# Chapter 5 Operator Splitting Methods

*Convex Optimization for Computer Vision* SS 2016



Michael Moeller Thomas Möllenhoff Emanuel Laude



Relations Monotone Operators Fixed Point Iterations Proximal Point

**PDHG Revisited** 

Algorithm

Michael Moeller Thomas Möllenhoff Emanuel Laude Computer Vision Group Department of Computer Science TU München

### **Recap and Motivation**

 Last 3 lectures: PDHG method for minimizing structured convex problems

$$\min_{u\in\mathbb{R}^n} G(u) + F(Ku)$$

- Unintuitive overrelaxation, rather involved convergence analysis
- Next lectures: simple and unified convergence analysis of many different algorithms within a single approach
- · Key ideas: monotone operators, fixed point iterations
- Give a new understanding of convex optimization
  algorithms

#### Operator Splitting Methods

Michael Moeller Thomas Möllenhoff Emanuel Laude



Relations Monotone Operators Fixed Point Iterations

Proximal Point Algorithm

#### Operator Splitting Methods

Michael Moeller Thomas Möllenhoff Emanuel Laude



Relatio

Monotone Operators

**Fixed Point Iterations** 

Proximal Point Algorithm

PDHG Revisited

## **Relations**

### Notation

- A relation R on  $\mathbb{R}^n$  is a subset of  $\mathbb{R}^n \times \mathbb{R}^n$
- We will refer to it as a set-valued **operator** and overload the usual matrix notation

$$R(x) = Rx := \{y \in \mathbb{R}^n \mid (x, y) \in R\}.$$

• If *Rx* is a singleton or empty for all *x*, then *R* is a function (or single-valued operator) with domain

 $\operatorname{dom}(R) := \{x \in \mathbb{R}^n \mid Rx \neq \emptyset\}$ 

- Abuse of notation: identify singleton  $\{x\}$  with x, i.e., write Rx = y instead of  $Rx \ni y$  if R is function
- · Concept: identifying functions with their graph

#### Operator Splitting Methods

Michael Moeller Thomas Möllenhoff Emanuel Laude



Monotone Operators

**Fixed Point Iterations** 

Proximal Point Algorithm

### **Some Examples**

- Empty relation: Ø
- Identity:  $I := \{(u, u) \mid u \in \mathbb{R}^n\}$
- Zero:  $0 := \{(u, 0) \mid u \in \mathbb{R}^n\}$
- Gradient relation:

$$\nabla E := \{(u, \nabla E(u)) \mid u \in \mathbb{R}^n\}$$

#### Operator Splitting Methods

Michael Moeller Thomas Möllenhoff Emanuel Laude



Monotone Operators

**Fixed Point Iterations** 

Proximal Point Algorithm

**PDHG Revisited** 

Subdifferential relation:

 $\partial E := \{(u,g) \mid u \in \mathsf{dom}(E), E(v) \ge E(u) + \langle g, v - u \rangle, \forall v \in \mathbb{R}^n \}$ 

 Another possible view: think of relations as a set valued functions, e.g., ∂E : ℝ<sup>n</sup> → P(ℝ<sup>n</sup>)

### **Our Goal**

### Solve generalized equation (inclusion) problem

 $0 \in R(u)$ 

i.e., find  $u \in \mathbb{R}^n$  such that  $(u, 0) \in R$ .

### Examples:

- Set  $R = \partial E$ , then the goal is to find  $0 \in \partial E(u)$
- This are just the optimality conditions of our prototypical optimization problem:

 $\arg\min_{u\in\mathbb{R}^n} E(u)$ 

Finding saddle-points (ũ, p̃) of

$$PD(u,p) = G(u) - F^*(p) + \langle Ku, p \rangle$$

corresponds to the inclusion problem

$$\mathbf{0} \in \begin{bmatrix} \partial \boldsymbol{G} & \boldsymbol{K}^{\mathsf{T}} \\ -\boldsymbol{K} & \partial \boldsymbol{F}^* \end{bmatrix} \begin{bmatrix} \boldsymbol{u} \\ \boldsymbol{p} \end{bmatrix}$$

#### Operator Splitting Methods

Michael Moeller Thomas Möllenhoff Emanuel Laude



Relatio

Monotone Operators

**Fixed Point Iterations** 

Proximal Point Algorithm

PDHG Revisited

updated 13.06.2016

### **Operations on Relations**

• Inverse 
$$R^{-1} = \{(y, x) \mid (x, y) \in R\}$$

- · Exists for any relation
- Reduces to inverse function when R is injective function

• Addition 
$$R + S = \{(x, y + z) \mid (x, y) \in R, (x, z) \in S\}$$

• Scaling 
$$\lambda R = \{(x, \lambda y) \mid (x, y) \in R\}$$

• Resolvent 
$$J_{\lambda R} := (I + \lambda R)^{-1}$$

### Examples:

• 
$$I + \lambda R = \{(x, x + \lambda y) \mid (x, y) \in R\}$$

- $J_R = \{(x + \lambda y, x) \mid (x, y) \in R\}$
- *E* closed, proper, convex:  $(\partial E)^{-1} = \partial E^*$

 $\rightarrow$  Draw a picture for E(u) = |u|

#### Operator Splitting Methods

Michael Moeller Thomas Möllenhoff Emanuel Laude



Monotone Operators Fixed Point Iterations

. . . . . . . . . .

Proximal Point Algorithm

#### Operator Splitting Methods

Michael Moeller Thomas Möllenhoff Emanuel Laude



Relations

Monotone Operators

**Fixed Point Iterations** 

Proximal Point Algorithm

PDHG Revisited

## **Monotone Operators**

updated 13.06.2016

### **Monotone Operators**

### Definition

The set-valued operator  $T \subset \mathbb{R}^n \times \mathbb{R}^n$  is called **monotone** if

 $\langle u - v, Tu - Tv \rangle \ge 0, \ \forall u, v \in \mathbb{R}^n$ . Notation<sup>1</sup>

An operator T is called **maximally monotone** if it is not contained in any other monotone operator.

• Maximal monotonicity is an important technical detail, but we will be sloppy about it for the rest of the course

Examples of monotone operators:

- Monotonically non-decreasing functions  $\mathcal{T}:\mathbb{R}\to\mathbb{R}$
- Any positive semi-definite matrix A:  $\langle Ax Ay, x y \rangle \ge 0$
- Subdifferential of a convex function  $\partial f$
- Proximity operators of convex functions  $\operatorname{prox}_{\tau f}: \mathbb{R}^n \to \mathbb{R}^n$

<sup>1</sup>This is again abuse of notation for  $\langle u - v, p - q \rangle \ge 0, \ \forall p \in Tu, \forall q \in Tv$ 

#### Operator Splitting Methods

Michael Moeller Thomas Möllenhoff Emanuel Laude



Relations

**Monotone Operators** 

**Fixed Point Iterations** 

Proximal Point Algorithm

### **Monotone Operators**

### Calculus rules (exercise):

- *T* monotone,  $\lambda \ge \mathbf{0} \Rightarrow \lambda T$  monotone
- *T* monotone  $\Rightarrow$  *T*<sup>-1</sup> monotone
- *R*, *S* monotone,  $\lambda \ge \mathbf{0} \Rightarrow \mathbf{R} + \lambda \mathbf{S}$  is monotone

### Some important definitions/properties:

- Lipschitz operators (and in particular nonexpansive operators) are single-valued (functions)
- x is called *fixed point* of operator T if x = Tx
- If *F* is nonexpansive (Lipschitz constant  $L \le 1$ ) and dom  $T = \mathbb{R}^n$  then the set of fixed points  $(I - F)^{-1}(0)$  is closed and convex **(exercise)**

#### Operator Splitting Methods

Michael Moeller Thomas Möllenhoff Emanuel Laude



Relations

Monotone Operators

**Fixed Point Iterations** 

Proximal Point Algorithm

### **Resolvent and Cayley Operators**

- Let  $T \subset \mathbb{R}^n \times \mathbb{R}^n$  be set-valued operator
- The *resolvent operator* of *T* is given as  $J_{\lambda T} := (I + \lambda T)^{-1}$
- Special case:  $T = \partial f$ ,  $J_{\lambda \partial f}$  is proximal operator of f
- From previous slide: resolvent is monotone if *T* is monotone
- The Cayley operator (or reflection operator) of T is defined as C<sub>\lambda T</sub> := 2J<sub>\lambda T</sub> - I

### Facts:

- $0 \in Tx$  if and only if  $x = J_{\lambda T}x = C_{\lambda T}x$
- If T is monotone, then  $J_{\lambda T}$  and  $C_{\lambda T}$  are nonexpansive

#### Operator Splitting Methods

Michael Moeller Thomas Möllenhoff Emanuel Laude



Relations

Monotone Operators

**Fixed Point Iterations** 

Proximal Point Algorithm

#### Operator Splitting Methods

Michael Moeller Thomas Möllenhoff Emanuel Laude



Relations

Monotone Operators

**Fixed Point Iterations** 

Proximal Point Algorithm

PDHG Revisited

## **Fixed Point Iterations**

### The Main Algorithm

- Recall that  $u \in \mathbb{R}^n$  is fixed point of  $F : \mathbb{R}^n \to \mathbb{R}^n$ , if u = Fu
- The main algorithm of this chapter is the *fixed point* or *Picard iteration* for some given  $u^0 \in \mathbb{R}^n$ :

$$u^{k+1} = Fu^k, \qquad k = 0, 1, 2, \dots$$

- We will see that many important convex optimization algorithms can be written in this form
- Allows simple and unified analysis

Michael Moeller Thomas Möllenhoff Emanuel Laude



Relations

Monotone Operators

**Fixed Point Iterations** 

Proximal Point Algorithm

### **Contraction Mapping Theorem**

Suppose that  $F : \mathbb{R}^n \to \mathbb{R}^n$  is a contraction with Lipschitz constant L < 1. Then the fixed point iteration

$$u^{k+1} = Fu^k,$$

also called contraction mapping algorithm, converges to the unique fixed point of *F*.

 $\rightarrow$  Proof: see literature<sup>2</sup>

· Example: the gradient method can be written as

$$u^{k+1} = (I - \tau \nabla E)u^k$$

• Suppose *E* is *m*-strongly convex and *L*-smooth, then  $I - \tau \nabla E$  is Lipschitz with  $L_{GM} = \max\{|1 - \tau m|, |1 - \tau L|\}$ 

• 
$$I - \tau \nabla E$$
 is contractive for  $\tau \in (0, 2/L)$ 

#### Operator Splitting Methods

Michael Moeller Thomas Möllenhoff Emanuel Laude



Relations

Monotone Operators

**Fixed Point Iterations** 

Proximal Point Algorithm

```
updated 13.06.2016
```

<sup>&</sup>lt;sup>2</sup>This theorem is also known as the Banach fixed point theorem.

### Iteration of Averaged Nonexpansive Mappings

- Recall that a mapping  $F : \mathbb{R}^n \to \mathbb{R}^n$  is called *nonexpansive* if it is Lipschitz with constant  $L \leq 1$ .
- Fixed point iteration of nonexpansive mapping doesn't necessarily converge (example: rotation, reflection)
- The mapping  $F : \mathbb{R}^n \to \mathbb{R}^n$  is called *averaged* if  $F = (1 \theta)I + \theta T$ , for some nonexpansive operator T and  $\theta \in (0, 1)$

### Theorem: Krasnosel'skii-Mann

Let  $F : \mathbb{R}^n \to \mathbb{R}^n$  be averaged, and denote the (non-empty) set of fixed points of F as U. Then the sequence  $(u^k)$  produced by the iteration

$$u^{k+1} = Fu^k$$

converges to a fixed point  $u^* \in U$ , i.e.,  $u^k \to u^*$ .

### $\rightarrow$ Proof: board!

#### Operator Splitting Methods

Michael Moeller Thomas Möllenhoff Emanuel Laude



Relations

Monotone Operators

Fixed Point Iterations

Proximal Point Algorithm

### Example: gradient method

- Assume E is L-smooth but not strongly convex
- Possible to show that the operator (*I* − τ∇*E*) is Lipschitz continuous with parameter *L<sub>GM</sub>* = max{1, |1 − τ*L*|}
- For  $0 < \tau \leq 2/L$ , this operator is nonexpansive
- It is also averaged for  $0 < \tau < 2/L$  since

$$(I - \tau \nabla E) = (1 - \theta)I + \theta(I - (2/L)\nabla E),$$

with  $\theta = \tau L/2 < 1$ .

 Hence, we get convergence of the gradient descent method from the previous theorem



Michael Moeller Thomas Möllenhoff Emanuel Laude



Relations

Monotone Operators

**Fixed Point Iterations** 

Proximal Point Algorithm

#### Operator Splitting Methods

Michael Moeller Thomas Möllenhoff Emanuel Laude



Relations

Monotone Operators

**Fixed Point Iterations** 

Proximal Point Algorithm

PDHG Revisited

## **Proximal Point Algorithm**

### **The Proximal Point Algorithm**

• Recall our original goal of finding  $u \in \mathbb{R}^n$  with

 $0\in Tu,$ 

for  $T \subset \mathbb{R}^n \times \mathbb{R}^n$  monotone.

 We have seen that fixed points of resolvent operator J<sub>λT</sub> are the zeros of T

### Definition: Proximal Point Algorithm (PPA)<sup>3</sup>

Given some maximally monotone operator  $T \subset \mathbb{R}^n \times \mathbb{R}^n$ , and some sequence  $(\lambda_k) > 0$ . Then the iteration

$$u^{k+1} = (I + \lambda_k T)^{-1} u^k,$$

is called the proximal point algorithm.

<sup>3</sup>R. T. Rockafellar, Monotone Operators and the Proximal Point Algorithm, SIAM J. Control and Optimization, 1976

#### Operator Splitting Methods



### Intuition of the Proximal Point Algorithm <sup>4</sup>



#### Operator Splitting Methods

<sup>&</sup>lt;sup>4</sup>Eckstein, Splitting methods for monotone operators with applications to parallel optimzation, 1989, pp. 42

### **Convergence of Proximal Point Algorithm**

- The resolvent  $J_{\lambda T} = (I + \lambda T)^{-1}$  is an averaged operator
- · To see this, consider the reflection or Cayley operator

$$C_{\lambda T} := 2J_{\lambda T} - I \Leftrightarrow J_{\lambda T} = \frac{1}{2}I + \frac{1}{2}C_{\lambda T}$$

- Hence  $J_{\lambda T}$  is averaged with  $\theta = \frac{1}{2}$ , as we have seen in the last lecture that  $C_{\lambda T}$  is nonexpansive
- Proximal Point algorithm converges as it is fixed point iteration of averaged operator



#### Operator Splitting Methods

Michael Moeller Thomas Möllenhoff Emanuel Laude



Relations Monotone Operators Fixed Point Iterations Proximal Point

Algorithm

PDHG Revisited

### **PDHG as Proximal Point Method**

Remember that for convex-concave saddle point problems

$$PD(u,p) = G(u) - F^*(p) + \langle Ku, p \rangle$$

we have the following:

$$(\tilde{u}, \tilde{p}) = \arg \min_{u, p} PD(u, p) \Leftrightarrow \begin{bmatrix} 0 \\ 0 \end{bmatrix} \in \underbrace{\begin{bmatrix} \partial G(\tilde{u}) + K^T \tilde{p} \\ -K \tilde{u} + \partial F^*(\tilde{p}) \end{bmatrix}}_{=:T(\tilde{u}, \tilde{p})}$$

- For convex F\* and G, T is monotone
- Idea: use the proximal point to find zero of T
- Stack primal and dual variables into vector  $z = (u, p)^T$ :

$$z^{k+1} = (I + \lambda T)^{-1} z^k \iff z^k - z^{k+1} \in \lambda T z^{k+1}$$

Plugging things in yields

$$u^{k} - u^{k+1} \in \lambda \partial G(u^{k+1}) + \lambda K^{T} p^{k+1}$$
$$p^{k} - p^{k+1} \in \lambda \partial F^{*}(p^{k+1}) - \lambda K u^{k+1}$$

#### Operator Splitting Methods

Michael Moeller Thomas Möllenhoff Emanuel Laude

Monotone Operators

**Fixed Point Iterations** 

Proximal Point Algorithm

**Relations** 

### **PDHG as Proximal Point Method**

· Reformulating the following

$$\mathbf{0} \in \lambda^{-1} \begin{bmatrix} u^{k+1} - u^k \\ p^{k+1} - p^k \end{bmatrix} + \underbrace{\begin{bmatrix} \partial G(u^{k+1}) + K^T p^{k+1} \\ \partial F^*(p^{k+1}) - K u^{k+1} \end{bmatrix}}_{=:T(\tilde{u}, \tilde{p})}$$

leads to:

$$u^{k+1} = (I + \lambda \partial G)^{-1} (u^k - \lambda K^T p^{k+1})$$
  
= prox<sub>\lambda G</sub> (u^k - \lambda K^T p^{k+1})  
$$p^{k+1} = (I + \lambda \partial F^*)^{-1} (p^k + \lambda K u^{k+1})$$
  
= prox<sub>\lambda F^\*</sub> (p^k + \lambda K u^{k+1})

- Almost looks like the PDHG method, step size  $\lambda$
- **Problem:** cannot implement this algorithm, since updates in  $u^{k+1}$  and  $p^{k+1}$  depend on each other

#### Operator Splitting Methods



### **PDHG as Proximal Point Method**

Consider the following:

$$0 \in M \begin{bmatrix} u^{k+1} - u^k \\ p^{k+1} - p^k \end{bmatrix} + \underbrace{\begin{bmatrix} \partial G(u^{k+1}) + K^T p^{k+1} \\ \partial F^*(p^{k+1}) - K u^{k+1} \end{bmatrix}}_{=:T(\tilde{u}, \tilde{p})}$$

- Step size  $M \in \mathbb{R}^{(n+m) \times (n+m)}$  is now a matrix
- Take the following choice

$$M = \begin{bmatrix} \frac{1}{\tau}I & -K^{\mathsf{T}} \\ -\theta K & \frac{1}{\sigma}I \end{bmatrix}$$

· Allows to recover PDHG as proximal point algorithm (PPA)

$$u^{k+1} = \operatorname{prox}_{\tau G}(u^k - \tau K^T p^k),$$
  
$$p^{k+1} = \operatorname{prox}_{\sigma F^*}(p^k + \sigma K(u^{k+1} + \theta(u^{k+1} - u^k)))$$

· This is called generalized or customized PPA:

$$0 \in M(z^{k+1} - z^k) + Tz^{k+1} \iff z^{k+1} = (M+T)^{-1}Mz^k$$

#### Operator Splitting Methods

Michael Moeller Thomas Möllenhoff Emanuel Laude



updated 13.06.2016

### **Convergence of Customized Proximal Point Method**

- For symmetric, positive definite *M*, we can write  $M = L^T L$ , *L* invertible (Cholesky decomposition)
- Apply classical PPA to operator  $T' = L^{-T} \circ T \circ L^{-1}$

$$y^{k+1} = (I + L^{-T} \circ T \circ L^{-1})^{-1} y^k$$

- *T* (maximally) monotone  $\Rightarrow L^{-T} \circ T \circ L^{-1}$  (maximally) monotone <sup>5</sup>
- Define Lx = y, then  $0 \in (L^{-T} \circ T \circ L^{-1})y \Leftrightarrow 0 \in Tx$
- Writing out the algorithm in terms of x yields

$$0 \in M(x^{k+1} - x^k) + Tx^{k+1}$$

 Hence customized PPA inherits convergence from classical proximal point

#### Operator Splitting Methods

Michael Moeller Thomas Möllenhoff Emanuel Laude



Proximal Point Algorithm

<sup>&</sup>lt;sup>5</sup>Bauschke, Combettes, Convex Analysis and Monotone Operator Theory in Hilbert Spaces, Theorem 24.5

### **Convergence of PDHG**

· When is the step size matrix symmetric positive definite?

$$M = \begin{bmatrix} \frac{1}{\tau}I & -K^{\mathsf{T}} \\ -\theta K & \frac{1}{\sigma}I \end{bmatrix}$$

• Step size requirement for PDHG is  $\tau \sigma \|K\|^2 < 1$ ,  $\tau \sigma > 0$ 

Lemma (Pock-Chambolle-2011<sup>6</sup>)

Let  $\theta = 1$ , T and  $\Sigma$  symmetric positive definite maps satisfying

$$\left\|\Sigma^{\frac{1}{2}}KT^{\frac{1}{2}}\right\|^{2} < 1,$$

then the block matrix

$$M = egin{bmatrix} \mathrm{T}^{-1} & -K^{\mathsf{T}} \ - heta K & \Sigma^{-1} \end{bmatrix}$$

is symmetric and positive definite.

<sup>6</sup>T. Pock, A. Chambolle, Diagonal Preconditioning for first-order primal-dual algorithms in convex optimization, ICCV 2011

#### Operator Splitting Methods

Michael Moeller Thomas Möllenhoff Emanuel Laude



Relations Monotone Operators Fixed Point Iterations Proximal Point Algorithm

PDHG Revisited

updated 13.06.2016

### Summary

 Customized proximal point algorithms yield a whole family of methods, many choices of *M* are concievable

$$0 \in M(z^{k+1}-z^k) + Tz^{k+1}$$

- PDHG corresponds to one particular choice of M
- Overrelaxation with  $\theta = 1$  required to make *M* symmetric
- Convergence follows from convergence of classical proximal point algorithm
- Classical proximal point converges as it is fixed point iteration of averaged operator
- Next lecture: Douglas-Rachford splitting and ADMM

#### Operator Splitting Methods

Michael Moeller Thomas Möllenhoff Emanuel Laude



Relations Monotone Operators Fixed Point Iterations Proximal Point Algorithm