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Recap and Motivation

• Last 3 lectures: PDHG method for minimizing structured
convex problems

min
u∈Rn

G(u) + F (Ku)

• Unintuitive overrelaxation, rather involved convergence
analysis

• Next lectures: simple and unified convergence analysis of
many different algorithms within a single approach

• Key ideas: monotone operators, fixed point iterations

• Give a new understanding of convex optimization
algorithms
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Notation

• A relation R on Rn is a subset of Rn × Rn

• We will refer to it as a set-valued operator and overload
the usual matrix notation

R(x) = Rx := {y ∈ Rn | (x , y) ∈ R} .

• If Rx is a singleton or empty for all x , then R is a function
(or single-valued operator) with domain

dom(R) := {x ∈ Rn | Rx 6= ∅}

• Abuse of notation: identify singleton {x} with x , i.e., write
Rx = y instead of Rx 3 y if R is function

• Concept: identifying functions with their graph
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Some Examples

• Empty relation: ∅
• Identity: I := {(u,u) | u ∈ Rn}
• Zero: 0 := {(u,0) | u ∈ Rn}
• Gradient relation:

∇E := {(u,∇E(u)) | u ∈ Rn}

• Subdifferential relation:

∂E := {(u,g) | u ∈ dom(E),E(v) ≥ E(u)+〈g, v−u〉,∀v ∈ Rn}

• Another possible view: think of relations as a set valued
functions, e.g., ∂E : Rn → P(Rn)
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Thomas Möllenhoff
Emanuel Laude

Relations

Monotone Operators

Fixed Point Iterations

Proximal Point
Algorithm

PDHG Revisited

Douglas-Rachford
Splitting

updated 15.06.2016

Our Goal

Solve generalized equation (inclusion) problem

0 ∈ R(u)

i.e., find u ∈ Rn such that (u,0) ∈ R.

Examples:
• Set R = ∂E , then the goal is to find 0 ∈ ∂E(u)

• This are just the optimality conditions of our prototypical
optimization problem:

arg min
u∈Rn

E(u)

• Finding saddle-points (ũ, p̃) of

PD(u,p) = G(u)− F ∗(p) + 〈Ku,p〉

corresponds to the inclusion problem

0 ∈

[
∂G K T

−K ∂F ∗

][
u
p

]
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Operations on Relations

• Inverse R−1 = {(y , x) | (x , y) ∈ R}
• Exists for any relation
• Reduces to inverse function when R is injective function

• Addition R + S = {(x , y + z) | (x , y) ∈ R, (x , z) ∈ S}
• Scaling λR = {(x , λy) | (x , y) ∈ R}
• Resolvent JλR := (I + λR)−1

Examples:

• I + λR = {(x , x + λy) | (x , y) ∈ R}
• JR = {(x + λy , x) | (x , y) ∈ R}
• E closed, proper, convex: (∂E)−1 = ∂E∗

→ Draw a picture for E(u) = |u|
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Monotone Operators
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Monotone Operators

Definition

The set-valued operator T ⊂ Rn × Rn is called monotone if

〈u − v ,Tu − Tv〉 ≥ 0, ∀u, v ∈ Rn. Notation1

An operator T is called maximally monotone if it is not
contained in any other monotone operator.

• Maximal monotonicity is an important technical detail, but
we will be sloppy about it for the rest of the course

Examples of monotone operators:

• Monotonically non-decreasing functions T : R→ R

• Any positive semi-definite matrix A: 〈Ax − Ay , x − y〉 ≥ 0

• Subdifferential of a convex function ∂f

• Proximity operators of convex functions proxτ f : Rn → Rn

1This is again abuse of notation for 〈u − v , p − q〉 ≥ 0, ∀p ∈ Tu,∀q ∈ Tv
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Thomas Möllenhoff
Emanuel Laude

Relations

Monotone Operators

Fixed Point Iterations

Proximal Point
Algorithm

PDHG Revisited

Douglas-Rachford
Splitting

updated 15.06.2016

Monotone Operators

Calculus rules (exercise):

• T monotone, λ ≥ 0⇒ λT monotone

• T monotone⇒ T−1 monotone

• R, S monotone, λ ≥ 0⇒ R + λS is monotone

Some important definitions/properties:

• Lipschitz operators (and in particular nonexpansive
operators) are single-valued (functions)

• x is called fixed point of operator T if x = Tx

• If F is nonexpansive (Lipschitz constant L ≤ 1) and
domT = Rn then the set of fixed points (I − F )−1(0) is
closed and convex (exercise)
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Resolvent and Cayley Operators

• Let T ⊂ Rn × Rn be set-valued operator

• The resolvent operator of T is given as JλT := (I + λT )−1

• Special case: T = ∂f , Jλ∂f is proximal operator of f

• From previous slide: resolvent is monotone if T is
monotone

• The Cayley operator (or reflection operator) of T is defined
as CλT := 2JλT − I

Facts:

• 0 ∈ Tx if and only if x = JλT x = CλT x

• If T is monotone, then JλT and CλT are nonexpansive
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Fixed Point Iterations
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The Main Algorithm

• Recall that u ∈ Rn is fixed point of F : Rn → Rn, if u = Fu

• The main algorithm of this chapter is the fixed point or
Picard iteration for some given u0 ∈ Rn:

uk+1 = Fuk , k = 0,1,2, . . .

• We will see that many important convex optimization
algorithms can be written in this form

• Allows simple and unified analysis
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Iteration of Contraction Mappings

Contraction Mapping Theorem

Suppose that F : Rn → Rn is a contraction with Lipschitz
constant L < 1. Then the fixed point iteration

uk+1 = Fuk ,

also called contraction mapping algorithm, converges to the
unique fixed point of F .

→ Proof: see literature2

• Example: the gradient method can be written as

uk+1 = (I − τ∇E)uk

• Suppose E is m-strongly convex and L-smooth, then
I − τ∇E is Lipschitz with LGM = max{|1− τm|, |1− τL|}

• I − τ∇E is contractive for τ ∈ (0,2/L)

2This theorem is also known as the Banach fixed point theorem.
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Iteration of Averaged Nonexpansive Mappings

• Recall that a mapping F : Rn → Rn is called nonexpansive
if it is Lipschitz with constant L ≤ 1.

• Fixed point iteration of nonexpansive mapping doesn’t
necessarily converge (example: rotation, reflection)

• The mapping F : Rn → Rn is called averaged if
F = (1− θ)I + θT , for some nonexpansive operator T and
θ ∈ (0,1)

Theorem: Krasnosel’skii-Mann

Let F : Rn → Rn be averaged, and denote the (non-empty) set
of fixed points of F as U. Then the sequence (uk ) produced by
the iteration

uk+1 = Fuk

converges to a fixed point u∗ ∈ U, i.e., uk → u∗.

→ Proof: board!
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Example: gradient method

• Assume E is L-smooth but not strongly convex

• Possible to show that the operator (I − τ∇E) is Lipschitz
continuous with parameter LGM = max{1, |1− τL|}

• For 0 < τ ≤ 2/L, this operator is nonexpansive

• It is also averaged for 0 < τ < 2/L since

(I − τ∇E) = (1− θ)I + θ(I − (2/L)∇E),

with θ = τL/2 < 1.

• Hence, we get convergence of the gradient descent
method from the previous theorem
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Proximal Point Algorithm
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The Proximal Point Algorithm

• Recall our original goal of finding u ∈ Rn with

0 ∈ Tu,

for T ⊂ Rn × Rn monotone.

• We have seen that fixed points of resolvent operator JλT

are the zeros of T

Definition: Proximal Point Algorithm (PPA) 3

Given some maximally monotone operator T ⊂ Rn × Rn, and
some sequence (λk ) > 0. Then the iteration

uk+1 = (I + λk T )−1uk ,

is called the proximal point algorithm.

3R. T. Rockafellar, Monotone Operators and the Proximal Point Algorithm,
SIAM J. Control and Optimization, 1976
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Intuition of the Proximal Point Algorithm 4

4Eckstein, Splitting methods for monotone operators with applications to
parallel optimzation, 1989, pp. 42
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Convergence of Proximal Point Algorithm

• The resolvent JλT = (I + λT )−1 is an averaged operator

• To see this, consider the reflection or Cayley operator

CλT := 2JλT − I ⇔ JλT =
1
2

I +
1
2

CλT

• Hence JλT is averaged with θ = 1
2 , as we have seen in the

last lecture that CλT is nonexpansive

• Proximal Point algorithm converges as it is fixed point
iteration of averaged operator
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PDHG Revisited
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PDHG as Proximal Point Method

• Remember that for convex-concave saddle point problems

PD(u,p) = G(u)− F ∗(p) + 〈Ku,p〉

we have the following:

(ũ, p̃) = arg minmaxu,p PD(u,p)⇔

[
0
0

]
∈

[
∂G(ũ) + K T p̃
−K ũ + ∂F ∗(p̃)

]
︸ ︷︷ ︸

=:T (ũ,p̃)

• For convex F ∗ and G, T is monotone
• Idea: use the proximal point to find zero of T
• Stack primal and dual variables into vector z = (u,p)T :

zk+1 = (I + λT )−1zk ⇔ zk − zk+1 ∈ λTzk+1

• Plugging things in yields

uk − uk+1 ∈ λ∂G(uk+1) + λK T pk+1

pk − pk+1 ∈ λ∂F ∗(pk+1)− λKuk+1
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PDHG as Proximal Point Method

• Reformulating the following

0 ∈ λ−1

[
uk+1 − uk

pk+1 − pk

]
+

[
∂G(uk+1) + K T pk+1

∂F ∗(pk+1)− Kuk+1

]
︸ ︷︷ ︸

=:T (ũ,p̃)

leads to:

uk+1 = (I + λ∂G)−1(uk − λK T pk+1)

= proxλG(uk − λK T pk+1)

pk+1 = (I + λ∂F ∗)−1(pk + λKuk+1)

= proxλF∗(pk + λKuk+1)

• Almost looks like the PDHG method, step size λ

• Problem: cannot implement this algorithm, since updates
in uk+1 and pk+1 depend on each other
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PDHG as Proximal Point Method

• Consider the following:

0 ∈ M

[
uk+1 − uk

pk+1 − pk

]
+

[
∂G(uk+1) + K T pk+1

∂F ∗(pk+1)− Kuk+1

]
︸ ︷︷ ︸

=:T (ũ,p̃)

• Step size M ∈ R(n+m)×(n+m) is now a matrix
• Take the following choice

M =

[
1
τ I −K T

−θK 1
σ I

]
• Allows to recover PDHG as proximal point algorithm (PPA)

uk+1 = proxτG(uk − τK T pk ),

pk+1 = proxσF∗(pk + σK (uk+1 + θ(uk+1 − uk )))

• This is called generalized or customized PPA:

0 ∈ M(zk+1 − zk ) + Tzk+1 ⇔ zk+1 = (M + T )−1Mzk
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Convergence of Customized Proximal Point Method

• For symmetric, positive definite M, we can write M = LT L,
L invertible (Cholesky decomposition)

• Apply classical PPA to operator T ′ = L−T ◦ T ◦ L−1

yk+1 = (I + L−T ◦ T ◦ L−1)−1yk

• T (maximally) monotone⇒ L−T ◦ T ◦ L−1 (maximally)
monotone 5

• Define Lx = y , then 0 ∈ (L−T ◦ T ◦ L−1)y ⇔ 0 ∈ Tx

• Writing out the algorithm in terms of x yields

0 ∈ M(xk+1 − xk ) + Txk+1

• Hence customized PPA inherits convergence from
classical proximal point

5Bauschke, Combettes, Convex Analysis and Monotone Operator Theory in
Hilbert Spaces, Theorem 24.5
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Convergence of PDHG

• When is the step size matrix symmetric positive definite?

M =

[
1
τ I −K T

−θK 1
σ I

]

• Step size requirement for PDHG is τσ ‖K‖2
< 1, τσ > 0

Lemma (Pock-Chambolle-2011 6)

Let θ = 1, T and Σ symmetric positive definite maps satisfying∥∥∥Σ
1
2 K T

1
2

∥∥∥2
< 1,

then the block matrix

M =

[
T−1 −K T

−θK Σ−1

]

is symmetric and positive definite.
6T. Pock, A. Chambolle, Diagonal Preconditioning for first-order primal-dual

algorithms in convex optimization, ICCV 2011
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Summary

• Customized proximal point algorithms yield a whole family
of methods, many choices of M are concievable

0 ∈ M(zk+1 − zk ) + Tzk+1

• PDHG corresponds to one particular choice of M

• Overrelaxation with θ = 1 required to make M symmetric

• Convergence follows from convergence of classical
proximal point algorithm

• Classical proximal point converges as it is fixed point
iteration of averaged operator

• Next lecture: Douglas-Rachford splitting and ADMM
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Organizational Remarks

Exams:

• Important: Registration deadline 30.06. in TUMonline!

• Exam (oral): 18.07. and 19.07.

• Repeat exam (oral): 05.10. and 06.10.

• Sign up for timeslots in exercise class on Friday 17.06.

Remaining lectures:

• Next Monday 20.06. hints for getting started with the
optimization challenge!

• 22.06. Some practical considerations of PDHG/ADMM

• 27.06. - 01.07. no lecture / exercises, repeat and review
what you have learned!

• 04.07. - 11.07. Miscellaneous topics on modifications and
accelerations, open research questions/challenges

• Last lecture on 13.07. repeat of content, questions
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Douglas-Rachford Splitting
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Motivation

• Last lecture: proximal point algorithm for finding the zero
of a monotone operator T

0 ∈ Tu ⇔ u = (I + λT )−1u

• Often the resolvent JλT := (I + λT )−1 is hard to compute

• One remedy: matrix-valued step-size / customized PPA

uk+1 = (M + T )−1Muk

• Another possibility are splitting methods

• They exploit further structure of the problem:

T = A + B

• Resolvents JλA = (I + λA)−1 and JλB = (I + λB)−1 can be
more easily evaluated than JλT
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Splitting methods

• T = A + B, A and B maximal monotone

• Cayley operators CA = 2JA − I and CB = 2JA − I are
nonexpansive

• Composition CACB also nonexpansive

• Main result: (→ board!)

0 ∈ Au + Bu ⇔ CACBv = v , u = JBv

• Hence, solutions can be found from fixed point of the
operator CACB

→ Draw a picture for T = ∂ιC1 + ∂ιC2 !
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Splitting Methods

• Peaceman-Rachford splitting is undamped iteration

vk+1 = CACBvk

• Doesn’t converge in the general case, needs either CA or
CB to be a contraction

• Douglas-Rachford splitting 7 is the damped iteration

vk+1 =

(
1
2

I +
1
2

CACB

)
vk ,

• Recover solution by u∗ = JBv∗

• Always converges if there exists a solution 0 ∈ Au∗ + Bu∗,
since it’s fixed point iteration of averaged operator

7J. Douglas, H. H. Rachford, On the numerical solution of heat conduction
problems in two and three space variables. Transactions of the AMS, 1956.
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Douglas-Rachford Splitting (DRS)

• The Douglas-Rachford iteration vk+1 =
( 1

2 I + 1
2 CACB

)
vk

can be written as

uk+1
b = JB(vk ),

ṽk+1 = 2uk+1
b − vk ,

uk+1
a = JA(ṽk+1),

vk+1 = vk + uk+1
a − uk+1

b .

• uk
a and uk

b can be thought of estimates to a solution

• vk running sum of residuals, drives uk
a and uk

b together
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Application to Convex Optimization

• Let’s apply DRS to minimize

min
u∈Rn

G(u) + F (u)

• G : Rn → R ∪ {∞}, F : Rn → R ∪ {∞} closed, proper, cvx.

• Optimality conditions (assuming ri(domG)∩ ri(domF ) 6= ∅):

0 ∈ τ∂G(u) + τ∂F (u)

• Find zero of T = A + B, A = τ∂G, B = τ∂F

• The algorithm becomes (after slight simplifications):

uk+1 = proxτG(vk ),

vk+1 = proxτF (2uk+1 − vk ) + vk − uk+1.
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Reformulation of DRS

• We can rewrite the step in vk+1 using Moreau’s Identity

uk+1 = proxτG(vk ),

vk+1 = proxτF (2uk+1 − vk ) + vk − uk+1

= uk+1 + τprox(1/τ)F∗((2uk+1 − vk )/τ)

• Introduce variable pk = uk−vk

τ ⇔ vk = uk − τpk , σ = 1/τ

uk+1 = proxτG(uk − τpk ),

pk+1 = proxσF∗(pk + σ(2uk+1 − uk ))

• Looks familiar? :-)

• Applying DRS on the primal problem minu G(u) + F (u) is
equivalent to PDHG!
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Optimization Problems with Compositions

• Ideally we’d like to solve problems of the form

min
u

G(u) + F (w), s.t. w = Ku

• In many applications we would actually like to minimize

min
u

G(u) +
N∑

i=1

Fi (Kiu)

• Rewrite using trick:

w =


w1
...

wN

 ,K =

K1

. . .

KN

 , → F (w) =
N∑

i=1

Fi (wi )

• Virtually any convex optimization problem fits into this form

• Even problems looking very complicated at first glance can
be split up into many simple substeps
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Option 1: Graph Projection Splitting

• We want to minimize for K : Rn → Rm

min
u∈Rn,w∈Rm

G(u) + F (w) s.t. Ku = w

• Rewrite problem using (u,w) ∈ Rn+m as

min
u,w

G̃(u,w) + F̃ (u,w)

• Set G̃(u,w) = G(u) + F (w)

• Set F̃ (u,w) =

0, if Ku = w

∞, else.

• Proximal operator for G̃ is simple if proximal operators for
F and G are simple

• Proximal operator for F̃ is projection onto the graph of
Ku = w (solving a least squares problem)
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Option 1: Graph Projection Splitting

• Iterations can be written as 8

(uk+1/2,wk+1/2) =
(

proxG(uk − ũk ),proxF (wk − w̃k )
)
,

(uk+1,wk+1) = Π(uk+1/2 + ũk ,wk+1/2 + w̃k ),

(ũk+1, w̃k+1) = (ũk + uk+1/2 − uk+1, w̃k + wk+1/2 − wk+1).

• Projection is given as:

Π(c,d) = A−1

[
c + AT d

0

]
,A =

[
I K T

K −I

]
• Can use (preconditioned) conjugate gradient to

approximately compute projection

• Important: warm-start linear system solver with solution
from previous iteration

• Other possibility: factorization caching

8N. Parikh, S. Boyd, Block Splitting for Distributed Optimization, 2014
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Option 2: DRS for Problems with Compositions

• Consider the dual problem to minu G(u) + F (Ku)

min
p

G∗(−K ∗p) + F ∗(p) = (G∗ ◦ −K ∗)(p) + F ∗(p)

• Applying DRS yields the following:

uk+1 = proxσ(G∗◦−K∗)(v
k ),

vk+1 = proxσF∗(2uk+1 − vk ) + vk − uk+1

• Reorder slightly with new variable wk+1

uk+1 = proxσ(G∗◦−K∗)(v
k ),

pk+1 = proxσF∗(2uk+1 − vk ),

vk+1 = pk+1 + vk − uk+1
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Option 2: DRS for Problems with Compositions

• The prox involving the composition is given by:

proxσ(G∗◦−K∗)(v) = v + σK argmin
u

G(u) +
σ

2

∥∥∥Ku +
v
σ

∥∥∥2

• Often expensive or difficult to evaluate due to the Ku-term
• Iteration can be written as

uk+1 = argmin
u

G(u) +
σ

2

∥∥∥∥Ku +
vk

σ

∥∥∥∥2

,

ũk+1 = vk + σKuk+1,

pk+1 = proxσF∗(2ũk+1 − vk ),

vk+1 = pk+1 + vk − ũk+1

• Alternatively this can be simplified to

uk+1 = argmin
u

G(u) +
σ

2

∥∥∥∥Ku +
vk

σ

∥∥∥∥2

,

pk+1 = proxσF∗(vk + 2σKuk+1),

vk+1 = pk+1 − σKuk+1
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Option 2: DRS for Problems with Compositions

• Even more simple:

uk+1 = argmin
u

G(u) +
σ

2

∥∥∥∥Ku +
pk − σKuk

σ

∥∥∥∥2

,

pk+1 = proxσF∗(pk + σK (2uk+1 − uk )),

• Optimality conditions for the iterates:

0 ∈ ∂G(uk+1) + σK T (Kuk+1 +
1
σ

(pk − σKuk ))

0 ∈ ∂F ∗(pk+1) +
1
σ

(pk+1 − pk − σK 2uk+1 + σKuk )

• Adding and substracting K T pk+1 to first line yields

0 ∈ ∂G(uk+1) + K T pk+1 + σK T K (uk+1 − uk )− K T (pk+1 − pk )

0 ∈ ∂F ∗(pk+1)− Kuk+1 − K (uk+1 − uk ) +
1
σ

(pk+1 − pk )
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Relation to PDHG

• Previous iterations can be written as PPA, z = (u,p)T :

0 ∈

[
∂G K T

−K ∂F ∗

][
uk+1

pk+1

]
︸ ︷︷ ︸

Tzk+1

+

[
1
τ I −K T

−K 1
σ I

]
︸ ︷︷ ︸

M

[
uk+1 − uk

pk+1 − pk

]
︸ ︷︷ ︸

zk+1−zk

• Matrix M only positive semidefinite, our convergence
result for Proximal Point algorithm does not apply directly

• PDHG with θ = 1 can be seen as inexact/approximative
DRS,

σK T K ≈ 1
τ

I

• Often makes iterations much cheaper

• For semi-orthogonal (K T K = νI) this approximation is
exact
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Alternating Direction Method of Multipliers (ADMM)

• Recall this formulation

uk+1 = argmin
u

G(u) +
σ

2

∥∥∥∥Ku +
vk

σ

∥∥∥∥2

,

pk+1 = proxσF∗(vk + 2σKuk+1),

vk+1 = pk+1 − σKuk+1

• Apply Moreau’s identity to step in pk+1

uk+1 = argmin
u

G(u) +
σ

2

∥∥∥∥Ku +
vk

σ

∥∥∥∥2

,

pk+1 = vk + 2σKuk+1 − σproxσF (
vk

σ
+ 2Kuk+1),

vk+1 = pk+1 − σKuk+1
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Alternating Direction Method of Multipliers (ADMM)

• Make new variable for proxσF -step, write prox as argmin:

uk+1 = argmin
u

G(u) +
σ

2

∥∥∥∥Ku +
vk

σ

∥∥∥∥2

,

wk+1 = argmin
w

F (w) +
σ

2

∥∥∥∥w − vk

σ
− 2Kuk+1

∥∥∥∥2

,

pk+1 = vk + 2σKuk+1 − σwk+1,

vk+1 = pk+1 − σKuk+1

• Replacing the variable vk in the uk+1 update yields

uk+1 = argmin
u

G(u) +
σ

2

∥∥∥∥Ku +
pk − σKuk

σ

∥∥∥∥2

,
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Alternating Direction Method of Multipliers (ADMM)

• Replace variable pk in all update steps

uk+1 = argmin
u

G(u) +
σ

2

∥∥∥∥Ku +
vk−1 + σKuk − σwk

σ

∥∥∥∥2

,

wk+1 = argmin
w

F (w) +
σ

2

∥∥∥∥w − vk

σ
− 2Kuk+1

∥∥∥∥2

,

vk+1 = vk + σ(Kuk+1 − wk+1)

• Rewrite as:

uk+1 = argmin
u

G(u) +
σ

2

∥∥∥∥Ku − wk +
vk−1 + σKuk

σ

∥∥∥∥2

,

wk+1 = argmin
w

F (w) +
σ

2

∥∥∥∥w − Kuk+1 − vk + σKuk+1

σ

∥∥∥∥2

,

vk+1 = vk + σ(Kuk+1 − wk+1)
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Alternating Direction Method of Multipliers (ADMM)

• Using the following fact we can further rewrite the updates:

argmin
a

σ

2

∥∥∥∥a− b
σ

∥∥∥∥2

= argmin
a

− 〈a,b〉+
σ

2
‖a‖2

• Pulling terms of the squared norm:

uk+1 = argmin
u

G(u) + 〈Ku, vk−1 + σKuk 〉+
σ

2

∥∥∥Ku − wk
∥∥∥2
,

wk+1 = argmin
w

F (w)− 〈w , vk + σKuk+1〉+
σ

2

∥∥∥w − Kuk+1
∥∥∥2
,

vk+1 = vk + σ(Kuk+1 − wk+1)

• Reintroduce pk+1 = vk + σKuk+1, can be rewritten as:

uk+1 = argmin
u

G(u) + 〈Ku,pk 〉+
σ

2

∥∥∥Ku − wk
∥∥∥2
,

wk+1 = argmin
w

F (w)− 〈w ,pk+1〉+
σ

2

∥∥∥w − Kuk+1
∥∥∥2
,

pk+1 = pk + σ(Kuk+1 − wk )
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Alternating Direction Method of Multipliers (ADMM)

• Let w̄k+1 = wk :

uk+1 = argmin
u

G(u) + 〈Ku,pk 〉+
σ

2

∥∥∥Ku − w̄k+1
∥∥∥2
,

w̄k+2 = argmin
w

F (w)− 〈w ,pk+1〉+
σ

2

∥∥∥w − Kuk+1
∥∥∥2
,

pk+1 = pk + σ(Kuk+1 − w̄k+1)

• Change order of first two iterates:

w̄k+1 = argmin
w

F (w)− 〈w ,pk 〉+
σ

2

∥∥∥w − Kuk
∥∥∥2
,

uk+1 = argmin
u

G(u) + 〈Ku,pk 〉+
σ

2

∥∥∥Ku − w̄k+1
∥∥∥2
,

pk+1 = pk + σ(Kuk+1 − w̄k+1)
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Alternating Direction Method of Multipliers (ADMM)

• Final update equations:

wk+1 = argmin
w

F (w)− 〈w ,pk 〉+
σ

2

∥∥∥w − Kuk
∥∥∥2
,

uk+1 = argmin
u

G(u) + 〈Ku,pk 〉+
σ

2

∥∥∥Ku − wk+1
∥∥∥2
,

pk+1 = pk + σ(Kuk+1 − wk+1)

• Alternating minimization of the augmented Lagrangian:

Lτaug(u,w ,p) = G(u) + F (w) + 〈p,Ku − w〉+
τ

2
‖Ku − w‖2

• The method in this form is called Alternating Direction
Method of Multipliers (ADMM)

• It has gained enormous popularity recently 9, over 3458
citations in 5 years

9Boyd et al., Distributed optimization and statistical learning via the
alternating direction method of multipliers, 2011
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Conclusion

• Splitting methods split problem into simpler subproblems

• Many other splitting approaches exist that can explicitly
handle differentiable functions (Forward-Backward,
Forward-Backward-Forward, Davis-Yin, ...)

• Many relations exist between the primal-dual algorithms,
often special cases of one another

• Depending on the problem structure, better to use either
Graph Projection/DRS/ADMM or PDHG (more next week!)

• Rule of thumb: Graph Projection/DRS/ADMM few
expensive iterations, PDHG many cheap iterations


