Chapter 5 Operator Splitting Methods

Convex Optimization for Computer Vision SS 2016

Operator Splitting Methods

Michael Moeller

Thomas Möllenhoff Emanuel Laude

Relations

Monotone Operators
Fixed Point Iterations
Proximal Point
Algorithm
PDHG Revisited

Michael Moeller
Thomas Möllenhoff
Emanuel Laude
Computer Vision Group
Department of Computer Science
TU München

Recap and Motivation

- Last 3 lectures: PDHG method for minimizing structured convex problems

$$
\min _{u \in \mathbb{R}^{n}} G(u)+F(K u)
$$

Relations

Monotone Operators
Fixed Point Iterations

- Unintuitive overrelaxation, rather involved convergence analysis
- Next lectures: simple and unified convergence analysis of many different algorithms within a single approach
- Key ideas: monotone operators, fixed point iterations
- Give a new understanding of convex optimization algorithms

Operator Splitting
Methods
Michael Moeller
Thomas Möllenhoff
Emanuel Laude

Relations
Relations
Monotone Operators
Fixed Point Iterations
Proximal Point
Algorithm
PDHG Revisited

Notation

- A relation R on \mathbb{R}^{n} is a subset of $\mathbb{R}^{n} \times \mathbb{R}^{n}$
- We will refer to it as a set-valued operator and overload the usual matrix notation

$$
R(x)=R x:=\left\{y \in \mathbb{R}^{n} \mid(x, y) \in R\right\} .
$$

- If $R x$ is a singleton or empty for all x, then R is a function (or single-valued operator) with domain

$$
\operatorname{dom}(R):=\left\{x \in \mathbb{R}^{n} \mid R x \neq \emptyset\right\}
$$

- Abuse of notation: identify singleton $\{x\}$ with x, i.e., write $R x=y$ instead of $R x \ni y$ if R is function
- Concept: identifying functions with their graph

Some Examples

- Empty relation: \emptyset
- Identity: $I:=\left\{(u, u) \mid u \in \mathbb{R}^{n}\right\}$
- Zero: $0:=\left\{(u, 0) \mid u \in \mathbb{R}^{n}\right\}$
- Gradient relation:

$$
\nabla E:=\left\{(u, \nabla E(u)) \mid u \in \mathbb{R}^{n}\right\}
$$

Operator Splitting Methods
Michael Moeller Thomas Möllenhoff Emanuel Laude

Relations

Monotone Operators
Fixed Point Iterations
Proximal Point
Algorithm
PDHG Revisited

- Subdifferential relation:
$\partial E:=\left\{(u, g) \mid u \in \operatorname{dom}(E), E(v) \geq E(u)+\langle g, v-u\rangle, \forall v \in \mathbb{R}^{n}\right\}$
- Another possible view: think of relations as a set valued functions, e.g., $\partial E: \mathbb{R}^{n} \rightarrow \mathcal{P}\left(\mathbb{R}^{n}\right)$

Our Goal

Solve generalized equation (inclusion) problem

$$
0 \in R(u)
$$

$$
\text { i.e., find } u \in \mathbb{R}^{n} \text { such that }(u, 0) \in R \text {. }
$$

Examples:

- Set $R=\partial E$, then the goal is to find $0 \in \partial E(u)$
- This are just the optimality conditions of our prototypical optimization problem:

$$
\arg \min _{u \in \mathbb{R}^{n}} E(u)
$$

- Finding saddle-points (\tilde{u}, \tilde{p}) of

$$
P D(u, p)=G(u)-F^{*}(p)+\langle K u, p\rangle
$$

corresponds to the inclusion problem

$$
0 \in\left[\begin{array}{cc}
\partial G & K^{T} \\
-K & \partial F^{*}
\end{array}\right]\left[\begin{array}{l}
u \\
p
\end{array}\right]
$$

Relations
Monotone Operators
Fixed Point Iterations
Proximal Point
Algorithm
PDHG Revisited

Operations on Relations

- Inverse $R^{-1}=\{(y, x) \mid(x, y) \in R\}$
- Exists for any relation
- Reduces to inverse function when R is injective function
- Addition $R+S=\{(x, y+z) \mid(x, y) \in R,(x, z) \in S\}$
- Scaling $\lambda R=\{(x, \lambda y) \mid(x, y) \in R\}$
- Resolvent $J_{\lambda R}:=(I+\lambda R)^{-1}$

Examples:

Monotone Operators

- $I+\lambda R=\{(x, x+\lambda y) \mid(x, y) \in R\}$
- $J_{R}=\{(x+\lambda y, x) \mid(x, y) \in R\}$
- E closed, proper, convex: $(\partial E)^{-1}=\partial E^{*}$
\rightarrow Draw a picture for $E(u)=|u|$

Michael Moeller

Thomas Möllenhoff
Emanuel Laude

Relations

Monotone Operators

Monotone Operators
Fixed Point Iterations
Proximal Point
Algorithm
PDHG Revisited

Monotone Operators

Definition

The set-valued operator $T \subset \mathbb{R}^{n} \times \mathbb{R}^{n}$ is called monotone if

$$
\langle u-v, T u-T v\rangle \geq 0, \forall u, v \in \mathbb{R}^{n} . \quad \text { Notation }{ }^{1}
$$

An operator T is called maximally monotone if it is not contained in any other monotone operator.

- Maximal monotonicity is an important technical detail, but we will be sloppy about it for the rest of the course

Examples of monotone operators:

- Monotonically non-decreasing functions $T: \mathbb{R} \rightarrow \mathbb{R}$
- Any positive semi-definite matrix $A:\langle A x-A y, x-y\rangle \geq 0$
- Subdifferential of a convex function ∂f
- Proximity operators of convex functions prox $_{\tau f}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$

[^0]
Monotone Operators

Calculus rules (exercise):

- T monotone, $\lambda \geq 0 \Rightarrow \lambda T$ monotone
- T monotone $\Rightarrow T^{-1}$ monotone
- R, S monotone, $\lambda \geq 0 \Rightarrow R+\lambda S$ is monotone

Some important definitions/properties:

- Lipschitz operators (and in particular nonexpansive operators) are single-valued (functions)
- x is called fixed point of operator T if $x=T x$
- If F is nonexpansive (Lipschitz constant $L \leq 1$) and $\operatorname{dom} T=\mathbb{R}^{n}$ then the set of fixed points $(I-F)^{-1}(0)$ is closed and convex (exercise)

Resolvent and Cayley Operators

- Let $T \subset \mathbb{R}^{n} \times \mathbb{R}^{n}$ be set-valued operator
- The resolvent operator of T is given as $J_{\lambda T}:=(I+\lambda T)^{-1}$
- Special case: $T=\partial f, J_{\lambda \partial f}$ is proximal operator of f
- From previous slide: resolvent is monotone if T is monotone
- The Cayley operator (or reflection operator) of T is defined as $C_{\lambda T}:=2 J_{\lambda T}-I$

Facts:

- $0 \in T x$ if and only if $x=J_{\lambda T} x=C_{\lambda T} x$
- If T is monotone, then $J_{\lambda T}$ and $C_{\lambda T}$ are nonexpansive

Michael Moeller

Thomas Möllenhoff

Emanuel Laude

Fixed Point Iterations

Relations

Monotone Operators

Proximal Point
Algorithm
PDHG Revisited

The Main Algorithm

- We will see that many important convex optimization algorithms can be written in this form
- Allows simple and unified analysis

Iteration of Contraction Mappings

Contraction Mapping Theorem

Suppose that $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is a contraction with Lipschitz constant $L<1$. Then the fixed point iteration

$$
u^{k+1}=F u^{k}
$$

also called contraction mapping algorithm, converges to the unique fixed point of F.
\rightarrow Proof: see literature ${ }^{2}$

- Example: the gradient method can be written as

$$
u^{k+1}=(I-\tau \nabla E) u^{k}
$$

- Suppose E is m-strongly convex and L-smooth, then $I-\tau \nabla E$ is Lipschitz with $L_{G M}=\max \{|1-\tau m|,|1-\tau L|\}$
- $I-\tau \nabla E$ is contractive for $\tau \in(0,2 / L)$

[^1]
Iteration of Averaged Nonexpansive Mappings

- Recall that a mapping $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is called nonexpansive if it is Lipschitz with constant $L \leq 1$.
- Fixed point iteration of nonexpansive mapping doesn't necessarily converge (example: rotation, reflection)
- The mapping $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is called averaged if $F=(1-\theta) I+\theta T$, for some nonexpansive operator T and $\theta \in(0,1)$

Theorem: Krasnosel'skii-Mann

Let $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be averaged, and denote the (non-empty) set of fixed points of F as U. Then the sequence $\left(u^{k}\right)$ produced by the iteration

$$
u^{k+1}=F u^{k}
$$

converges to a fixed point $u^{*} \in U$, i.e., $u^{k} \rightarrow u^{*}$.
\rightarrow Proof: board!

Example: gradient method

with $\theta=\tau L / 2<1$.

- Hence, we get convergence of the gradient descent method from the previous theorem

Michael Moeller

Thomas Möllenhoff

Emanuel Laude

Proximal Point Algorithm

Relations

Monotone Operators

Fixed Point Iterations

Proximal Point
Algorithm
PDHG Revisited

The Proximal Point Algorithm

- Recall our original goal of finding $u \in \mathbb{R}^{n}$ with

$$
0 \in T u,
$$

for $T \subset \mathbb{R}^{n} \times \mathbb{R}^{n}$ monotone.

- We have seen that fixed points of resolvent operator $J_{\lambda} T$ are the zeros of T

Definition: Proximal Point Algorithm (PPA) ${ }^{3}$

Given some maximally monotone operator $T \subset \mathbb{R}^{n} \times \mathbb{R}^{n}$, and some sequence $\left(\lambda_{k}\right)>0$. Then the iteration

$$
u^{k+1}=\left(I+\lambda_{k} T\right)^{-1} u^{k},
$$

is called the proximal point algorithm.

[^2]
Intuition of the Proximal Point Algorithm ${ }^{4}$

Relations

Monotone Operators

Fixed Point Iterations

Proximal Point
Algorithm
PDHG Revisited
${ }^{4}$ Eckstein, Splitting methods for monotone operators with applications to parallel optimzation, 1989, pp. 42

Convergence of Proximal Point Algorithm

- The resolvent $J_{\lambda T}=(I+\lambda T)^{-1}$ is an averaged operator
- To see this, consider the reflection or Cayley operator

$$
C_{\lambda T}:=2 J_{\lambda T}-I \Leftrightarrow J_{\lambda T}=\frac{1}{2} I+\frac{1}{2} C_{\lambda T}
$$

Relations
Monotone Operators
Fixed Point Iterations
Proximal Point
Algorithm
PDHG Revisited

- Hence $J_{\lambda T}$ is averaged with $\theta=\frac{1}{2}$, as we have seen in the last lecture that $C_{\lambda T}$ is nonexpansive
- Proximal Point algorithm converges as it is fixed point iteration of averaged operator

Operator Splitting Methods

Michael Moeller

Thomas Möllenhoff
Emanuel Laude

Relations
PDHG Revisited

Monotone Operators
Fixed Point Iterations
Proximal Point
Algorithm
PDHG Revisited

PDHG as Proximal Point Method

- Remember that for convex-concave saddle point problems

$$
P D(u, p)=G(u)-F^{*}(p)+\langle K u, p\rangle
$$

we have the following:

$$
(\tilde{u}, \tilde{p})=\arg \operatorname{minmax}_{u, p} P D(u, p) \Leftrightarrow\left[\begin{array}{l}
0 \\
0
\end{array}\right] \in \underbrace{\left[\begin{array}{c}
\partial G(\tilde{u})+K^{\top} \tilde{p} \\
-K \tilde{u}+\partial F^{*}(\tilde{p})
\end{array}\right]}_{=: T(\tilde{u}, \tilde{p})}
$$

- For convex F^{*} and G, T is monotone

Relations

Monotone Operators
Fixed Point Iterations
Proximal Point Algorithm

- Idea: use the proximal point to find zero of T
- Stack primal and dual variables into vector $z=(u, p)^{T}$:

$$
z^{k+1}=(I+\lambda T)^{-1} z^{k} \Leftrightarrow z^{k}-z^{k+1} \in \lambda T z^{k+1}
$$

- Plugging things in yields

$$
\begin{aligned}
& u^{k}-u^{k+1} \in \lambda \partial G\left(u^{k+1}\right)+\lambda K^{T} p^{k+1} \\
& p^{k}-p^{k+1} \in \lambda \partial F^{*}\left(p^{k+1}\right)-\lambda K u^{k+1}
\end{aligned}
$$

PDHG as Proximal Point Method

- Reformulating the following

$$
0 \in \lambda^{-1}\left[\begin{array}{l}
u^{k+1}-u^{k} \\
p^{k+1}-p^{k}
\end{array}\right]+\underbrace{\left[\begin{array}{l}
\partial G\left(u^{k+1}\right)+K^{T} p^{k+1} \\
\partial F^{*}\left(p^{k+1}\right)-K u^{k+1}
\end{array}\right]}_{=: T(\tilde{u}, \tilde{p})}
$$

leads to:

$$
\begin{aligned}
u^{k+1} & =(I+\lambda \partial G)^{-1}\left(u^{k}-\lambda K^{T} p^{k+1}\right) \\
& =\operatorname{prox}_{\lambda G}\left(u^{k}-\lambda K^{T} p^{k+1}\right) \\
p^{k+1} & =\left(I+\lambda \partial F^{*}\right)^{-1}\left(p^{k}+\lambda K u^{k+1}\right) \\
& =\operatorname{prox}_{\lambda F^{*}}\left(p^{k}+\lambda K u^{k+1}\right)
\end{aligned}
$$

- Almost looks like the PDHG method, step size λ
- Problem: cannot implement this algorithm, since updates in u^{k+1} and p^{k+1} depend on each other

PDHG as Proximal Point Method

- Consider the following:

$$
0 \in M\left[\begin{array}{l}
u^{k+1}-u^{k} \\
p^{k+1}-p^{k}
\end{array}\right]+\underbrace{\left[\begin{array}{c}
\partial G\left(u^{k+1}\right)+K^{T} p^{k+1} \\
\partial F^{*}\left(p^{k+1}\right)-K u^{k+1}
\end{array}\right]}_{=: T(\tilde{u}, \tilde{p})}
$$

- Step size $M \in \mathbb{R}^{(n+m) \times(n+m)}$ is now a matrix
- Take the following choice

$$
M=\left[\begin{array}{cc}
\frac{1}{\tau} I & -K^{\top} \\
-\theta K & \frac{1}{\sigma} I
\end{array}\right]
$$

- Allows to recover PDHG as proximal point algorithm (PPA)

$$
\begin{aligned}
u^{k+1} & =\operatorname{prox}_{\tau G}\left(u^{k}-\tau K^{\top} p^{k}\right), \\
p^{k+1} & =\operatorname{prox}_{\sigma F^{*}}\left(p^{k}+\sigma K\left(u^{k+1}+\theta\left(u^{k+1}-u^{k}\right)\right)\right)
\end{aligned}
$$

- This is called generalized or customized PPA:

$$
0 \in M\left(z^{k+1}-z^{k}\right)+T z^{k+1} \Leftrightarrow z^{k+1}=(M+T)^{-1} M z^{k}
$$

Convergence of Customized Proximal Point Method

- For symmetric, positive definite M, we can write $M=L^{T} L$, L invertible (Cholesky decomposition)
- Apply classical PPA to operator $T^{\prime}=L^{-T} \circ T \circ L^{-1}$

$$
y^{k+1}=\left(I+L^{-T} \circ T \circ L^{-1}\right)^{-1} y^{k}
$$

- T (maximally) monotone $\Rightarrow L^{-T} \circ T \circ L^{-1}$ (maximally) monotone ${ }^{5}$
- Define $L x=y$, then $0 \in\left(L^{-T} \circ T \circ L^{-1}\right) y \Leftrightarrow 0 \in T x$
- Writing out the algorithm in terms of x yields

$$
0 \in M\left(x^{k+1}-x^{k}\right)+T x^{k+1}
$$

- Hence customized PPA inherits convergence from classical proximal point

[^3]
Convergence of PDHG

- When is the step size matrix symmetric positive definite?

$$
M=\left[\begin{array}{cc}
\frac{1}{\tau} I & -K^{T} \\
-\theta K & \frac{1}{\sigma} I
\end{array}\right]
$$

- Step size requirement for PDHG is $\tau \sigma\|K\|^{2}<1, \tau \sigma>0$

Lemma (Pock-Chambolle-2011 ${ }^{6}$)

Let $\theta=1, \mathrm{~T}$ and Σ symmetric positive definite maps satisfying

$$
\left\|\Sigma^{\frac{1}{2}} K \mathrm{~T}^{\frac{1}{2}}\right\|^{2}<1
$$

Relations
Monotone Operators
Fixed Point Iterations
Proximal Point Algorithm
then the block matrix

$$
M=\left[\begin{array}{cc}
\mathrm{T}^{-1} & -K^{T} \\
-\theta K & \Sigma^{-1}
\end{array}\right]
$$

is symmetric and positive definite.

[^4] algorithms in convex optimization, ICCV 2011

Summary

- Customized proximal point algorithms yield a whole family of methods, many choices of M are concievable

$$
0 \in M\left(z^{k+1}-z^{k}\right)+T z^{k+1}
$$

- PDHG corresponds to one particular choice of M
- Overrelaxation with $\theta=1$ required to make M symmetric
- Convergence follows from convergence of classical proximal point algorithm
- Classical proximal point converges as it is fixed point iteration of averaged operator
- Next lecture: Douglas-Rachford splitting and ADMM

[^0]: ${ }^{1}$ This is again abuse of notation for $\langle u-v, p-q\rangle \geq 0, \forall p \in T u, \forall q \in T v$

[^1]: ${ }^{2}$ This theorem is also known as the Banach fixed point theorem.

[^2]: ${ }^{3}$ R. T. Rockafellar, Monotone Operators and the Proximal Point Algorithm, SIAM J. Control and Optimization, 1976

[^3]: ${ }^{5}$ Bauschke, Combettes, Convex Analysis and Monotone Operator Theory in Hilbert Spaces, Theorem 24.5

[^4]: ${ }^{6}$ T. Pock, A. Chambolle, Diagonal Preconditioning for first-order primal-dual

