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Recap and Motivation

• Last 3 lectures: PDHG method for minimizing structured
convex problems

min
u∈Rn

G(u) + F (Ku)

• Unintuitive overrelaxation, rather involved convergence
analysis

• Next lectures: simple and unified convergence analysis of
many different algorithms within a single approach

• Key ideas: monotone operators, fixed point iterations

• Give a new understanding of convex optimization
algorithms
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Notation

• A relation R on Rn is a subset of Rn × Rn

• We will refer to it as a set-valued operator and overload
the usual matrix notation

R(x) = Rx := {y ∈ Rn | (x , y) ∈ R} .

• If Rx is a singleton or empty for all x , then R is a function
(or single-valued operator) with domain

dom(R) := {x ∈ Rn | Rx 6= ∅}

• Abuse of notation: identify singleton {x} with x , i.e., write
Rx = y instead of Rx 3 y if R is function

• Concept: identifying functions with their graph
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Some Examples

• Empty relation: ∅
• Identity: I := {(u,u) | u ∈ Rn}
• Zero: 0 := {(u,0) | u ∈ Rn}
• Gradient relation:

∇E := {(u,∇E(u)) | u ∈ Rn}

• Subdifferential relation:

∂E := {(u,g) | u ∈ dom(E),E(v) ≥ E(u)+〈g, v−u〉,∀v ∈ Rn}

• Another possible view: think of relations as a set valued
functions, e.g., ∂E : Rn → P(Rn)
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Our Goal

Solve generalized equation (inclusion) problem

0 ∈ R(u)

i.e., find u ∈ Rn such that (u,0) ∈ R.

Examples:
• Set R = ∂E , then the goal is to find 0 ∈ ∂E(u)
• This are just the optimality conditions of our prototypical

optimization problem:

arg min
u∈Rn

E(u)

• Finding saddle-points (ũ, p̃) of

PD(u,p) = G(u)− F ∗(p) + 〈Ku,p〉

corresponds to the inclusion problem

0 ∈

[
∂G K T

−K ∂F ∗

][
u
p

]
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Operations on Relations

• Inverse R−1 = {(y , x) | (x , y) ∈ R}
• Exists for any relation
• Reduces to inverse function when R is injective function

• Addition R + S = {(x , y + z) | (x , y) ∈ R, (x , z) ∈ S}
• Scaling λR = {(x , λy) | (x , y) ∈ R}
• Resolvent JλR := (I + λR)−1

Examples:

• I + λR = {(x , x + λy) | (x , y) ∈ R}
• JR = {(x + λy , x) | (x , y) ∈ R}
• E closed, proper, convex: (∂E)−1 = ∂E∗

→ Draw a picture for E(u) = |u|
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Monotone Operators

Definition

The set-valued operator T ⊂ Rn × Rn is called monotone if

〈u − v ,Tu − Tv〉 ≥ 0, ∀u, v ∈ Rn.

An operator T is called maximally monotone if it is not
contained in any other monotone operator.

• Maximal monotonicity is an important technical detail, but
we will be sloppy about it for the rest of the course

Examples of monotone operators:

• Monotonically non-decreasing functions T : R→ R

• Any positive semi-definite matrix A: 〈Ax − Ay , x − y〉 ≥ 0

• Subdifferential of a convex function ∂f

• Proximity operators of convex functions proxτ,f : Rn → Rn
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Monotone Operators

Calculus rules (exercise):

• T monotone, λ ≥ 0⇒ λT monotone

• T monotone⇒ T−1 monotone

• R, S monotone, λ ≥ 0⇒ R + λS is monotone

Some important definitions/properties:

• Lipschitz operators (and in particular nonexpansive
operators) are single-valued (functions)

• x is called fixed point of operator T if x = Tx

• If T is nonexpansive (Lipschitz constant L ≤ 1) and
domT = Rn then the set of fixed points (I − F )−1(0) is
closed and convex (exercise)
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Resolvent and Cayley Operators

• Let T ⊂ Rn × Rn be set-valued operator

• The resolvent operator of T is given as JλT := (I + λT )−1

• Special case: T = ∂f , Jλ∂f is proximal operator of f

• From previous slide: resolvent is monotone if T is
monotone

• The Cayley operator (or reflection operator) of T is defined
as CλT := 2JλT − I

Facts:

• 0 ∈ Tx if and only if x = JλT x = CλT x

• If T is monotone, then JλT and CλT are nonexpansive
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The Main Algorithm

• Recall that u ∈ Rn is fixed point of T : Rn → Rn, if u = Tu

• The main algorithm of this chapter is the fixed point or
Picard iteration for some given u0 ∈ Rn:

uk+1 = Tuk , k = 0,1,2, . . .

• We will see that many important convex optimization
algorithms can be written in this form

• Allows simple and unified analysis
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Iteration of Contraction Mappings

Contraction Mapping Theorem

Suppose that T : Rn → Rn is a contraction with Lipschitz
constant L < 1. Then the fixed point iteration

uk+1 = Tuk ,

also called contraction mapping algorithm, converges to the
unique fixed point of T .

→ Proof: see literature1

• Example: the gradient method can be written as

uk+1 = (I − τ∇E)uk

• Suppose E is m-strongly convex and L-smooth, then
I − τ∇E is Lipschitz with LGM = max{|1− τm|, |1− τL|}

• I − τ∇E is contractive for τ ∈ (0,2/L)
1This theorem is also known as the Banach fixed point theorem.
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Iteration of Averaged Nonexpansive Mappings

• Recall that a mapping T : Rn → Rn is called nonexpansive
if it is Lipschitz with constant L ≤ 1.

• Fixed point iteration of nonexpansive mapping doesn’t
necessarily converge (example: rotation, reflection)

• The mapping T : Rn → Rn is called averaged if
T = (1− θ)I + θN, for some nonexpansive mapping N and
θ ∈ (0,1)

Theorem: Krasnosel’skii-Mann

Let T : Rn → Rn be averaged, and denote the (non-empty) set
of fixed points of T as U. Then the sequence (uk ) produced by
the iteration

uk+1 = Tuk

converges to a fixed point u∗ ∈ U, i.e., uk → u∗.

→ Proof: board!


