Chapter 5 Operator Splitting Methods

Convex Optimization for Computer Vision SS 2016

Michael Moeller Thomas Möllenhoff Emanuel Laude

Relations

Monotone Operators

Fixed Point Iterations

Proximal Point Algorithm

PDHG Revisited

Douglas-Rachford Splitting

Michael Moeller Thomas Möllenhoff Emanuel Laude Computer Vision Group Department of Computer Science TU München

Recap and Motivation

 Last 3 lectures: PDHG method for minimizing structured convex problems

$$\min_{u\in\mathbb{R}^n} G(u) + F(Ku)$$

- Unintuitive overrelaxation, rather involved convergence analysis
- Next lectures: simple and unified convergence analysis of many different algorithms within a single approach
- · Key ideas: monotone operators, fixed point iterations
- Give a new understanding of convex optimization
 algorithms

Operator Splitting Methods

Michael Moeller Thomas Möllenhoff Emanuel Laude

Relations Monotone Operators

Fixed Point Iterations

Proximal Point Algorithm

PDHG Revisited

Operator Splitting Methods

Michael Moeller Thomas Möllenhoff Emanuel Laude

Relatio

Monotone Operators

Fixed Point Iterations

Proximal Point Algorithm

PDHG Revisited

Douglas-Rachford Splitting

Relations

Notation

- A relation R on \mathbb{R}^n is a subset of $\mathbb{R}^n \times \mathbb{R}^n$
- We will refer to it as a set-valued **operator** and overload the usual matrix notation

$$R(x) = Rx := \{y \in \mathbb{R}^n \mid (x, y) \in R\}.$$

• If *Rx* is a singleton or empty for all *x*, then *R* is a function (or single-valued operator) with domain

 $\operatorname{dom}(R) := \{x \in \mathbb{R}^n \mid Rx \neq \emptyset\}$

- Abuse of notation: identify singleton $\{x\}$ with x, i.e., write Rx = y instead of $Rx \ni y$ if R is function
- · Concept: identifying functions with their graph

Operator Splitting Methods

Michael Moeller Thomas Möllenhoff Emanuel Laude

Relations

Monotone Operators

Fixed Point Iterations

Proximal Point Algorithm

PDHG Revisited

Some Examples

- Empty relation: Ø
- Identity: $I := \{(u, u) \mid u \in \mathbb{R}^n\}$
- Zero: $0 := \{(u, 0) \mid u \in \mathbb{R}^n\}$
- Gradient relation:

$$abla E := \{(u,
abla E(u)) \mid u \in \mathbb{R}^n\}$$

· Subdifferential relation:

 $\partial E := \{(u,g) \mid u \in \mathsf{dom}(E), E(v) \ge E(u) + \langle g, v - u \rangle, \forall v \in \mathbb{R}^n \}$

Another possible view: think of relations as a set valued functions, e.g., ∂E : ℝⁿ → P(ℝⁿ)

Operator Splitting Methods

Michael Moeller Thomas Möllenhoff Emanuel Laude

Monotone Operators

Fixed Point Iterations

Proximal Point Algorithm

PDHG Revisited

Our Goal

Solve generalized equation (inclusion) problem

 $0 \in R(u)$

i.e., find $u \in \mathbb{R}^n$ such that $(u, 0) \in R$.

Examples:

- Set $R = \partial E$, then the goal is to find $0 \in \partial E(u)$
- This are just the optimality conditions of our prototypical optimization problem:

$$\arg\min_{u\in\mathbb{R}^n} E(u)$$

Finding saddle-points (ũ, p̃) of

$$PD(u,p) = G(u) - F^*(p) + \langle Ku, p
angle$$

corresponds to the inclusion problem

$$\mathbf{0} \in \begin{bmatrix} \partial \mathbf{G} & \mathbf{K}^{\mathsf{T}} \\ -\mathbf{K} & \partial \mathbf{F}^* \end{bmatrix} \begin{bmatrix} \mathbf{u} \\ \mathbf{p} \end{bmatrix}$$

Operator Splitting Methods

Michael Moeller Thomas Möllenhoff Emanuel Laude

Relatio

Monotone Operators

Fixed Point Iterations

Proximal Point Algorithm

PDHG Revisited

Douglas-Rachford Splitting

updated 15.06.2016

Operations on Relations

• Inverse
$$R^{-1} = \{(y, x) \mid (x, y) \in R\}$$

- · Exists for any relation
- Reduces to inverse function when R is injective function

• Addition
$$R + S = \{(x, y + z) \mid (x, y) \in R, (x, z) \in S\}$$

• Scaling
$$\lambda R = \{(x, \lambda y) \mid (x, y) \in R\}$$

• Resolvent
$$J_{\lambda R} := (I + \lambda R)^{-1}$$

Examples:

•
$$I + \lambda R = \{(x, x + \lambda y) \mid (x, y) \in R\}$$

- $J_{R} = \{(x + \lambda y, x) \mid (x, y) \in R\}$
- *E* closed, proper, convex: $(\partial E)^{-1} = \partial E^*$

 \rightarrow Draw a picture for E(u) = |u|

Operator Splitting Methods

Michael Moeller Thomas Möllenhoff Emanuel Laude

Monotone Operators

Fixed Point Iterations

Proximal Point Algorithm

PDHG Revisited

Operator Splitting Methods

Michael Moeller Thomas Möllenhoff Emanuel Laude

Relations

Monotone Operators

Fixed Point Iterations

Proximal Point Algorithm

PDHG Revisited

Douglas-Rachford Splitting

Monotone Operators

Monotone Operators

Definition

The set-valued operator $T \subset \mathbb{R}^n \times \mathbb{R}^n$ is called **monotone** if

 $\langle u - v, Tu - Tv \rangle \ge 0, \ \forall u, v \in \mathbb{R}^n$. Notation¹

An operator T is called **maximally monotone** if it is not contained in any other monotone operator.

• Maximal monotonicity is an important technical detail, but we will be sloppy about it for the rest of the course

Examples of monotone operators:

- Monotonically non-decreasing functions $\mathcal{T}:\mathbb{R}\to\mathbb{R}$
- Any positive semi-definite matrix A: $\langle Ax Ay, x y \rangle \ge 0$
- Subdifferential of a convex function ∂f
- Proximity operators of convex functions $\operatorname{prox}_{\tau f} : \mathbb{R}^n \to \mathbb{R}^n$

¹This is again abuse of notation for $\langle u - v, p - q \rangle \ge 0, \ \forall p \in Tu, \forall q \in Tv$

Operator Splitting Methods

Michael Moeller Thomas Möllenhoff Emanuel Laude

Relations

Monotone Operators

Fixed Point Iterations

Proximal Point Algorithm

PDHG Revisited

Monotone Operators

Calculus rules (exercise):

- *T* monotone, $\lambda \ge \mathbf{0} \Rightarrow \lambda T$ monotone
- *T* monotone \Rightarrow *T*⁻¹ monotone
- *R*, *S* monotone, $\lambda \ge \mathbf{0} \Rightarrow \mathbf{R} + \lambda \mathbf{S}$ is monotone

Some important definitions/properties:

- Lipschitz operators (and in particular nonexpansive operators) are single-valued (functions)
- x is called *fixed point* of operator T if x = Tx
- If *F* is nonexpansive (Lipschitz constant $L \le 1$) and dom $T = \mathbb{R}^n$ then the set of fixed points $(I - F)^{-1}(0)$ is closed and convex **(exercise)**

Operator Splitting Methods

Michael Moeller Thomas Möllenhoff Emanuel Laude

Relations

Monotone Operators

Fixed Point Iterations

Proximal Point Algorithm

PDHG Revisited

Resolvent and Cayley Operators

- Let $T \subset \mathbb{R}^n \times \mathbb{R}^n$ be set-valued operator
- The *resolvent operator* of *T* is given as $J_{\lambda T} := (I + \lambda T)^{-1}$
- Special case: $T = \partial f$, $J_{\lambda \partial f}$ is proximal operator of f
- From previous slide: resolvent is monotone if *T* is monotone
- The Cayley operator (or reflection operator) of T is defined as C_{\lambda T} := 2J_{\lambda T} - I

Facts:

- $0 \in Tx$ if and only if $x = J_{\lambda T}x = C_{\lambda T}x$
- If T is monotone, then $J_{\lambda T}$ and $C_{\lambda T}$ are nonexpansive

Operator Splitting Methods

Michael Moeller Thomas Möllenhoff Emanuel Laude

Relations

Monotone Operators

Fixed Point Iterations

Proximal Point Algorithm

PDHG Revisited

Operator Splitting Methods

Michael Moeller Thomas Möllenhoff Emanuel Laude

Relations

Monotone Operators

Fixed Point Iterations

Proximal Point Algorithm

PDHG Revisited

Douglas-Rachford Splitting

Fixed Point Iterations

The Main Algorithm

- Recall that $u \in \mathbb{R}^n$ is fixed point of $F : \mathbb{R}^n \to \mathbb{R}^n$, if u = Fu
- The main algorithm of this chapter is the *fixed point* or *Picard iteration* for some given $u^0 \in \mathbb{R}^n$:

$$u^{k+1} = Fu^k, \qquad k = 0, 1, 2, \dots$$

- We will see that many important convex optimization algorithms can be written in this form
- Allows simple and unified analysis

Michael Moeller Thomas Möllenhoff Emanuel Laude

Relations

Monotone Operators

Fixed Point Iterations

Proximal Point Algorithm

PDHG Revisited

Contraction Mapping Theorem

Suppose that $F : \mathbb{R}^n \to \mathbb{R}^n$ is a contraction with Lipschitz constant L < 1. Then the fixed point iteration

$$u^{k+1} = Fu^k,$$

also called contraction mapping algorithm, converges to the unique fixed point of *F*.

 \rightarrow Proof: see literature²

· Example: the gradient method can be written as

$$u^{k+1} = (I - \tau \nabla E)u^k$$

- Suppose *E* is *m*-strongly convex and *L*-smooth, then $I \tau \nabla E$ is Lipschitz with $L_{GM} = \max\{|1 \tau m|, |1 \tau L|\}$
- $I \tau \nabla E$ is contractive for $\tau \in (0, 2/L)$

²This theorem is also known as the Banach fixed point theorem.

Operator Splitting Methods

Michael Moeller Thomas Möllenhoff Emanuel Laude

Relations

Monotone Operators

Fixed Point Iterations

Proximal Point Algorithm

PDHG Revisited

Iteration of Averaged Nonexpansive Mappings

- Recall that a mapping $F : \mathbb{R}^n \to \mathbb{R}^n$ is called *nonexpansive* if it is Lipschitz with constant $L \leq 1$.
- Fixed point iteration of nonexpansive mapping doesn't necessarily converge (example: rotation, reflection)
- The mapping $F : \mathbb{R}^n \to \mathbb{R}^n$ is called *averaged* if $F = (1 \theta)I + \theta T$, for some nonexpansive operator T and $\theta \in (0, 1)$

Theorem: Krasnosel'skii-Mann

Let $F : \mathbb{R}^n \to \mathbb{R}^n$ be averaged, and denote the (non-empty) set of fixed points of F as U. Then the sequence (u^k) produced by the iteration

$$u^{k+1} = Fu^k$$

converges to a fixed point $u^* \in U$, i.e., $u^k \to u^*$.

\rightarrow Proof: board!

Operator Splitting Methods

Michael Moeller Thomas Möllenhoff Emanuel Laude

Relations

Monotone Operators

Fixed Point Iterations

Proximal Point Algorithm

PDHG Revisited

Example: gradient method

- Assume E is L-smooth but not strongly convex
- Possible to show that the operator (*I* − τ∇*E*) is Lipschitz continuous with parameter *L_{GM}* = max{1, |1 − τ*L*|}
- For $0 < \tau \le 2/L$, this operator is nonexpansive
- It is also averaged for $0 < \tau < 2/L$ since

$$(I - \tau \nabla E) = (1 - \theta)I + \theta(I - (2/L)\nabla E),$$

with $\theta = \tau L/2 < 1$.

 Hence, we get convergence of the gradient descent method from the previous theorem

Operator Splitting Methods

Michael Moeller Thomas Möllenhoff Emanuel Laude

Relations

Monotone Operators

Fixed Point Iterations

Proximal Point Algorithm

PDHG Revisited

Operator Splitting Methods

Michael Moeller Thomas Möllenhoff Emanuel Laude

Relations

Monotone Operators

Fixed Point Iterations

Proximal Point Algorithm

PDHG Revisited

Douglas-Rachford Splitting

updated 15.06.2016

Proximal Point Algorithm

The Proximal Point Algorithm

• Recall our original goal of finding $u \in \mathbb{R}^n$ with

 $0\in Tu,$

for $T \subset \mathbb{R}^n \times \mathbb{R}^n$ monotone.

 We have seen that fixed points of resolvent operator J_{λT} are the zeros of T

Definition: Proximal Point Algorithm (PPA)³

Given some maximally monotone operator $T \subset \mathbb{R}^n \times \mathbb{R}^n$, and some sequence $(\lambda_k) > 0$. Then the iteration

$$u^{k+1} = (I + \lambda_k T)^{-1} u^k,$$

is called the proximal point algorithm.

Operator Splitting Methods

Michael Moeller Thomas Möllenhoff Emanuel Laude

Fixed Point Iterations

Proximal Point Algorithm

PDHG Revisited

³R. T. Rockafellar, Monotone Operators and the Proximal Point Algorithm, SIAM J. Control and Optimization, 1976

Intuition of the Proximal Point Algorithm ⁴

Operator Splitting Methods

⁴Eckstein, Splitting methods for monotone operators with applications to parallel optimzation, 1989, pp. 42

Convergence of Proximal Point Algorithm

- The resolvent $J_{\lambda T} = (I + \lambda T)^{-1}$ is an averaged operator
- · To see this, consider the reflection or Cayley operator

$$C_{\lambda T} := 2J_{\lambda T} - I \Leftrightarrow J_{\lambda T} = \frac{1}{2}I + \frac{1}{2}C_{\lambda T}$$

- Hence $J_{\lambda T}$ is averaged with $\theta = \frac{1}{2}$, as we have seen in the last lecture that $C_{\lambda T}$ is nonexpansive
- Proximal Point algorithm converges as it is fixed point iteration of averaged operator

Operator Splitting Methods

Operator Splitting Methods

Michael Moeller Thomas Möllenhoff Emanuel Laude

Relations

Monotone Operators

Fixed Point Iterations

Proximal Point Algorithm

PDHG Revisited

Douglas-Rachford Splitting

PDHG Revisited

PDHG as Proximal Point Method

Remember that for convex-concave saddle point problems

$$PD(u,p) = G(u) - F^*(p) + \langle Ku, p \rangle$$

we have the following:

$$(\tilde{u}, \tilde{p}) = \arg \min_{u, p} PD(u, p) \Leftrightarrow \begin{bmatrix} 0 \\ 0 \end{bmatrix} \in \underbrace{\begin{bmatrix} \partial G(\tilde{u}) + K^T \tilde{p} \\ -K \tilde{u} + \partial F^*(\tilde{p}) \end{bmatrix}}_{=:T(\tilde{u}, \tilde{p})}$$

- For convex F* and G, T is monotone
- Idea: use the proximal point to find zero of T
- Stack primal and dual variables into vector $z = (u, p)^T$:

$$z^{k+1} = (I + \lambda T)^{-1} z^k \iff z^k - z^{k+1} \in \lambda T z^{k+1}$$

Plugging things in yields

$$u^{k} - u^{k+1} \in \lambda \partial G(u^{k+1}) + \lambda K^{T} p^{k+1}$$
$$p^{k} - p^{k+1} \in \lambda \partial F^{*}(p^{k+1}) - \lambda K u^{k+1}$$

Operator Splitting Methods

Michael Moeller Thomas Möllenhoff Emanuel Laude

Monotone Operators

Fixed Point Iterations

Proximal Point Algorithm

Relations

PDHG Revisited

PDHG as Proximal Point Method

· Reformulating the following

$$\mathbf{0} \in \lambda^{-1} \begin{bmatrix} u^{k+1} - u^k \\ p^{k+1} - p^k \end{bmatrix} + \underbrace{\begin{bmatrix} \partial G(u^{k+1}) + K^T p^{k+1} \\ \partial F^*(p^{k+1}) - K u^{k+1} \end{bmatrix}}_{=:T(\tilde{u}, \tilde{p})}$$

leads to:

$$u^{k+1} = (I + \lambda \partial G)^{-1} (u^k - \lambda K^T p^{k+1})$$

= prox_{\lambda G} (u^k - \lambda K^T p^{k+1})
$$p^{k+1} = (I + \lambda \partial F^*)^{-1} (p^k + \lambda K u^{k+1})$$

= prox_{\lambda F^*} (p^k + \lambda K u^{k+1})

Operator Splitting Methods

- Almost looks like the PDHG method, step size λ
- **Problem:** cannot implement this algorithm, since updates in u^{k+1} and p^{k+1} depend on each other

PDHG as Proximal Point Method

Consider the following:

$$0 \in M \begin{bmatrix} u^{k+1} - u^k \\ p^{k+1} - p^k \end{bmatrix} + \underbrace{\begin{bmatrix} \partial G(u^{k+1}) + K^T p^{k+1} \\ \partial F^*(p^{k+1}) - K u^{k+1} \end{bmatrix}}_{=:T(\tilde{u}, \tilde{p})}$$

- Step size $M \in \mathbb{R}^{(n+m) \times (n+m)}$ is now a matrix
- Take the following choice

$$M = \begin{bmatrix} \frac{1}{\tau}I & -K^{\mathsf{T}} \\ -\theta K & \frac{1}{\sigma}I \end{bmatrix}$$

· Allows to recover PDHG as proximal point algorithm (PPA)

$$u^{k+1} = \operatorname{prox}_{\tau G}(u^k - \tau K^T p^k),$$

$$p^{k+1} = \operatorname{prox}_{\sigma F^*}(p^k + \sigma K(u^{k+1} + \theta(u^{k+1} - u^k)))$$

This is called generalized or customized PPA:

$$0 \in M(z^{k+1}-z^k) + Tz^{k+1} \iff z^{k+1} = (M+T)^{-1}Mz^k$$

Operator Splitting Methods

Convergence of Customized Proximal Point Method

- For symmetric, positive definite *M*, we can write $M = L^T L$, *L* invertible (Cholesky decomposition)
- Apply classical PPA to operator $T' = L^{-T} \circ T \circ L^{-1}$

$$y^{k+1} = (I + L^{-T} \circ T \circ L^{-1})^{-1} y^k$$

- *T* (maximally) monotone $\Rightarrow L^{-T} \circ T \circ L^{-1}$ (maximally) monotone ⁵
- Define Lx = y, then $0 \in (L^{-T} \circ T \circ L^{-1})y \Leftrightarrow 0 \in Tx$
- Writing out the algorithm in terms of x yields

$$0 \in M(x^{k+1} - x^k) + Tx^{k+1}$$

 Hence customized PPA inherits convergence from classical proximal point

Operator Splitting Methods

Michael Moeller Thomas Möllenhoff Emanuel Laude

Monotone Operators

Fixed Point Iterations

Proximal Point Algorithm

PDHG Revisited

⁵Bauschke, Combettes, Convex Analysis and Monotone Operator Theory in Hilbert Spaces, Theorem 24.5

Convergence of PDHG

· When is the step size matrix symmetric positive definite?

$$M = \begin{bmatrix} \frac{1}{\tau}I & -K^{\mathsf{T}} \\ -\theta K & \frac{1}{\sigma}I \end{bmatrix}$$

• Step size requirement for PDHG is $\tau \sigma \|K\|^2 < 1$, $\tau \sigma > 0$

Lemma (Pock-Chambolle-2011⁶)

Let $\theta = 1$, T and Σ symmetric positive definite maps satisfying

$$\left\|\Sigma^{\frac{1}{2}}KT^{\frac{1}{2}}\right\|^{2} < 1,$$

then the block matrix

$$M = egin{bmatrix} \mathrm{T}^{-1} & -K^{\mathsf{T}} \ - heta K & \Sigma^{-1} \end{bmatrix}$$

is symmetric and positive definite.

⁶T. Pock, A. Chambolle, Diagonal Preconditioning for first-order primal-dual algorithms in convex optimization, ICCV 2011

Operator Splitting Methods

Michael Moeller Thomas Möllenhoff Emanuel Laude

Relations Monotone Operators Fixed Point Iterations Proximal Point Algorithm

PDHG Revisited

Douglas-Rachford Splitting

updated 15.06.2016

Summary

• Customized proximal point algorithms yield a whole family of methods, many choices of *M* are concievable

$$0 \in M(z^{k+1}-z^k) + Tz^{k+1}$$

- PDHG corresponds to one particular choice of M
- Overrelaxation with $\theta = 1$ required to make *M* symmetric
- Convergence follows from convergence of classical proximal point algorithm
- Classical proximal point converges as it is fixed point iteration of averaged operator
- Next lecture: Douglas-Rachford splitting and ADMM

Operator Splitting Methods

Michael Moeller Thomas Möllenhoff Emanuel Laude

Relations Monotone Operators Fixed Point Iterations Proximal Point

PDHG Revisited

Algorithm

Organizational Remarks

Exams:

- Important: Registration deadline 30.06. in TUMonline!
- Exam (oral): 18.07. and 19.07.
- Repeat exam (oral): 05.10. and 06.10.
- Sign up for timeslots in exercise class on Friday 17.06.

Remaining lectures:

- Next Monday 20.06. hints for getting started with the optimization challenge!
- · 22.06. Some practical considerations of PDHG/ADMM
- 27.06. 01.07. no lecture / exercises, repeat and review what you have learned!
- 04.07. 11.07. Miscellaneous topics on modifications and accelerations, open research questions/challenges
- · Last lecture on 13.07. repeat of content, questions

Operator Splitting Methods

Michael Moeller Thomas Möllenhoff Emanuel Laude

Relations

Monotone Operators

Fixed Point Iterations

Proximal Point Algorithm

PDHG Revisited

Operator Splitting Methods

Michael Moeller Thomas Möllenhoff Emanuel Laude

Relations

Monotone Operators

Fixed Point Iterations

Proximal Point Algorithm

PDHG Revisited

Douglas-Rachford Splitting

updated 15.06.2016

Motivation

 Last lecture: proximal point algorithm for finding the zero of a monotone operator T

 $0 \in Tu \Leftrightarrow u = (I + \lambda T)^{-1}u$

- Often the resolvent $J_{\lambda T} := (I + \lambda T)^{-1}$ is hard to compute
- · One remedy: matrix-valued step-size / customized PPA

$$u^{k+1} = (M+T)^{-1}Mu^k$$

- Another possibility are splitting methods
- They exploit further structure of the problem:

$$T = A + B$$

 Resolvents J_{λA} = (I + λA)⁻¹ and J_{λB} = (I + λB)⁻¹ can be more easily evaluated than J_{λT}

Operator Splitting Methods

Michael Moeller Thomas Möllenhoff Emanuel Laude

Monotone Operators

Fixed Point Iterations

Proximal Point Algorithm

PDHG Revisited

Splitting methods

• T = A + B, A and B maximal monotone

- Cayley operators $C_A = 2J_A I$ and $C_B = 2J_A I$ are nonexpansive
- Composition C_AC_B also nonexpansive
- Main result: (→ board!)

 $0 \in Au + Bu \Leftrightarrow C_A C_B v = v, \ u = J_B v$

 Hence, solutions can be found from fixed point of the operator C_AC_B

$$\rightarrow$$
 Draw a picture for $T = \partial \iota_{C_1} + \partial \iota_{C_2}!$

Operator Splitting Methods

Michael Moeller Thomas Möllenhoff Emanuel Laude

Fixed Point Iterations

Proximal Point Algorithm

PDHG Revisited

Splitting Methods

· Peaceman-Rachford splitting is undamped iteration

 $v^{k+1} = C_A C_B v^k$

- Doesn't converge in the general case, needs either C_A or C_B to be a contraction
- Douglas-Rachford splitting ⁷ is the damped iteration

$$\boldsymbol{v}^{k+1} = \left(\frac{1}{2}\boldsymbol{I} + \frac{1}{2}\boldsymbol{C}_{\boldsymbol{A}}\boldsymbol{C}_{\boldsymbol{B}}\right)\boldsymbol{v}^{k},$$

- Recover solution by $u^* = J_B v^*$
- Always converges if there exists a solution 0 ∈ Au* + Bu*, since it's fixed point iteration of averaged operator

Operator Splitting Methods

Michael Moeller Thomas Möllenhoff Emanuel Laude

Relations Monotone Operators

Fixed Point Iterations

Proximal Point Algorithm

PDHG Revisited

⁷J. Douglas, H. H. Rachford, On the numerical solution of heat conduction problems in two and three space variables. Transactions of the AMS, 1956.

Douglas-Rachford Splitting (DRS)

• The Douglas-Rachford iteration $v^{k+1} = (\frac{1}{2}I + \frac{1}{2}C_A C_B) v^k$ can be written as

$$\begin{split} u_b^{k+1} &= J_B(v^k), \\ \tilde{v}^{k+1} &= 2u_b^{k+1} - v^k, \\ u_a^{k+1} &= J_A(\tilde{v}^{k+1}), \\ v^{k+1} &= v^k + u_a^{k+1} - u_b^{k+1}. \end{split}$$

- u_a^k and u_b^k can be thought of estimates to a solution
- v^k running sum of residuals, drives u_a^k and u_b^k together

Operator Splitting Methods

Michael Moeller Thomas Möllenhoff Emanuel Laude

Relations Monotone Operators Fixed Point Iterations Proximal Point Algorithm

PDHG Revisited

Application to Convex Optimization

· Let's apply DRS to minimize

 $\min_{u\in\mathbb{R}^n} G(u) + F(u)$

- $G: \mathbb{R}^n \to \mathbb{R} \cup \{\infty\}, F: \mathbb{R}^n \to \mathbb{R} \cup \{\infty\}$ closed, proper, cvx.
- Optimality conditions (assuming $ri(dom G) \cap ri(dom F) \neq \emptyset$):

$$\mathbf{0} \in \tau \partial G(u) + \tau \partial F(u)$$

- Find zero of T = A + B, $A = \tau \partial G$, $B = \tau \partial F$
- The algorithm becomes (after slight simplifications):

$$u^{k+1} = \operatorname{prox}_{\tau G}(v^{k}),$$

$$v^{k+1} = \operatorname{prox}_{\tau F}(2u^{k+1} - v^{k}) + v^{k} - u^{k+1}.$$

Operator Splitting Methods

Michael Moeller Thomas Möllenhoff Emanuel Laude

Relations

Monotone Operators

Fixed Point Iterations

Proximal Point Algorithm

PDHG Revisited

Reformulation of DRS

• We can rewrite the step in v^{k+1} using Moreau's Identity

$$u^{k+1} = \operatorname{prox}_{\tau G}(v^{k}),$$

$$v^{k+1} = \operatorname{prox}_{\tau F}(2u^{k+1} - v^{k}) + v^{k} - u^{k+1}$$

$$= u^{k+1} + \tau \operatorname{prox}_{(1/\tau)F^{*}}((2u^{k+1} - v^{k})/\tau)$$

• Introduce variable $p^k = \frac{u^k - v^k}{\tau} \Leftrightarrow v^k = u^k - \tau p^k, \sigma = 1/\tau$

$$u^{k+1} = \operatorname{prox}_{\tau G}(u^k - \tau p^k),$$

$$p^{k+1} = \operatorname{prox}_{\sigma F^*}(p^k + \sigma(2u^{k+1} - u^k))$$

- · Looks familiar? :-)
- Applying DRS on the primal problem $\min_u G(u) + F(u)$ is equivalent to PDHG!

Operator Splitting Methods

Optimization Problems with Compositions

· Ideally we'd like to solve problems of the form

$$\min_{u} G(u) + F(w), \quad \text{s.t.} \quad w = Ku$$

· In many applications we would actually like to minimize

$$\min_{u} G(u) + \sum_{i=1}^{N} F_i(K_i u)$$

• Rewrite using trick:

$$w = \begin{bmatrix} w_1 \\ \vdots \\ w_N \end{bmatrix}, K = \begin{bmatrix} K_1 \\ \cdots \\ K_N \end{bmatrix}, \quad \rightarrow F(w) = \sum_{i=1}^N F_i(w_i)$$

- Virtually any convex optimization problem fits into this form
- Even problems looking very complicated at first glance can be split up into many simple substeps

Operator Splitting Methods

Option 1: Graph Projection Splitting

• We want to minimize for $K : \mathbb{R}^n \to \mathbb{R}^m$

$$\min_{u\in\mathbb{R}^n,w\in\mathbb{R}^m} G(u) + F(w) \quad \text{s.t.} \quad Ku = w$$

• Rewrite problem using $(u, w) \in \mathbb{R}^{n+m}$ as

$$\min_{u,w} \tilde{G}(u,w) + \tilde{F}(u,w)$$

• Set
$$\tilde{G}(u, w) = G(u) + F(w)$$

• Set
$$\tilde{F}(u, w) = \begin{cases} 0, & \text{if } Ku = w \\ \infty, & \text{else.} \end{cases}$$

- Proximal operator for \tilde{G} is simple if proximal operators for F and G are simple
- Proximal operator for \tilde{F} is projection onto the graph of Ku = w (solving a least squares problem)

Operator Splitting Methods

Option 1: Graph Projection Splitting

Iterations can be written as ⁸

$$(u^{k+1/2}, w^{k+1/2}) = \left(\operatorname{prox}_{G}(u^{k} - \tilde{u}^{k}), \operatorname{prox}_{F}(w^{k} - \tilde{w}^{k}) \right),$$

$$(u^{k+1}, w^{k+1}) = \Pi(u^{k+1/2} + \tilde{u}^{k}, w^{k+1/2} + \tilde{w}^{k}),$$

$$(\tilde{u}^{k+1}, \tilde{w}^{k+1}) = (\tilde{u}^{k} + u^{k+1/2} - u^{k+1}, \tilde{w}^{k} + w^{k+1/2} - w^{k+1}).$$

· Projection is given as:

$$\Pi(\boldsymbol{c},\boldsymbol{d}) = \boldsymbol{A}^{-1} \begin{bmatrix} \boldsymbol{c} + \boldsymbol{A}^{\mathsf{T}} \boldsymbol{d} \\ \boldsymbol{0} \end{bmatrix}, \boldsymbol{A} = \begin{bmatrix} \boldsymbol{I} & \boldsymbol{K}^{\mathsf{T}} \\ \boldsymbol{K} & -\boldsymbol{I} \end{bmatrix}$$

- Can use (preconditioned) conjugate gradient to approximately compute projection
- Important: warm-start linear system solver with solution from previous iteration
- Other possibility: factorization caching

Operator Splitting Methods

Michael Moeller Thomas Möllenhoff Emanuel Laude

PDHG Revisited

⁸N. Parikh, S. Boyd, Block Splitting for Distributed Optimization, 2014

Option 2: DRS for Problems with Compositions

• Consider the dual problem to $\min_u G(u) + F(Ku)$

$$\min_{p} G^{*}(-K^{*}p) + F^{*}(p) = (G^{*} \circ -K^{*})(p) + F^{*}(p)$$

Applying DRS yields the following:

$$u^{k+1} = \text{prox}_{\sigma(G^* \circ -K^*)}(v^k),$$

$$v^{k+1} = \text{prox}_{\sigma F^*}(2u^{k+1} - v^k) + v^k - u^{k+1}$$

• Reorder slightly with new variable w^{k+1}

$$u^{k+1} = \operatorname{prox}_{\sigma(G^* \circ -K^*)}(v^k),$$

$$p^{k+1} = \operatorname{prox}_{\sigma F^*}(2u^{k+1} - v^k),$$

$$v^{k+1} = p^{k+1} + v^k - u^{k+1}$$

Operator Splitting Methods

Option 2: DRS for Problems with Compositions

• The prox involving the composition is given by:

$$\operatorname{prox}_{\sigma(G^* \circ -K^*)}(v) = v + \sigma K \operatorname{argmin}_{u} G(u) + \frac{\sigma}{2} \left\| Ku + \frac{v}{\sigma} \right\|^2$$

- Often expensive or difficult to evaluate due to the Ku-term
- Iteration can be written as

$$u^{k+1} = \underset{u}{\operatorname{argmin}} G(u) + \frac{\sigma}{2} \left\| \mathcal{K}u + \frac{v^{k}}{\sigma} \right\|^{2}$$
$$\tilde{u}^{k+1} = v^{k} + \sigma \mathcal{K}u^{k+1},$$
$$p^{k+1} = \operatorname{prox}_{\sigma F^{*}}(2\tilde{u}^{k+1} - v^{k}),$$
$$v^{k+1} = p^{k+1} + v^{k} - \tilde{u}^{k+1}$$

· Alternatively this can be simplified to

$$u^{k+1} = \underset{u}{\operatorname{argmin}} G(u) + \frac{\sigma}{2} \left\| Ku + \frac{v^{k}}{\sigma} \right\|^{2},$$
$$p^{k+1} = \operatorname{prox}_{\sigma F^{*}}(v^{k} + 2\sigma Ku^{k+1}),$$
$$v^{k+1} = p^{k+1} - \sigma Ku^{k+1}$$

Operator Splitting Methods

Michael Moeller Thomas Möllenhoff Emanuel Laude

~

,

Option 2: DRS for Problems with Compositions

· Even more simple:

$$u^{k+1} = \underset{u}{\operatorname{argmin}} G(u) + \frac{\sigma}{2} \left\| Ku + \frac{p^{k} - \sigma Ku^{k}}{\sigma} \right\|^{2},$$
$$p^{k+1} = \operatorname{prox}_{\sigma F^{*}}(p^{k} + \sigma K(2u^{k+1} - u^{k})),$$

· Optimality conditions for the iterates:

$$0 \in \partial G(u^{k+1}) + \sigma K^{T}(Ku^{k+1} + \frac{1}{\sigma}(p^{k} - \sigma Ku^{k}))$$
$$0 \in \partial F^{*}(p^{k+1}) + \frac{1}{\sigma}(p^{k+1} - p^{k} - \sigma K2u^{k+1} + \sigma Ku^{k})$$

• Adding and substracting $K^T p^{k+1}$ to first line yields

$$0 \in \partial G(u^{k+1}) + K^{T} p^{k+1} + \sigma K^{T} K(u^{k+1} - u^{k}) - K^{T} (p^{k+1} - p^{k})$$

$$0 \in \partial F^{*}(p^{k+1}) - K u^{k+1} - K(u^{k+1} - u^{k}) + \frac{1}{\sigma} (p^{k+1} - p^{k})$$

Operator Splitting Methods

Michael Moeller Thomas Möllenhoff Emanuel Laude

updated 15.06.2016

Relation to PDHG

• Previous iterations can be written as PPA, $z = (u, p)^T$:

$$0 \in \underbrace{\begin{bmatrix} \partial G & K^{T} \\ -K & \partial F^{*} \end{bmatrix} \begin{bmatrix} u^{k+1} \\ p^{k+1} \end{bmatrix}}_{Tz^{k+1}} + \underbrace{\begin{bmatrix} \frac{1}{\tau}I & -K^{T} \\ -K & \frac{1}{\sigma}I \end{bmatrix}}_{M} \underbrace{\begin{bmatrix} u^{k+1} - u^{k} \\ p^{k+1} - p^{k} \end{bmatrix}}_{z^{k+1} - z^{k}}$$

- Matrix *M* only positive semidefinite, our convergence result for Proximal Point algorithm does not apply directly
- PDHG with $\theta = 1$ can be seen as inexact/approximative DRS,

$$\sigma K^T K \approx \frac{1}{\tau} I$$

- Often makes iterations much cheaper
- For semi-orthogonal (K^TK = νI) this approximation is exact

Operator Splitting Methods

Michael Moeller Thomas Möllenhoff Emanuel Laude

Recall this formulation

$$u^{k+1} = \underset{u}{\operatorname{argmin}} G(u) + \frac{\sigma}{2} \left\| Ku + \frac{v^{k}}{\sigma} \right\|^{2},$$

$$p^{k+1} = \operatorname{prox}_{\sigma F^{*}}(v^{k} + 2\sigma Ku^{k+1}),$$

$$v^{k+1} = p^{k+1} - \sigma Ku^{k+1}$$

Apply Moreau's identity to step in p^{k+1}

$$u^{k+1} = \underset{u}{\operatorname{argmin}} G(u) + \frac{\sigma}{2} \left\| \mathcal{K}u + \frac{v^{k}}{\sigma} \right\|^{2},$$
$$p^{k+1} = v^{k} + 2\sigma \mathcal{K}u^{k+1} - \sigma \operatorname{prox}_{\sigma F}(\frac{v^{k}}{\sigma} + 2\mathcal{K}u^{k+1}),$$
$$v^{k+1} = p^{k+1} - \sigma \mathcal{K}u^{k+1}$$

Operator Splitting Methods

• Make new variable for $prox_{\sigma F}$ -step, write prox as argmin:

$$u^{k+1} = \underset{u}{\operatorname{argmin}} G(u) + \frac{\sigma}{2} \left\| Ku + \frac{v^{k}}{\sigma} \right\|^{2},$$

$$w^{k+1} = \underset{w}{\operatorname{argmin}} F(w) + \frac{\sigma}{2} \left\| w - \frac{v^{k}}{\sigma} - 2Ku^{k+1} \right\|^{2},$$

$$p^{k+1} = v^{k} + 2\sigma Ku^{k+1} - \sigma w^{k+1},$$

$$v^{k+1} = p^{k+1} - \sigma Ku^{k+1}$$

• Replacing the variable v^k in the u^{k+1} update yields

$$u^{k+1} = \operatorname*{argmin}_{u} G(u) + \frac{\sigma}{2} \left\| \mathcal{K}u + \frac{\mathcal{P}^{k} - \sigma \mathcal{K}u^{k}}{\sigma} \right\|^{2},$$

Operator Splitting Methods

• Replace variable p^k in all update steps

$$u^{k+1} = \underset{u}{\operatorname{argmin}} G(u) + \frac{\sigma}{2} \left\| Ku + \frac{v^{k-1} + \sigma Ku^k - \sigma w^k}{\sigma} \right\|^2,$$

$$w^{k+1} = \underset{w}{\operatorname{argmin}} F(w) + \frac{\sigma}{2} \left\| w - \frac{v^k}{\sigma} - 2Ku^{k+1} \right\|^2,$$

$$v^{k+1} = v^k + \sigma(Ku^{k+1} - w^{k+1})$$

Rewrite as:

$$u^{k+1} = \underset{u}{\operatorname{argmin}} G(u) + \frac{\sigma}{2} \left\| Ku - w^{k} + \frac{v^{k-1} + \sigma Ku^{k}}{\sigma} \right\|^{2},$$
$$w^{k+1} = \underset{w}{\operatorname{argmin}} F(w) + \frac{\sigma}{2} \left\| w - Ku^{k+1} - \frac{v^{k} + \sigma Ku^{k+1}}{\sigma} \right\|^{2}$$
$$v^{k+1} = v^{k} + \sigma (Ku^{k+1} - w^{k+1})$$

Operator Splitting Methods

Michael Moeller Thomas Möllenhoff Emanuel Laude

Douglas-Rachford Splitting

,

• Using the following fact we can further rewrite the updates:

$$\underset{a}{\operatorname{argmin}} \frac{\sigma}{2} \left\| \boldsymbol{a} - \frac{\boldsymbol{b}}{\sigma} \right\|^{2} = \underset{a}{\operatorname{argmin}} - \langle \boldsymbol{a}, \boldsymbol{b} \rangle + \frac{\sigma}{2} \left\| \boldsymbol{a} \right\|^{2}$$

Pulling terms of the squared norm:

$$u^{k+1} = \underset{u}{\operatorname{argmin}} G(u) + \langle Ku, v^{k-1} + \sigma Ku^k \rangle + \frac{\sigma}{2} \left\| Ku - w^k \right\|^2, \quad \mathbf{w}^{k+1} = \underset{w}{\operatorname{argmin}} F(w) - \langle w, v^k + \sigma Ku^{k+1} \rangle + \frac{\sigma}{2} \left\| w - Ku^{k+1} \right\|^2, \quad \mathbf{w}^{k+1} = v^k + \sigma (Ku^{k+1} - w^{k+1})$$

• Reintroduce $p^{k+1} = v^k + \sigma K u^{k+1}$, can be rewritten as:

$$u^{k+1} = \underset{u}{\operatorname{argmin}} G(u) + \langle Ku, p^k \rangle + \frac{\sigma}{2} \left\| Ku - w^k \right\|^2,$$

$$w^{k+1} = \underset{w}{\operatorname{argmin}} F(w) - \langle w, p^{k+1} \rangle + \frac{\sigma}{2} \left\| w - Ku^{k+1} \right\|^2,$$

$$p^{k+1} = p^k + \sigma(Ku^{k+1} - w^k)$$

Operator Splitting Methods

Michael Moeller Thomas Möllenhoff Emanuel Laude

Relations Monotone Operators Fixed Point Iterations

Proximal Point Algorithm

PDHG Revisited

• Let
$$\bar{w}^{k+1} = w^k$$
:

$$u^{k+1} = \operatorname*{argmin}_{u} G(u) + \langle Ku, p^k \rangle + \frac{\sigma}{2} \left\| Ku - \bar{w}^{k+1} \right\|^2,$$

$$\bar{w}^{k+2} = \operatorname*{argmin}_{w} F(w) - \langle w, p^{k+1} \rangle + \frac{\sigma}{2} \left\| w - Ku^{k+1} \right\|^2,$$

$$p^{k+1} = p^k + \sigma(Ku^{k+1} - \bar{w}^{k+1})$$

Change order of first two iterates:

$$\begin{split} \bar{w}^{k+1} &= \operatorname*{argmin}_{w} F(w) - \langle w, p^{k} \rangle + \frac{\sigma}{2} \left\| w - K u^{k} \right\|^{2}, \\ u^{k+1} &= \operatorname*{argmin}_{u} G(u) + \langle K u, p^{k} \rangle + \frac{\sigma}{2} \left\| K u - \bar{w}^{k+1} \right\|^{2}, \\ p^{k+1} &= p^{k} + \sigma (K u^{k+1} - \bar{w}^{k+1}) \end{split}$$

Operator Splitting Methods

Michael Moeller Thomas Möllenhoff Emanuel Laude

Splitting

· Final update equations:

$$w^{k+1} = \underset{w}{\operatorname{argmin}} F(w) - \langle w, p^k \rangle + \frac{\sigma}{2} \left\| w - K u^k \right\|^2,$$
$$u^{k+1} = \underset{u}{\operatorname{argmin}} G(u) + \langle K u, p^k \rangle + \frac{\sigma}{2} \left\| K u - w^{k+1} \right\|^2,$$
$$p^{k+1} = p^k + \sigma(K u^{k+1} - w^{k+1})$$

Alternating minimization of the augmented Lagrangian:

$$L_{\mathsf{aug}}^{ au}(u,w,p) = G(u) + F(w) + \langle p, \mathit{K}u - w
angle + rac{ au}{2} \left\| \mathit{K}u - w
ight\|^2$$

- The method in this form is called Alternating Direction Method of Multipliers (ADMM)
- It has gained enormous popularity recently ⁹, over 3458 citations in 5 years

Operator Splitting Methods

⁹Boyd et al., Distributed optimization and statistical learning via the alternating direction method of multipliers, 2011

Conclusion

- Splitting methods split problem into simpler subproblems
- Many other splitting approaches exist that can explicitly handle differentiable functions (Forward-Backward, Forward-Backward-Forward, Davis-Yin, ...)
- Many relations exist between the primal-dual algorithms, often special cases of one another
- Depending on the problem structure, better to use either Graph Projection/DRS/ADMM or PDHG (more next week!)
- Rule of thumb: Graph Projection/DRS/ADMM few expensive iterations, PDHG many cheap iterations

Operator Splitting Methods

Michael Moeller Thomas Möllenhoff Emanuel Laude

Relations Monotone Operators Fixed Point Iterations Proximal Point Algorithm

PDHG Revisited