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Recap and Motivation

• Last 3 lectures: PDHG method for minimizing structured
convex problems

min
u∈Rn

G(u) + F (Ku)

• Unintuitive overrelaxation, rather involved convergence
analysis

• Next lectures: simple and unified convergence analysis of
many different algorithms within a single approach

• Key ideas: monotone operators, fixed point iterations

• Give a new understanding of convex optimization
algorithms
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Notation

• A relation R on Rn is a subset of Rn × Rn

• We will refer to it as a set-valued operator and overload
the usual matrix notation

R(x) = Rx := {y ∈ Rn | (x , y) ∈ R} .

• If Rx is a singleton or empty for all x , then R is a function
(or single-valued operator) with domain

dom(R) := {x ∈ Rn | Rx 6= ∅}

• Abuse of notation: identify singleton {x} with x , i.e., write
Rx = y instead of Rx 3 y if R is function

• Concept: identifying functions with their graph
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Some Examples

• Empty relation: ∅
• Identity: I := {(u,u) | u ∈ Rn}
• Zero: 0 := {(u,0) | u ∈ Rn}
• Gradient relation:

∇E := {(u,∇E(u)) | u ∈ Rn}

• Subdifferential relation:

∂E := {(u,g) | u ∈ dom(E),E(v) ≥ E(u)+〈g, v−u〉,∀v ∈ Rn}

• Another possible view: think of relations as a set valued
functions, e.g., ∂E : Rn → P(Rn)
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Our Goal

Solve generalized equation (inclusion) problem

0 ∈ R(u)

i.e., find u ∈ Rn such that (u,0) ∈ R.

Examples:
• Set R = ∂E , then the goal is to find 0 ∈ ∂E(u)

• This are just the optimality conditions of our prototypical
optimization problem:

arg min
u∈Rn

E(u)

• Finding saddle-points (ũ, p̃) of

PD(u,p) = G(u)− F ∗(p) + 〈Ku,p〉

corresponds to the inclusion problem

0 ∈

[
∂G K T

−K ∂F ∗

][
u
p

]
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Operations on Relations

• Inverse R−1 = {(y , x) | (x , y) ∈ R}
• Exists for any relation
• Reduces to inverse function when R is injective function

• Addition R + S = {(x , y + z) | (x , y) ∈ R, (x , z) ∈ S}
• Scaling λR = {(x , λy) | (x , y) ∈ R}
• Resolvent JλR := (I + λR)−1

Examples:

• I + λR = {(x , x + λy) | (x , y) ∈ R}
• JR = {(x + λy , x) | (x , y) ∈ R}
• E closed, proper, convex: (∂E)−1 = ∂E∗

→ Draw a picture for E(u) = |u|
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Monotone Operators
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Monotone Operators

Definition

The set-valued operator T ⊂ Rn × Rn is called monotone if

〈u − v ,Tu − Tv〉 ≥ 0, ∀u, v ∈ Rn. Notation1

An operator T is called maximally monotone if it is not
contained in any other monotone operator.

• Maximal monotonicity is an important technical detail, but
we will be sloppy about it for the rest of the course

Examples of monotone operators:

• Monotonically non-decreasing functions T : R→ R

• Any positive semi-definite matrix A: 〈Ax − Ay , x − y〉 ≥ 0

• Subdifferential of a convex function ∂f

• Proximity operators of convex functions proxτ f : Rn → Rn

1This is again abuse of notation for 〈u − v , p − q〉 ≥ 0, ∀p ∈ Tu,∀q ∈ Tv
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Monotone Operators

Calculus rules (exercise):

• T monotone, λ ≥ 0⇒ λT monotone

• T monotone⇒ T−1 monotone

• R, S monotone, λ ≥ 0⇒ R + λS is monotone

Some important definitions/properties:

• Lipschitz operators (and in particular nonexpansive
operators) are single-valued (functions)

• x is called fixed point of operator T if x = Tx

• If F is nonexpansive (Lipschitz constant L ≤ 1) and
domT = Rn then the set of fixed points (I − F )−1(0) is
closed and convex (exercise)
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Resolvent and Cayley Operators

• Let T ⊂ Rn × Rn be set-valued operator

• The resolvent operator of T is given as JλT := (I + λT )−1

• Special case: T = ∂f , Jλ∂f is proximal operator of f

• From previous slide: resolvent is monotone if T is
monotone

• The Cayley operator (or reflection operator) of T is defined
as CλT := 2JλT − I

Facts:

• 0 ∈ Tx if and only if x = JλT x = CλT x

• If T is monotone, then JλT and CλT are nonexpansive
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Fixed Point Iterations
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The Main Algorithm

• Recall that u ∈ Rn is fixed point of F : Rn → Rn, if u = Fu

• The main algorithm of this chapter is the fixed point or
Picard iteration for some given u0 ∈ Rn:

uk+1 = Fuk , k = 0,1,2, . . .

• We will see that many important convex optimization
algorithms can be written in this form

• Allows simple and unified analysis
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Iteration of Contraction Mappings

Contraction Mapping Theorem

Suppose that F : Rn → Rn is a contraction with Lipschitz
constant L < 1. Then the fixed point iteration

uk+1 = Fuk ,

also called contraction mapping algorithm, converges to the
unique fixed point of F .

→ Proof: see literature2

• Example: the gradient method can be written as

uk+1 = (I − τ∇E)uk

• Suppose E is m-strongly convex and L-smooth, then
I − τ∇E is Lipschitz with LGM = max{|1− τm|, |1− τL|}

• I − τ∇E is contractive for τ ∈ (0,2/L)

2This theorem is also known as the Banach fixed point theorem.



Operator Splitting
Methods

Michael Moeller
Thomas Möllenhoff
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Iteration of Averaged Nonexpansive Mappings

• Recall that a mapping F : Rn → Rn is called nonexpansive
if it is Lipschitz with constant L ≤ 1.

• Fixed point iteration of nonexpansive mapping doesn’t
necessarily converge (example: rotation, reflection)

• The mapping F : Rn → Rn is called averaged if
F = (1− θ)I + θT , for some nonexpansive operator T and
θ ∈ (0,1)

Theorem: Krasnosel’skii-Mann

Let F : Rn → Rn be averaged, and denote the (non-empty) set
of fixed points of F as U. Then the sequence (uk ) produced by
the iteration

uk+1 = Fuk

converges to a fixed point u∗ ∈ U, i.e., uk → u∗.

→ Proof: board!
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Example: gradient method

• Assume E is L-smooth but not strongly convex

• Possible to show that the operator (I − τ∇E) is Lipschitz
continuous with parameter LGM = max{1, |1− τL|}

• For 0 < τ ≤ 2/L, this operator is nonexpansive

• It is also averaged for 0 < τ < 2/L since

(I − τ∇E) = (1− θ)I + θ(I − (2/L)∇E),

with θ = τL/2 < 1.

• Hence, we get convergence of the gradient descent
method from the previous theorem
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Proximal Point Algorithm
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The Proximal Point Algorithm

• Recall our original goal of finding u ∈ Rn with

0 ∈ Tu,

for T ⊂ Rn × Rn monotone.

• We have seen that fixed points of resolvent operator JλT

are the zeros of T

Definition: Proximal Point Algorithm (PPA) 3

Given some maximally monotone operator T ⊂ Rn × Rn, and
some sequence (λk ) > 0. Then the iteration

uk+1 = (I + λk T )−1uk ,

is called the proximal point algorithm.

3R. T. Rockafellar, Monotone Operators and the Proximal Point Algorithm,
SIAM J. Control and Optimization, 1976
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Intuition of the Proximal Point Algorithm 4

4Eckstein, Splitting methods for monotone operators with applications to
parallel optimzation, 1989, pp. 42
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Convergence of Proximal Point Algorithm

• The resolvent JλT = (I + λT )−1 is an averaged operator

• To see this, consider the reflection or Cayley operator

CλT := 2JλT − I ⇔ JλT =
1
2

I +
1
2

CλT

• Hence JλT is averaged with θ = 1
2 , as we have seen in the

last lecture that CλT is nonexpansive

• Proximal Point algorithm converges as it is fixed point
iteration of averaged operator
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PDHG as Proximal Point Method

• Remember that for convex-concave saddle point problems

PD(u,p) = G(u)− F ∗(p) + 〈Ku,p〉

we have the following:

(ũ, p̃) = arg minmaxu,p PD(u,p)⇔

[
0
0

]
∈

[
∂G(ũ) + K T p̃
−K ũ + ∂F ∗(p̃)

]
︸ ︷︷ ︸

=:T (ũ,p̃)

• For convex F ∗ and G, T is monotone
• Idea: use the proximal point to find zero of T
• Stack primal and dual variables into vector z = (u,p)T :

zk+1 = (I + λT )−1zk ⇔ zk − zk+1 ∈ λTzk+1

• Plugging things in yields

uk − uk+1 ∈ λ∂G(uk+1) + λK T pk+1

pk − pk+1 ∈ λ∂F ∗(pk+1)− λKuk+1
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PDHG as Proximal Point Method

• Reformulating the following

0 ∈ λ−1

[
uk+1 − uk

pk+1 − pk

]
+

[
∂G(uk+1) + K T pk+1

∂F ∗(pk+1)− Kuk+1

]
︸ ︷︷ ︸

=:T (ũ,p̃)

leads to:

uk+1 = (I + λ∂G)−1(uk − λK T pk+1)

= proxλG(uk − λK T pk+1)

pk+1 = (I + λ∂F ∗)−1(pk + λKuk+1)

= proxλF∗(pk + λKuk+1)

• Almost looks like the PDHG method, step size λ

• Problem: cannot implement this algorithm, since updates
in uk+1 and pk+1 depend on each other
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PDHG as Proximal Point Method

• Consider the following:

0 ∈ M

[
uk+1 − uk

pk+1 − pk

]
+

[
∂G(uk+1) + K T pk+1

∂F ∗(pk+1)− Kuk+1

]
︸ ︷︷ ︸

=:T (ũ,p̃)

• Step size M ∈ R(n+m)×(n+m) is now a matrix
• Take the following choice

M =

[
1
τ I −K T

−θK 1
σ I

]
• Allows to recover PDHG as proximal point algorithm (PPA)

uk+1 = proxτG(uk − τK T pk ),

pk+1 = proxσF∗(pk + σK (uk+1 + θ(uk+1 − uk )))

• This is called generalized or customized PPA:

0 ∈ M(zk+1 − zk ) + Tzk+1 ⇔ zk+1 = (M + T )−1Mzk
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Convergence of Customized Proximal Point Method

• For symmetric, positive definite M, we can write M = LT L,
L invertible (Cholesky decomposition)

• Apply classical PPA to operator T ′ = L−T ◦ T ◦ L−1

yk+1 = (I + L−T ◦ T ◦ L−1)−1yk

• T (maximally) monotone⇒ L−T ◦ T ◦ L−1 (maximally)
monotone 5

• Define Lx = y , then 0 ∈ (L−T ◦ T ◦ L−1)y ⇔ 0 ∈ Tx

• Writing out the algorithm in terms of x yields

0 ∈ M(xk+1 − xk ) + Txk+1

• Hence customized PPA inherits convergence from
classical proximal point

5Bauschke, Combettes, Convex Analysis and Monotone Operator Theory in
Hilbert Spaces, Theorem 24.5
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Convergence of PDHG

• When is the step size matrix symmetric positive definite?

M =

[
1
τ I −K T

−θK 1
σ I

]

• Step size requirement for PDHG is τσ ‖K‖2
< 1, τσ > 0

Lemma (Pock-Chambolle-2011 6)

Let θ = 1, T and Σ symmetric positive definite maps satisfying∥∥∥Σ
1
2 K T

1
2

∥∥∥2
< 1,

then the block matrix

M =

[
T−1 −K T

−θK Σ−1

]

is symmetric and positive definite.
6T. Pock, A. Chambolle, Diagonal Preconditioning for first-order primal-dual

algorithms in convex optimization, ICCV 2011
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Summary

• Customized proximal point algorithms yield a whole family
of methods, many choices of M are concievable

0 ∈ M(zk+1 − zk ) + Tzk+1

• PDHG corresponds to one particular choice of M

• Overrelaxation with θ = 1 required to make M symmetric

• Convergence follows from convergence of classical
proximal point algorithm

• Classical proximal point converges as it is fixed point
iteration of averaged operator

• Next lecture: Douglas-Rachford splitting and ADMM


