remaining problem in g becomes

||f —aD*q— f||5+ a(D(f — aD*q), q)

|\q\|zoo<12

= aD* + « Df — |laD*
qu\zm<12H ql3 + a(Df,q) — |aD*ql3

= e ~5loD'q 2

HQH2 00 <1
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Duality

TV Minimization

Michael Moeller
Thomas Méllenhoff
Emanuel Laude

Since we prefer minimizations over maximizations, we write

g = argmax —f||aD* — f||2 ity
Il o= b
1 f 2 Convex Conjugation
= argmin —_ HD*q N Fenchel Duality
HqHZ,oc§1 « 2

This is a problem we know how to solve! An L-smooth function
over a simple convex set: Gradient projection

gt = ng <qk —rD(D*qk _ ;)) ’

where C = {g € R"™*2¢ | ||g|j2,00 < 1}
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A conceptual way to reformulate energy minimization
problems?

Maybe our idea
H%—mwmm

lgl<1

was not so crazy but rather conceptual?

Definition: Convex Conjugate

We define the convex conjugate of the function
E:R" - RU {0} tobe

E*(p) = sup ((u,p) — E(u))
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Convex conjugates

Convexity of the Convex Conjugate
The convex conjugate E* of any proper function
E:R" — RU{co} is convex.

Proof: Board

Convexity of the Convex Conjugate

The convex conjugate E* of any proper function
E :R" — RU {0} is closed.

Proof: Linear functions are closed and arbitrary intersections of
closed sets are closed.
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Duality

Convex conjugates rules
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+ Scalar multiplication : e

E(u) = oE(u) = E*(p) = aE"(p/a) -

+ Separable sum:
Duality

E(w, u2) = Eq(n)+Ez(t2) = E*(p1,p2) = Ef(P1)+E3(P2)  wonatn

+ Careful: Only separable sums work this way! Fenchel Dualty
Sum rule for Eq, E> closed, convex, proper:

E(u) = Ei(u)+Ea(u) = E*(p) = _inf Ei(p1)+E3(pe).
+ Translation:
E(u)=E(u-b) = E*(p) = E*(p) + (p, b)
+ Additional affine functions:

E(u)=E(u)+ (b,uy+a = E*(p)=E*(p—b)—a
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Convex conjugates

Examples:
+ E(u) = Ju? leads to E*(p) = 1p?
E(u) = |lull2 leads to E*(p) = { i i HZJE; 1,
+ E(u) = ||u1 leads to E*(p { ; i H'ﬂl‘;é 1
E(u) = ||u leads to E*(p) = { ; it ”‘;”S‘: 1

if <1
-E(u)Z{ O IR =T eads 0 £+(p) = ol

00 else

%) else.

if o <1, y
-E(u)Z{ O > =T eads 0 £°(p) = i)

if <1
-E(u)‘{ O Tl =T eads to £4(p) = ol

00 else.
Suspicion: E** = E?
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Fenchel-Young Inequality

Fenchel-Young Inequality?

Let E be proper, convex and closed, u € dom(E) c R”, and
p € R”, then
E(u) + E*(p) = (U, p).

Equality holds if and only if p € OE(u).

Proof: Board.

2Borwein, Zhu Techniques of variational analysis, Proposition 4.4.1
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Biconjugate
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Theorem: Biconjugate®

Duality

Let E: R" — R U {co} be proper, convex and closed, then
E** =E.

Motivation

Fenchel Duality

First incomplete proof on the board.

For the full proof, quickly recall the geometric interpretation of
the subgradient of chapter 1, and geometrically convince
yourself that the separating hyperplane theorem makes sense.

3Rockafellar, Convex Analysis, Theorem 12.2 updated 10.05.2016



Duality

Geometric interpretation of subgradients

Michael Moeller
Thomas Méllenhoff
Emanuel Laude

Any subgradient p € 0E(u) represents a non-vertical
supporting hyperplane to epi(E) at (u, E(u)).

Definition Duality

Motivation

Geometric interpretation of subgradients:

A supporting hyperplane to a set S ¢ R” is a hyperplane
{x e R" | (a, x) = b}, such that

+ Sc{xeR"|(a,x) <b}orSc {xecR"|(ax)> b}
+ Jy € 9S (the boundary of S) such that (a, y) = b.

Fenchel Duality

Let p € OE(u). Then
E(v)—E(u)—{(p,v—u)>0 Vv eR”
= a—-Eu)-{(pv—u)>0 Y(v, ) € epi(E)

- {7

EE’U) > >0  Y(v,a) < epi(E).
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Back to the biconjugate

Separating hyperplane theorem

Let S € R" be a nonempty closed convex set, and R” > u ¢ S.
Then there exists a nonzero vector z and a number ¢ < 0 such
that

(z,v—u)<c Vv e S.

Theorem: Biconjugate*
Let E: R" — R U {oo} be proper, convex and closed, then
E** =E.

Proof: Board.

Now we understand what we did for TV minimization: Replace
| Dul|2,1 by

(-

4Rockafellar, Convex Analysis, Theorem 12.2

|2,1)"*(Du) = Sl;P (P, Du) — )., .. <1(P)-
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Convex conjugation
Theorem: Subgradient of convex conjugate®

Let E be proper, convex and closed, then the following two
conditions are equivalent:

* p € O0E(u)
* uecdE*(p)

Proof: Board

Board: A quick way for repeating our TV-reformulation.

Conjugation of strongly convex functions

If E:R" — R is proper, closed and m-strongly convex, then
Exe FIU(R").

Proof: Board

5Rockafellar, Convex Analysis, Theorem 23.5
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Conjugation with linear operators
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Definition: Image function
Let A:c R™ be a linear operator and E : R™ — R an

extended real valued function. We call AE : R” — R defined via

Duality

Motivation

) infy a—y E(v) if u € range(A),
AE(U) T { 00 else. Fenchel Duality

the image of E under A.

Conjugate of image functions

Let E be a proper extended real valued function and let A be a
linear operator. Then it holds that

(AE)* = (E* o A%).

updated 10.05.2016



Duality

Conjugation with linear operators
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Conjugation with linear operators

Let E be a proper closed convex function and let A be a linear -
operator such that

Duality

im(A) N ri(dom(E)) + 0.

Fenchel Duality

Then
(E* o A")" = AE,

Proof: Not carried out, but key is that the above assumption
ensures that AE is proper and closed such that (AE)** = AE.

For details on the question of why im(A) Nri(dom(E)) # 0 is
sufficient for the closedness of AE you can consider
"Fundamentals of Convex Analysis” by Jean-Baptiste
Hiriart-Urruty, Claude Lemarechal, pp. 224—225, Lemma 2.2.2
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Fenchel’s Duality Theorem®

Let H:R" - RU{oc0}and R: R™ — R U {cco} be proper, -
closed, convex functions and let there exists a u € ri(dom(H))

such that Ku € ri(dom(R)). Then Duality
infy, H(u) + R(Ku) ”Primal”
= infysup, H(u)+ (q,Ku) — R*(q)
"Saddle point”
= sup,inf,  H(u) +(q, Ku) — R*(q)
= sup, —H*(—=K*q) — R*(q) "Dual’

Proof: Board.

6C.f. Rockafellar, Convex Analysis, Section 31 updated 10,05 2016
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Applications and motivation of the next lecture
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Assume we want to minimize Emanuel Laude

1 >
min —||u — 1 ||D <

i.e. find the best approximation to the input data f under the
Duality
constraint that Du must be bounded componentwise. oo

Convex Conjugation

Dual problem:
”
max 50" p|* ~ {p. ) - cllpll
p

or
. N B
p=argmin 5| D°p + f| + ol
P

We have seen how to solve such a problem by using
p = py — p= with py, p2 > 0. Next two lectures: Solution
without doubling the number of free variables!
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