Chapter 5
 Operator Splitting Methods

Convex Optimization for Computer Vision SS 2016

Operator Splitting Methods

Michael Moeller

Thomas Möllenhoff Emanuel Laude

Relations

Monotone Operators
Fixed Point Iterations
Proximal Point
Algorithm
PDHG Revisited

Douglas-Rachford
Splitting

Michael Moeller
Thomas Möllenhoff
Emanuel Laude
Computer Vision Group
Department of Computer Science
TU München

Recap and Motivation

Operator Splitting Methods

Michael Moeller
Thomas Möllenhoff Emanuel Laude

- Last 3 lectures: PDHG method for minimizing structured convex problems

$\min _{u \in \mathbb{R}^{n}} G(u)+F(K u)$

Relations

Monotone Operators
Fixed Point Iterations
Proximal Point
Algorithm
PDHG Revisited
Douglas-Rachford Splitting

Recap and Motivation

Operator Splitting Methods

Michael Moeller
Thomas Möllenhoff Emanuel Laude

- Last 3 lectures: PDHG method for minimizing structured convex problems

$$
\min _{u \in \mathbb{R}^{n}} G(u)+F(K u)
$$

- Unintuitive overrelaxation, rather involved convergence analysis

Relations

Monotone Operators
Fixed Point Iterations
Proximal Point
Algorithm
PDHG Revisited
Douglas-Rachford Splitting

Recap and Motivation

- Last 3 lectures: PDHG method for minimizing structured convex problems

$$
\min _{u \in \mathbb{R}^{n}} G(u)+F(K u)
$$

Relations
Monotone Operators
Fixed Point Iterations

- Unintuitive overrelaxation, rather involved convergence analysis
- Next lectures: simple and unified convergence analysis of many different algorithms within a single approach

Proximal Point
Algorithm
PDHG Revisited
Douglas-Rachford Splitting

Recap and Motivation

- Last 3 lectures: PDHG method for minimizing structured convex problems

$$
\min _{u \in \mathbb{R}^{n}} G(u)+F(K u)
$$

Relations

Monotone Operators

Fixed Point Iterations

- Unintuitive overrelaxation, rather involved convergence analysis
- Next lectures: simple and unified convergence analysis of many different algorithms within a single approach
- Key ideas: monotone operators, fixed point iterations

Proximal Point
Algorithm
PDHG Revisited
Douglas-Rachford Splitting

Recap and Motivation

- Last 3 lectures: PDHG method for minimizing structured convex problems

$$
\min _{u \in \mathbb{R}^{n}} G(u)+F(K u)
$$

- Unintuitive overrelaxation, rather involved convergence analysis
- Next lectures: simple and unified convergence analysis of many different algorithms within a single approach
- Key ideas: monotone operators, fixed point iterations
- Give a new understanding of convex optimization algorithms

Michael Moeller

Thomas Möllenhoff
Emanuel Laude

Relations

Relations

Monotone Operators
Fixed Point Iterations

Proximal Point
Algorithm
PDHG Revisited

Douglas-Rachford Splitting

Notation

Operator Splitting Methods

Michael Moeller

Thomas Möllenhoff
Emanuel Laude

Relations
Monotone Operators
Fixed Point Iterations
Proximal Point
Algorithm
PDHG Revisited
Douglas-Rachford Splitting

Notation

- A relation R on \mathbb{R}^{n} is a subset of $\mathbb{R}^{n} \times \mathbb{R}^{n}$
- We will refer to it as a set-valued operator and overload the usual matrix notation

$$
R(x)=R x:=\left\{y \in \mathbb{R}^{n} \mid(x, y) \in R\right\} .
$$

Operator Splitting Methods

Michael Moeller

Thomas Möllenhoff Emanuel Laude

Relations

Monotone Operators
Fixed Point Iterations
Proximal Point
Algorithm
PDHG Revisited
Douglas-Rachford Splitting

Notation

- A relation R on \mathbb{R}^{n} is a subset of $\mathbb{R}^{n} \times \mathbb{R}^{n}$
- We will refer to it as a set-valued operator and overload the usual matrix notation

$$
R(x)=R x:=\left\{y \in \mathbb{R}^{n} \mid(x, y) \in R\right\} .
$$

- If $R x$ is a singleton or empty for all x, then R is a function (or single-valued operator) with domain

$$
\operatorname{dom}(R):=\left\{x \in \mathbb{R}^{n} \mid R x \neq \emptyset\right\}
$$

Relations
Monotone Operators
Fixed Point Iterations
Proximal Point
Algorithm
PDHG Revisited

Douglas-Rachford Splitting

Notation

- A relation R on \mathbb{R}^{n} is a subset of $\mathbb{R}^{n} \times \mathbb{R}^{n}$
- We will refer to it as a set-valued operator and overload the usual matrix notation

$$
R(x)=R x:=\left\{y \in \mathbb{R}^{n} \mid(x, y) \in R\right\}
$$

- If $R x$ is a singleton or empty for all x, then R is a function (or single-valued operator) with domain

$$
\operatorname{dom}(R):=\left\{x \in \mathbb{R}^{n} \mid R x \neq \emptyset\right\}
$$

- Abuse of notation: identify singleton $\{x\}$ with x, i.e., write $R x=y$ instead of $R x \ni y$ if R is function

Notation

- A relation R on \mathbb{R}^{n} is a subset of $\mathbb{R}^{n} \times \mathbb{R}^{n}$
- We will refer to it as a set-valued operator and overload the usual matrix notation

$$
R(x)=R x:=\left\{y \in \mathbb{R}^{n} \mid(x, y) \in R\right\} .
$$

- If $R x$ is a singleton or empty for all x, then R is a function (or single-valued operator) with domain

$$
\operatorname{dom}(R):=\left\{x \in \mathbb{R}^{n} \mid R x \neq \emptyset\right\}
$$

- Abuse of notation: identify singleton $\{x\}$ with x, i.e., write $R x=y$ instead of $R x \ni y$ if R is function
- Concept: identifying functions with their graph

Some Examples

- Empty relation: \emptyset

Operator Splitting Methods

Michael Moeller

Thomas Möllenhoff

Emanuel Laude

Relations

Monotone Operators
Fixed Point Iterations
Proximal Point
Algorithm
PDHG Revisited

Douglas-Rachford Splitting

Some Examples

- Empty relation: \emptyset
- Identity: $I:=\left\{(u, u) \mid u \in \mathbb{R}^{n}\right\}$

Operator Splitting Methods
Michael Moeller
Thomas Möllenhoff
Emanuel Laude

Relations
Monotone Operators
Fixed Point Iterations
Proximal Point
Algorithm
PDHG Revisited
Douglas-Rachford Splitting

Some Examples

- Empty relation: \emptyset
- Identity: $I:=\left\{(u, u) \mid u \in \mathbb{R}^{n}\right\}$
- Zero: $0:=\left\{(u, 0) \mid u \in \mathbb{R}^{n}\right\}$

Operator Splitting Methods
Michael Moeller
Thomas Möllenhoff Emanuel Laude

Relations

Monotone Operators
Fixed Point Iterations
Proximal Point
Algorithm
PDHG Revisited
Douglas-Rachford Splitting

Some Examples

- Empty relation: \emptyset
- Identity: $I:=\left\{(u, u) \mid u \in \mathbb{R}^{n}\right\}$
- Zero: $0:=\left\{(u, 0) \mid u \in \mathbb{R}^{n}\right\}$
- Gradient relation:

$$
\nabla E:=\left\{(u, \nabla E(u)) \mid u \in \mathbb{R}^{n}\right\}
$$

Operator Splitting Methods

Michael Moeller

Thomas Möllenhoff Emanuel Laude

Relations

Monotone Operators
Fixed Point Iterations
Proximal Point
Algorithm
PDHG Revisited
Douglas-Rachford Splitting

Some Examples

- Empty relation: \emptyset
- Identity: $I:=\left\{(u, u) \mid u \in \mathbb{R}^{n}\right\}$
- Zero: $0:=\left\{(u, 0) \mid u \in \mathbb{R}^{n}\right\}$
- Gradient relation:

$$
\nabla E:=\left\{(u, \nabla E(u)) \mid u \in \mathbb{R}^{n}\right\}
$$

- Subdifferential relation:

Operator Splitting Methods
Michael Moeller Thomas Möllenhoff Emanuel Laude

Relations

Monotone Operators
Fixed Point Iterations
Proximal Point
Algorithm
PDHG Revisited
Douglas-Rachford Splitting

$$
\partial E:=\left\{(u, g) \mid u \in \operatorname{dom}(E), E(v) \geq E(u)+\langle g, v-u\rangle, \forall v \in \mathbb{R}^{n}\right\}
$$

Some Examples

- Empty relation: \emptyset
- Identity: $I:=\left\{(u, u) \mid u \in \mathbb{R}^{n}\right\}$
- Zero: $0:=\left\{(u, 0) \mid u \in \mathbb{R}^{n}\right\}$
- Gradient relation:

$$
\nabla E:=\left\{(u, \nabla E(u)) \mid u \in \mathbb{R}^{n}\right\}
$$

- Subdifferential relation:
$\partial E:=\left\{(u, g) \mid u \in \operatorname{dom}(E), E(v) \geq E(u)+\langle g, v-u\rangle, \forall v \in \mathbb{R}^{n}\right\}$
- Another possible view: think of relations as a set valued functions, e.g., $\partial E: \mathbb{R}^{n} \rightarrow \mathcal{P}\left(\mathbb{R}^{n}\right)$

Our Goal

Solve generalized equation (inclusion) problem

$0 \in R(u)$
 i.e., find $u \in \mathbb{R}^{n}$ such that $(u, 0) \in R$.

Operator Splitting Methods

Michael Moeller
Thomas Möllenhoff
Emanuel Laude

Relations
Monotone Operators
Fixed Point Iterations
Proximal Point
Algorithm
PDHG Revisited
Douglas-Rachford Splitting

Our Goal

Solve generalized equation (inclusion) problem

$$
\begin{gathered}
0 \in R(u) \\
\text { i.e., find } u \in \mathbb{R}^{n} \text { such that }(u, 0) \in R \text {. }
\end{gathered}
$$

Examples:

- Set $R=\partial E$, then the goal is to find $0 \in \partial E(u)$

Operator Splitting Methods

Michael Moeller

Thomas Möllenhoff Emanuel Laude

Relations

Monotone Operators
Fixed Point Iterations

Proximal Point
Algorithm
PDHG Revisited
Douglas-Rachford Splitting

Our Goal

Solve generalized equation (inclusion) problem

$$
0 \in R(u)
$$

i.e., find $u \in \mathbb{R}^{n}$ such that $(u, 0) \in R$.

Examples:

- Set $R=\partial E$, then the goal is to find $0 \in \partial E(u)$
- This are just the optimality conditions of our prototypical optimization problem:

$$
\arg \min _{u \in \mathbb{R}^{n}} E(u)
$$

Relations

Monotone Operators
Fixed Point Iterations
Proximal Point
Algorithm
PDHG Revisited
Douglas-Rachford Splitting

Our Goal

Solve generalized equation (inclusion) problem

$$
0 \in R(u)
$$

$$
\text { i.e., find } u \in \mathbb{R}^{n} \text { such that }(u, 0) \in R \text {. }
$$

Examples:

- Set $R=\partial E$, then the goal is to find $0 \in \partial E(u)$
- This are just the optimality conditions of our prototypical optimization problem:

$$
\arg \min _{u \in \mathbb{R}^{n}} E(u)
$$

- Finding saddle-points (\tilde{u}, \tilde{p}) of

$$
P D(u, p)=G(u)-F^{*}(p)+\langle K u, p\rangle
$$

corresponds to the inclusion problem

$$
0 \in\left[\begin{array}{cc}
\partial G & K^{T} \\
-K & \partial F^{*}
\end{array}\right]\left[\begin{array}{l}
u \\
p
\end{array}\right]
$$

Relations
Monotone Operators
Fixed Point Iterations
Proximal Point
Algorithm
PDHG Revisited
Douglas-Rachford Splitting

Operations on Relations

- Inverse $R^{-1}=\{(y, x) \mid(x, y) \in R\}$
- Exists for any relation
- Reduces to inverse function when R is injective function

Operator Splitting Methods
Michael Moeller Thomas Möllenhoff Emanuel Laude

Relations
Monotone Operators
Fixed Point Iterations
Proximal Point
Algorithm
PDHG Revisited
Douglas-Rachford Splitting

Operations on Relations

- Inverse $R^{-1}=\{(y, x) \mid(x, y) \in R\}$
- Exists for any relation
- Reduces to inverse function when R is injective function
- Addition $R+S=\{(x, y+z) \mid(x, y) \in R,(x, z) \in S\}$

Operator Splitting Methods
Michael Moeller Thomas Möllenhoff Emanuel Laude

Relations
Monotone Operators
Fixed Point Iterations
Proximal Point
Algorithm
PDHG Revisited
Douglas-Rachford Splitting

Operations on Relations

- Inverse $R^{-1}=\{(y, x) \mid(x, y) \in R\}$
- Exists for any relation
- Reduces to inverse function when R is injective function
- Addition $R+S=\{(x, y+z) \mid(x, y) \in R,(x, z) \in S\}$
- Scaling $\lambda R=\{(x, \lambda y) \mid(x, y) \in R\}$

Operator Splitting Methods
Michael Moeller Thomas Möllenhoff Emanuel Laude

Relations
Monotone Operators
Fixed Point Iterations
Proximal Point
Algorithm
PDHG Revisited
Douglas-Rachford Splitting

Operations on Relations

- Inverse $R^{-1}=\{(y, x) \mid(x, y) \in R\}$
- Exists for any relation
- Reduces to inverse function when R is injective function
- Addition $R+S=\{(x, y+z) \mid(x, y) \in R,(x, z) \in S\}$
- Scaling $\lambda R=\{(x, \lambda y) \mid(x, y) \in R\}$
- Resolvent $J_{\lambda R}:=(I+\lambda R)^{-1}$

Operator Splitting Methods
Michael Moeller
Thomas Möllenhoff Emanuel Laude

Relations
Monotone Operators
Fixed Point Iterations
Proximal Point
Algorithm
PDHG Revisited
Douglas-Rachford Splitting

Operations on Relations

- Inverse $R^{-1}=\{(y, x) \mid(x, y) \in R\}$
- Exists for any relation
- Reduces to inverse function when R is injective function
- Addition $R+S=\{(x, y+z) \mid(x, y) \in R,(x, z) \in S\}$
- Scaling $\lambda R=\{(x, \lambda y) \mid(x, y) \in R\}$
- Resolvent $J_{\lambda R}:=(I+\lambda R)^{-1}$

Examples:

- $I+\lambda R=\{(x, x+\lambda y) \mid(x, y) \in R\}$

Monotone Operators
Fixed Point Iterations
Proximal Point
Algorithm
PDHG Revisited
Douglas-Rachford Splitting

Operations on Relations

- Inverse $R^{-1}=\{(y, x) \mid(x, y) \in R\}$
- Exists for any relation
- Reduces to inverse function when R is injective function
- Addition $R+S=\{(x, y+z) \mid(x, y) \in R,(x, z) \in S\}$
- Scaling $\lambda R=\{(x, \lambda y) \mid(x, y) \in R\}$
- Resolvent $J_{\lambda R}:=(I+\lambda R)^{-1}$

Examples:

- $I+\lambda R=\{(x, x+\lambda y) \mid(x, y) \in R\}$
- $J_{R}=\{(x+\lambda y, x) \mid(x, y) \in R\}$

Operator Splitting Methods
Michael Moeller Thomas Möllenhoff Emanuel Laude

Relations
Monotone Operators
Fixed Point Iterations
Proximal Point
Algorithm
PDHG Revisited
Douglas-Rachford Splitting

Operations on Relations

- Inverse $R^{-1}=\{(y, x) \mid(x, y) \in R\}$
- Exists for any relation
- Reduces to inverse function when R is injective function
- Addition $R+S=\{(x, y+z) \mid(x, y) \in R,(x, z) \in S\}$
- Scaling $\lambda R=\{(x, \lambda y) \mid(x, y) \in R\}$
- Resolvent $J_{\lambda R}:=(I+\lambda R)^{-1}$

Examples:

- $I+\lambda R=\{(x, x+\lambda y) \mid(x, y) \in R\}$
- $J_{R}=\{(x+\lambda y, x) \mid(x, y) \in R\}$
- E closed, proper, convex: $(\partial E)^{-1}=\partial E^{*}$

Monotone Operators
Fixed Point Iterations
Proximal Point
Algorithm
PDHG Revisited
Douglas-Rachford Splitting

Operations on Relations

- Inverse $R^{-1}=\{(y, x) \mid(x, y) \in R\}$
- Exists for any relation
- Reduces to inverse function when R is injective function
- Addition $R+S=\{(x, y+z) \mid(x, y) \in R,(x, z) \in S\}$
- Scaling $\lambda R=\{(x, \lambda y) \mid(x, y) \in R\}$
- Resolvent $J_{\lambda R}:=(I+\lambda R)^{-1}$

Examples:

- $I+\lambda R=\{(x, x+\lambda y) \mid(x, y) \in R\}$
- $J_{R}=\{(x+\lambda y, x) \mid(x, y) \in R\}$
- E closed, proper, convex: $(\partial E)^{-1}=\partial E^{*}$
\rightarrow Draw a picture for $E(u)=|u|$

Michael Moeller

Thomas Möllenhoff
Emanuel Laude

Relations

Monotone Operators

Monotone Operators
Fixed Point Iterations
Proximal Point
Algorithm
PDHG Revisited
Douglas-Rachford
Splitting

Monotone Operators

Definition

The set-valued operator $T \subset \mathbb{R}^{n} \times \mathbb{R}^{n}$ is called monotone if

$$
\langle u-v, T u-T v\rangle \geq 0, \forall u, v \in \mathbb{R}^{n} . \quad \text { Notation }{ }^{1}
$$

An operator T is called maximally monotone if it is not contained in any other monotone operator.

Operator Splitting Methods
Michael Moeller
Thomas Möllenhoff Emanuel Laude

Relations

Monotone Operators
Fixed Point Iterations
Proximal Point
Algorithm
PDHG Revisited
Douglas-Rachford Splitting

[^0]
Monotone Operators

Definition

The set-valued operator $T \subset \mathbb{R}^{n} \times \mathbb{R}^{n}$ is called monotone if

$$
\langle u-v, T u-T v\rangle \geq 0, \forall u, v \in \mathbb{R}^{n} . \quad \text { Notation }{ }^{1}
$$

An operator T is called maximally monotone if it is not contained in any other monotone operator.

- Maximal monotonicity is an important technical detail, but we will be sloppy about it for the rest of the course

Relations

Monotone Operators
Fixed Point Iterations
Proximal Point
Algorithm
PDHG Revisited
Douglas-Rachford Splitting

[^1]
Monotone Operators

Definition

The set-valued operator $T \subset \mathbb{R}^{n} \times \mathbb{R}^{n}$ is called monotone if

$$
\langle u-v, T u-T v\rangle \geq 0, \forall u, v \in \mathbb{R}^{n} . \quad \text { Notation }{ }^{1}
$$

An operator T is called maximally monotone if it is not contained in any other monotone operator.

- Maximal monotonicity is an important technical detail, but we will be sloppy about it for the rest of the course

Examples of monotone operators:

- Monotonically non-decreasing functions $T: \mathbb{R} \rightarrow \mathbb{R}$

[^2]
Monotone Operators

Definition

The set-valued operator $T \subset \mathbb{R}^{n} \times \mathbb{R}^{n}$ is called monotone if

$$
\langle u-v, T u-T v\rangle \geq 0, \forall u, v \in \mathbb{R}^{n} . \quad \text { Notation }{ }^{1}
$$

An operator T is called maximally monotone if it is not contained in any other monotone operator.

- Maximal monotonicity is an important technical detail, but we will be sloppy about it for the rest of the course

Examples of monotone operators:

- Monotonically non-decreasing functions $T: \mathbb{R} \rightarrow \mathbb{R}$
- Any positive semi-definite matrix $A:\langle A x-A y, x-y\rangle \geq 0$

[^3]
Monotone Operators

Definition

The set-valued operator $T \subset \mathbb{R}^{n} \times \mathbb{R}^{n}$ is called monotone if

$$
\langle u-v, T u-T v\rangle \geq 0, \forall u, v \in \mathbb{R}^{n} . \quad \text { Notation }{ }^{1}
$$

An operator T is called maximally monotone if it is not contained in any other monotone operator.

- Maximal monotonicity is an important technical detail, but we will be sloppy about it for the rest of the course

Examples of monotone operators:

- Monotonically non-decreasing functions $T: \mathbb{R} \rightarrow \mathbb{R}$
- Any positive semi-definite matrix $A:\langle A x-A y, x-y\rangle \geq 0$
- Subdifferential of a convex function ∂f

[^4]
Monotone Operators

Definition

The set-valued operator $T \subset \mathbb{R}^{n} \times \mathbb{R}^{n}$ is called monotone if

$$
\langle u-v, T u-T v\rangle \geq 0, \forall u, v \in \mathbb{R}^{n} . \quad \text { Notation }{ }^{1}
$$

An operator T is called maximally monotone if it is not contained in any other monotone operator.

- Maximal monotonicity is an important technical detail, but we will be sloppy about it for the rest of the course

Examples of monotone operators:

- Monotonically non-decreasing functions $T: \mathbb{R} \rightarrow \mathbb{R}$
- Any positive semi-definite matrix $A:\langle A x-A y, x-y\rangle \geq 0$
- Subdifferential of a convex function ∂f
- Proximity operators of convex functions prox $_{\tau f}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$

[^5]
Monotone Operators

Operator Splitting Methods

Michael Moeller

Thomas Möllenhoff
Emanuel Laude
Calculus rules (exercise):

- T monotone, $\lambda \geq 0 \Rightarrow \lambda T$ monotone

Monotone Operators
Fixed Point Iterations
Proximal Point
Algorithm
PDHG Revisited
Douglas-Rachford Splitting

Monotone Operators

Operator Splitting Methods

Michael Moeller
Thomas Möllenhoff
Emanuel Laude
Calculus rules (exercise):

- T monotone, $\lambda \geq 0 \Rightarrow \lambda T$ monotone
- T monotone $\Rightarrow T^{-1}$ monotone -

T monotone $\Rightarrow T-1$ monotone

```
Relations
```

Monotone Operators
Fixed Point Iterations
Proximal Point
Algorithm
PDHG Revisited
Douglas-Rachford Splitting

Monotone Operators

Operator Splitting Methods
Michael Moeller
Thomas Möllenhoff Emanuel Laude

Calculus rules (exercise):

- T monotone, $\lambda \geq 0 \Rightarrow \lambda T$ monotone
- T monotone $\Rightarrow T^{-1}$ monotone
- R, S monotone, $\lambda \geq 0 \Rightarrow R+\lambda S$ is monotone

Relations
Monotone Operators
Fixed Point Iterations
Proximal Point
Algorithm
PDHG Revisited
Douglas-Rachford Splitting

Monotone Operators

Operator Splitting Methods
Michael Moeller
Thomas Möllenhoff Emanuel Laude

Calculus rules (exercise):

- T monotone, $\lambda \geq 0 \Rightarrow \lambda T$ monotone
- T monotone $\Rightarrow T^{-1}$ monotone
- R, S monotone, $\lambda \geq 0 \Rightarrow R+\lambda S$ is monotone

Some important definitions/properties:

- Lipschitz operators (and in particular nonexpansive operators) are single-valued (functions)

Relations
Monotone Operators
Fixed Point Iterations
Proximal Point
Algorithm
PDHG Revisited
Douglas-Rachford Splitting

Monotone Operators

Calculus rules (exercise):

- T monotone, $\lambda \geq 0 \Rightarrow \lambda T$ monotone
- T monotone $\Rightarrow T^{-1}$ monotone
- R, S monotone, $\lambda \geq 0 \Rightarrow R+\lambda S$ is monotone

Some important definitions/properties:

- Lipschitz operators (and in particular nonexpansive operators) are single-valued (functions)
- x is called fixed point of operator T if $x=T x$

Relations
Monotone Operators
Fixed Point Iterations
Proximal Point
Algorithm
PDHG Revisited
Douglas-Rachford Splitting

Monotone Operators

Calculus rules (exercise):

- T monotone, $\lambda \geq 0 \Rightarrow \lambda T$ monotone
- T monotone $\Rightarrow T^{-1}$ monotone
- R, S monotone, $\lambda \geq 0 \Rightarrow R+\lambda S$ is monotone

Some important definitions/properties:

- Lipschitz operators (and in particular nonexpansive operators) are single-valued (functions)
- x is called fixed point of operator T if $x=T x$
- If F is nonexpansive (Lipschitz constant $L \leq 1$) and $\operatorname{dom} T=\mathbb{R}^{n}$ then the set of fixed points $(I-F)^{-1}(0)$ is closed and convex (exercise)

Resolvent and Cayley Operators

Operator Splitting Methods

Michael Moeller

Thomas Möllenhoff
Emanuel Laude

Relations

Monotone Operators
Fixed Point Iterations
Proximal Point
Algorithm
PDHG Revisited
Douglas-Rachford Splitting

Resolvent and Cayley Operators

Operator Splitting Methods
Michael Moeller
Thomas Möllenhoff Emanuel Laude

- Let $T \subset \mathbb{R}^{n} \times \mathbb{R}^{n}$ be set-valued operator
- The resolvent operator of T is given as $J_{\lambda T}:=(I+\lambda T)^{-1}$

Relations

Monotone Operators
Fixed Point Iterations
Proximal Point
Algorithm
PDHG Revisited
Douglas-Rachford Splitting

Resolvent and Cayley Operators

Operator Splitting Methods
Michael Moeller
Thomas Möllenhoff Emanuel Laude

Relations

Monotone Operators
Fixed Point Iterations
Proximal Point
Algorithm
PDHG Revisited
Douglas-Rachford Splitting

Resolvent and Cayley Operators

Operator Splitting Methods
Michael Moeller
Thomas Möllenhoff Emanuel Laude

- Let $T \subset \mathbb{R}^{n} \times \mathbb{R}^{n}$ be set-valued operator
- The resolvent operator of T is given as $J_{\lambda T}:=(I+\lambda T)^{-1}$
- Special case: $T=\partial f, J_{\lambda \partial f}$ is proximal operator of f
- From previous slide: resolvent is monotone if T is monotone

Resolvent and Cayley Operators

Operator Splitting

- Let $T \subset \mathbb{R}^{n} \times \mathbb{R}^{n}$ be set-valued operator
- The resolvent operator of T is given as $J_{\lambda T}:=(I+\lambda T)^{-1}$
- Special case: $T=\partial f, J_{\lambda \partial f}$ is proximal operator of f
- From previous slide: resolvent is monotone if T is monotone
- The Cayley operator (or reflection operator) of T is defined as $C_{\lambda T}:=2 J_{\lambda T}-I$

Methods

Michael Moeller Thomas Möllenhoff

Resolvent and Cayley Operators

Operator Splitting Methods

Michael Moeller Thomas Möllenhoff Emanuel Laude

- Let $T \subset \mathbb{R}^{n} \times \mathbb{R}^{n}$ be set-valued operator
- The resolvent operator of T is given as $J_{\lambda T}:=(I+\lambda T)^{-1}$
- Special case: $T=\partial f, J_{\lambda \partial f}$ is proximal operator of f
- From previous slide: resolvent is monotone if T is monotone
- The Cayley operator (or reflection operator) of T is defined as $C_{\lambda T}:=2 J_{\lambda T}-I$

Facts:

- $0 \in T x$ if and only if $x=J_{\lambda} T x=C_{\lambda T} x$

Resolvent and Cayley Operators

Operator Splitting Methods

Michael Moeller
Thomas Möllenhoff Emanuel Laude

- Let $T \subset \mathbb{R}^{n} \times \mathbb{R}^{n}$ be set-valued operator
- The resolvent operator of T is given as $J_{\lambda T}:=(I+\lambda T)^{-1}$
- Special case: $T=\partial f, J_{\lambda \partial f}$ is proximal operator of f
- From previous slide: resolvent is monotone if T is monotone
- The Cayley operator (or reflection operator) of T is defined as $C_{\lambda T}:=2 J_{\lambda T}-I$

Facts:

- $0 \in T x$ if and only if $x=J_{\lambda T} x=C_{\lambda T} x$
- If T is monotone, then $J_{\lambda T}$ and $C_{\lambda T}$ are nonexpansive

Michael Moeller

Thomas Möllenhoff
Emanuel Laude

Fixed Point Iterations

Relations
Monotone Operators
Fixed Point Iterations
Proximal Point
Algorithm
PDHG Revisited
Douglas-Rachford Splitting

The Main Algorithm

Operator Splitting Methods

Michael Moeller

Thomas Möllenhoff
Emanuel Laude

Relations

Monotone Operators
Fixed Point Iterations
Proximal Point
Algorithm
PDHG Revisited
Douglas-Rachford Splitting

The Main Algorithm

Operator Splitting Methods

Michael Moeller
Thomas Möllenhoff Emanuel Laude

Relations

Monotone Operators
Fixed Point Iterations

$$
u^{k+1}=F u^{k}, \quad k=0,1,2, \ldots
$$

Proximal Point
Algorithm
PDHG Revisited
Douglas-Rachford Splitting

The Main Algorithm

Operator Splitting Methods

Michael Moeller
Thomas Möllenhoff Emanuel Laude

Relations

Monotone Operators
Fixed Point Iterations
Proximal Point
Algorithm
PDHG Revisited

Douglas-Rachford Splitting

The Main Algorithm

- We will see that many important convex optimization algorithms can be written in this form
- Allows simple and unified analysis

Iteration of Contraction Mappings

Contraction Mapping Theorem

Suppose that $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is a contraction with Lipschitz constant $L<1$. Then the fixed point iteration

$$
u^{k+1}=F u^{k}
$$

also called contraction mapping algorithm, converges to the unique fixed point of F.

Operator Splitting Methods

Michael Moeller
Thomas Möllenhoff Emanuel Laude

Relations

Monotone Operators

```
Fixed Point Iterations
```

Proximal Point
Algorithm
PDHG Revisited
\rightarrow Proof: see literature ${ }^{2}$

[^6]
Iteration of Contraction Mappings

Contraction Mapping Theorem

Suppose that $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is a contraction with Lipschitz constant $L<1$. Then the fixed point iteration

$$
u^{k+1}=F u^{k}
$$

also called contraction mapping algorithm, converges to the unique fixed point of F.
\rightarrow Proof: see literature ${ }^{2}$

- Example: the gradient method can be written as

$$
u^{k+1}=(I-\tau \nabla E) u^{k}
$$

[^7]
Iteration of Contraction Mappings

Contraction Mapping Theorem

Suppose that $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is a contraction with Lipschitz constant $L<1$. Then the fixed point iteration

$$
u^{k+1}=F u^{k}
$$

also called contraction mapping algorithm, converges to the unique fixed point of F.
\rightarrow Proof: see literature ${ }^{2}$

- Example: the gradient method can be written as

$$
u^{k+1}=(I-\tau \nabla E) u^{k}
$$

- Suppose E is m-strongly convex and L-smooth, then $I-\tau \nabla E$ is Lipschitz with $L_{G M}=\max \{|1-\tau m|,|1-\tau L|\}$

[^8]
Iteration of Contraction Mappings

Contraction Mapping Theorem

Suppose that $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is a contraction with Lipschitz constant $L<1$. Then the fixed point iteration

$$
u^{k+1}=F u^{k}
$$

also called contraction mapping algorithm, converges to the unique fixed point of F.
\rightarrow Proof: see literature ${ }^{2}$

- Example: the gradient method can be written as

$$
u^{k+1}=(I-\tau \nabla E) u^{k}
$$

- Suppose E is m-strongly convex and L-smooth, then $I-\tau \nabla E$ is Lipschitz with $L_{G M}=\max \{|1-\tau m|,|1-\tau L|\}$
- $I-\tau \nabla E$ is contractive for $\tau \in(0,2 / L)$

[^9]Relations
Monotone Operators

```
Fixed Point Iterations
```

Proximal Point
Algorithm
PDHG Revisited
Douglas-Rachford Splitting

Iteration of Averaged Nonexpansive Mappings

- Recall that a mapping $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is called nonexpansive if it is Lipschitz with constant $L \leq 1$.

Operator Splitting Methods
Michael Moeller Thomas Möllenhoff Emanuel Laude

Relations
Monotone Operators

```
Fixed Point Iterations
```

Proximal Point
Algorithm
PDHG Revisited
Douglas-Rachford Splitting

Iteration of Averaged Nonexpansive Mappings

- Recall that a mapping $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is called nonexpansive if it is Lipschitz with constant $L \leq 1$.
- Fixed point iteration of nonexpansive mapping doesn't necessarily converge (example: rotation, reflection)

Iteration of Averaged Nonexpansive Mappings

- Recall that a mapping $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is called nonexpansive if it is Lipschitz with constant $L \leq 1$.
- Fixed point iteration of nonexpansive mapping doesn't necessarily converge (example: rotation, reflection)
- The mapping $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is called averaged if $F=(1-\theta) I+\theta T$, for some nonexpansive operator T and $\theta \in(0,1)$

Iteration of Averaged Nonexpansive Mappings

- Recall that a mapping $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is called nonexpansive if it is Lipschitz with constant $L \leq 1$.
- Fixed point iteration of nonexpansive mapping doesn't necessarily converge (example: rotation, reflection)
- The mapping $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is called averaged if $F=(1-\theta) I+\theta T$, for some nonexpansive operator T and $\theta \in(0,1)$

Theorem: Krasnosel'skii-Mann

Let $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be averaged, and denote the (non-empty) set of fixed points of F as U. Then the sequence $\left(u^{k}\right)$ produced by the iteration

$$
u^{k+1}=F u^{k}
$$

converges to a fixed point $u^{*} \in U$, i.e., $u^{k} \rightarrow u^{*}$.
\rightarrow Proof: board!

Example: gradient method

Operator Splitting Methods

Michael Moeller

Thomas Möllenhoff
Emanuel Laude

Relations

Monotone Operators
Fixed Point Iterations
Proximal Point
Algorithm
PDHG Revisited
Douglas-Rachford Splitting

Example: gradient method

Operator Splitting Methods

Michael Moeller
Thomas Möllenhoff Emanuel Laude

Relations

Monotone Operators

```
Fixed Point Iterations
```

Proximal Point
Algorithm
PDHG Revisited
Douglas-Rachford Splitting

Example: gradient method

Operator Splitting Methods

Michael Moeller
Thomas Möllenhoff Emanuel Laude

Relations

Monotone Operators

```
Fixed Point Iterations
```

Proximal Point
Algorithm
PDHG Revisited
Douglas-Rachford
Splitting

Example: gradient method

Operator Splitting Methods

Michael Moeller Thomas Möllenhoff Emanuel Laude

Relations
Monotone Operators

```
Fixed Point Iterations
```

Proximal Point
Algorithm
PDHG Revisited
Douglas-Rachford Splitting
with $\theta=\tau L / 2<1$.

Example: gradient method

with $\theta=\tau L / 2<1$.

- Hence, we get convergence of the gradient descent method from the previous theorem

Michael Moeller

Thomas Möllenhoff

Emanuel Laude

Proximal Point Algorithm

Relations

Monotone Operators

Fixed Point Iterations

Proximal Point
Algorithm
PDHG Revisited
Douglas-Rachford Splitting

The Proximal Point Algorithm

- Recall our original goal of finding $u \in \mathbb{R}^{n}$ with

$$
0 \in T u,
$$

for $T \subset \mathbb{R}^{n} \times \mathbb{R}^{n}$ monotone.

Operator Splitting Methods

Michael Moeller

Thomas Möllenhoff Emanuel Laude

Relations

Monotone Operators

Fixed Point Iterations

Proximal Point
Algorithm
PDHG Revisited
Douglas-Rachford Splitting

[^10]
The Proximal Point Algorithm

- Recall our original goal of finding $u \in \mathbb{R}^{n}$ with

$$
0 \in T u,
$$

for $T \subset \mathbb{R}^{n} \times \mathbb{R}^{n}$ monotone.

- We have seen that fixed points of resolvent operator $J_{\lambda T}$ are the zeros of T

[^11]
The Proximal Point Algorithm

- Recall our original goal of finding $u \in \mathbb{R}^{n}$ with

$$
0 \in T u,
$$

for $T \subset \mathbb{R}^{n} \times \mathbb{R}^{n}$ monotone.

- We have seen that fixed points of resolvent operator $J_{\lambda} T$ are the zeros of T

Definition: Proximal Point Algorithm (PPA) ${ }^{3}$

Given some maximally monotone operator $T \subset \mathbb{R}^{n} \times \mathbb{R}^{n}$, and some sequence $\left(\lambda_{k}\right)>0$. Then the iteration

$$
u^{k+1}=\left(I+\lambda_{k} T\right)^{-1} u^{k},
$$

is called the proximal point algorithm.

[^12]
Intuition of the Proximal Point Algorithm ${ }^{4}$

Relations

Monotone Operators
Fixed Point Iterations

Proximal Point
Algorithm
PDHG Revisited

Douglas-Rachford
Splitting
${ }^{4}$ Eckstein, Splitting methods for monotone operators with applications to parallel optimzation, 1989, pp. 42

Convergence of Proximal Point Algorithm

Operator Splitting Methods

Michael Moeller

Thomas Möllenhoff Emanuel Laude

Relations

Monotone Operators
Fixed Point Iterations
Proximal Point
Algorithm
PDHG Revisited
Douglas-Rachford Splitting

Convergence of Proximal Point Algorithm

Operator Splitting Methods

Michael Moeller
Thomas Möllenhoff Emanuel Laude

Relations

Monotone Operators
Fixed Point Iterations
Proximal Point
Algorithm
PDHG Revisited
Douglas-Rachford Splitting

Convergence of Proximal Point Algorithm

- The resolvent $J_{\lambda T}=(I+\lambda T)^{-1}$ is an averaged operator
- To see this, consider the reflection or Cayley operator

$$
C_{\lambda T}:=2 J_{\lambda T}-I \Leftrightarrow J_{\lambda T}=\frac{1}{2} I+\frac{1}{2} C_{\lambda T}
$$

Relations
Monotone Operators
Fixed Point Iterations
Proximal Point
Algorithm
PDHG Revisited
Douglas-Rachford Splitting

Convergence of Proximal Point Algorithm

- The resolvent $J_{\lambda T}=(I+\lambda T)^{-1}$ is an averaged operator
- To see this, consider the reflection or Cayley operator

$$
C_{\lambda T}:=2 J_{\lambda T}-I \Leftrightarrow J_{\lambda T}=\frac{1}{2} I+\frac{1}{2} C_{\lambda T}
$$

- Hence $J_{\lambda} T$ is averaged with $\theta=\frac{1}{2}$, as we have seen in the last lecture that $C_{\lambda T}$ is nonexpansive
- Proximal Point algorithm converges as it is fixed point iteration of averaged operator

Operator Splitting
Methods
Michael Moeller
Thomas Möllenhoff
Emanuel Laude

Relations
PDHG Revisited

Monotone Operators

Fixed Point Iterations
Proximal Point
Algorithm
PDHG Revisited
Douglas-Rachford
Splitting

PDHG as Proximal Point Method

- Remember that for convex-concave saddle point problems

$$
P D(u, p)=G(u)-F^{*}(p)+\langle K u, p\rangle
$$

we have the following:

$$
(\tilde{u}, \tilde{p})=\arg \operatorname{minmax}_{u, p} P D(u, p) \Leftrightarrow\left[\begin{array}{l}
0 \\
0
\end{array}\right] \in \underbrace{\left[\begin{array}{c}
\partial G(\tilde{u})+K^{\top} \tilde{p} \\
-K \tilde{u}+\partial F^{*}(\tilde{p})
\end{array}\right]}_{=: T(\tilde{u}, \tilde{p})}
$$

Operator Splitting Methods

Michael Moeller
Thomas Möllenhoff Emanuel Laude

Relations
Monotone Operators
Fixed Point Iterations
Proximal Point Algorithm

PDHG Revisited
Douglas-Rachford Splitting

PDHG as Proximal Point Method

- Remember that for convex-concave saddle point problems

$$
P D(u, p)=G(u)-F^{*}(p)+\langle K u, p\rangle
$$

we have the following:

$$
(\tilde{u}, \tilde{p})=\arg \operatorname{minmax}_{u, p} P D(u, p) \Leftrightarrow\left[\begin{array}{l}
0 \\
0
\end{array}\right] \in \underbrace{\left[\begin{array}{c}
\partial G(\tilde{u})+K^{\top} \tilde{p} \\
-K \tilde{u}+\partial F^{*}(\tilde{p})
\end{array}\right]}_{=: T(\tilde{u}, \tilde{p})}
$$

- For convex F^{*} and G, T is monotone

Relations

Monotone Operators
Fixed Point Iterations
Proximal Point Algorithm

PDHG Revisited
Douglas-Rachford Splitting

PDHG as Proximal Point Method

- Remember that for convex-concave saddle point problems

$$
P D(u, p)=G(u)-F^{*}(p)+\langle K u, p\rangle
$$

we have the following:

$$
(\tilde{u}, \tilde{p})=\arg \operatorname{minmax}_{u, p} P D(u, p) \Leftrightarrow\left[\begin{array}{l}
0 \\
0
\end{array}\right] \in \underbrace{\left[\begin{array}{c}
\partial G(\tilde{u})+K^{\top} \tilde{p} \\
-K \tilde{u}+\partial F^{*}(\tilde{p})
\end{array}\right]}_{=: T(\tilde{u}, \tilde{p})}
$$

- For convex F^{*} and G, T is monotone
- Idea: use the proximal point to find zero of T

Relations Monotone Operators Fixed Point Iterations

Proximal Point Algorithm

PDHG as Proximal Point Method

- Remember that for convex-concave saddle point problems

$$
P D(u, p)=G(u)-F^{*}(p)+\langle K u, p\rangle
$$

we have the following:

$$
(\tilde{u}, \tilde{p})=\arg \operatorname{minmax}_{u, p} P D(u, p) \Leftrightarrow\left[\begin{array}{l}
0 \\
0
\end{array}\right] \in \underbrace{\left[\begin{array}{c}
\partial G(\tilde{u})+K^{T} \tilde{p} \\
-K \tilde{u}+\partial F^{*}(\tilde{p})
\end{array}\right]}_{=: T(\tilde{u}, \tilde{p})}
$$

- For convex F^{*} and G, T is monotone
- Idea: use the proximal point to find zero of T
- Stack primal and dual variables into vector $z=(u, p)^{T}$:

$$
z^{k+1}=(I+\lambda T)^{-1} z^{k} \Leftrightarrow z^{k}-z^{k+1} \in \lambda T z^{k+1}
$$

Relations

Monotone Operators
Fixed Point Iterations
Proximal Point Algorithm

PDHG Revisited
Douglas-Rachford Splitting

PDHG as Proximal Point Method

- Remember that for convex-concave saddle point problems

$$
P D(u, p)=G(u)-F^{*}(p)+\langle K u, p\rangle
$$

we have the following:

$$
(\tilde{u}, \tilde{p})=\arg \operatorname{minmax}_{u, p} P D(u, p) \Leftrightarrow\left[\begin{array}{l}
0 \\
0
\end{array}\right] \in \underbrace{\left[\begin{array}{c}
\partial G(\tilde{u})+K^{\top} \tilde{p} \\
-K \tilde{u}+\partial F^{*}(\tilde{p})
\end{array}\right]}_{=: T(\tilde{u}, \tilde{p})}
$$

- For convex F^{*} and G, T is monotone
- Idea: use the proximal point to find zero of T
- Stack primal and dual variables into vector $z=(u, p)^{T}$:

$$
z^{k+1}=(I+\lambda T)^{-1} z^{k} \Leftrightarrow z^{k}-z^{k+1} \in \lambda T z^{k+1}
$$

- Plugging things in yields

$$
\begin{aligned}
& u^{k}-u^{k+1} \in \lambda \partial G\left(u^{k+1}\right)+\lambda K^{T} p^{k+1} \\
& p^{k}-p^{k+1} \in \lambda \partial F^{*}\left(p^{k+1}\right)-\lambda K u^{k+1}
\end{aligned}
$$

Relations

Monotone Operators
Fixed Point Iterations
Proximal Point Algorithm

PDHG Revisited
Douglas-Rachford Splitting

PDHG as Proximal Point Method

- Reformulating the following

$$
0 \in \lambda^{-1}\left[\begin{array}{l}
u^{k+1}-u^{k} \\
p^{k+1}-p^{k}
\end{array}\right]+\underbrace{\left[\begin{array}{c}
\partial G\left(u^{k+1}\right)+K^{T} p^{k+1} \\
\partial F^{*}\left(p^{k+1}\right)-K u^{k+1}
\end{array}\right]}_{=: T(\tilde{u}, \tilde{p})}
$$

leads to:

$$
\begin{aligned}
u^{k+1} & =(I+\lambda \partial G)^{-1}\left(u^{k}-\lambda K^{T} p^{k+1}\right) \\
& =\operatorname{prox}_{\lambda G}\left(u^{k}-\lambda K^{T} p^{k+1}\right) \\
p^{k+1} & =\left(I+\lambda \partial F^{*}\right)^{-1}\left(p^{k}+\lambda K u^{k+1}\right) \\
& =\operatorname{prox}_{\lambda F^{*}}\left(p^{k}+\lambda K u^{k+1}\right)
\end{aligned}
$$

Operator Splitting Methods

Michael Moeller

Thomas Möllenhoff Emanuel Laude

Relations

Monotone Operators
Fixed Point Iterations
Proximal Point
Algorithm
PDHG Revisited
Douglas-Rachford Splitting

PDHG as Proximal Point Method

- Reformulating the following

$$
0 \in \lambda^{-1}\left[\begin{array}{l}
u^{k+1}-u^{k} \\
p^{k+1}-p^{k}
\end{array}\right]+\underbrace{\left[\begin{array}{c}
\partial G\left(u^{k+1}\right)+K^{T} p^{k+1} \\
\partial F^{*}\left(p^{k+1}\right)-K u^{k+1}
\end{array}\right]}_{=: T(\tilde{u}, \tilde{p})}
$$

leads to:

$$
\begin{aligned}
u^{k+1} & =(I+\lambda \partial G)^{-1}\left(u^{k}-\lambda K^{T} p^{k+1}\right) \\
& =\operatorname{prox}_{\lambda G}\left(u^{k}-\lambda K^{T} p^{k+1}\right) \\
p^{k+1} & =\left(I+\lambda \partial F^{*}\right)^{-1}\left(p^{k}+\lambda K u^{k+1}\right) \\
& =\operatorname{prox}_{\lambda F^{*}}\left(p^{k}+\lambda K u^{k+1}\right)
\end{aligned}
$$

Operator Splitting Methods

Michael Moeller

Thomas Möllenhoff Emanuel Laude

Relations

Monotone Operators
Fixed Point Iterations
Proximal Point Algorithm

PDHG Revisited
Douglas-Rachford Splitting

PDHG as Proximal Point Method

- Reformulating the following

$$
0 \in \lambda^{-1}\left[\begin{array}{l}
u^{k+1}-u^{k} \\
p^{k+1}-p^{k}
\end{array}\right]+\underbrace{\left[\begin{array}{l}
\partial G\left(u^{k+1}\right)+K^{T} p^{k+1} \\
\partial F^{*}\left(p^{k+1}\right)-K u^{k+1}
\end{array}\right]}_{=: T(\tilde{u}, \tilde{p})}
$$

leads to:

$$
\begin{aligned}
u^{k+1} & =(I+\lambda \partial G)^{-1}\left(u^{k}-\lambda K^{T} p^{k+1}\right) \\
& =\operatorname{prox}_{\lambda G}\left(u^{k}-\lambda K^{T} p^{k+1}\right) \\
p^{k+1} & =\left(I+\lambda \partial F^{*}\right)^{-1}\left(p^{k}+\lambda K u^{k+1}\right) \\
& =\operatorname{prox}_{\lambda F^{*}}\left(p^{k}+\lambda K u^{k+1}\right)
\end{aligned}
$$

Michael Moeller

Thomas Möllenhoff Emanuel Laude

Relations

Monotone Operators
Fixed Point Iterations

Proximal Point
Algorithm
PDHG Revisited
Douglas-Rachford Splitting

- Almost looks like the PDHG method, step size λ
- Problem: cannot implement this algorithm, since updates in u^{k+1} and p^{k+1} depend on each other

PDHG as Proximal Point Method

- Consider the following:

$$
0 \in \lambda^{-1}\left[\begin{array}{l}
u^{k+1}-u^{k} \\
p^{k+1}-p^{k}
\end{array}\right]+\underbrace{\left[\begin{array}{l}
\partial G\left(u^{k+1}\right)+K^{T} p^{k+1} \\
\partial F^{*}\left(p^{k+1}\right)-K u^{k+1}
\end{array}\right]}_{=: T(\tilde{u}, \tilde{p})}
$$

Operator Splitting Methods

Michael Moeller

Thomas Möllenhoff Emanuel Laude

Relations

Monotone Operators
Fixed Point Iterations

Proximal Point
Algorithm
PDHG Revisited

Douglas-Rachford Splitting

PDHG as Proximal Point Method

- Consider the following:

$$
0 \in M\left[\begin{array}{l}
u^{k+1}-u^{k} \\
p^{k+1}-p^{k}
\end{array}\right]+\underbrace{\left[\begin{array}{c}
\partial G\left(u^{k+1}\right)+K^{T} p^{k+1} \\
\partial F^{*}\left(p^{k+1}\right)-K u^{k+1}
\end{array}\right]}_{=: T(\tilde{u}, \tilde{p})}
$$

- Step size $M \in \mathbb{R}^{(n+m) \times(n+m)}$ is now a matrix

Operator Splitting Methods

Michael Moeller

Thomas Möllenhoff Emanuel Laude

Relations

Monotone Operators
Fixed Point Iterations

Proximal Point
Algorithm
PDHG Revisited

Douglas-Rachford Splitting

PDHG as Proximal Point Method

- Consider the following:

$$
0 \in M\left[\begin{array}{l}
u^{k+1}-u^{k} \\
p^{k+1}-p^{k}
\end{array}\right]+\underbrace{\left[\begin{array}{c}
\partial G\left(u^{k+1}\right)+K^{T} p^{k+1} \\
\partial F^{*}\left(p^{k+1}\right)-K u^{k+1}
\end{array}\right]}_{=: T(\tilde{u}, \tilde{p})}
$$

- Step size $M \in \mathbb{R}^{(n+m) \times(n+m)}$ is now a matrix
- Take the following choice

$$
M=\left[\begin{array}{cc}
\frac{1}{\tau} I & -K^{T} \\
-\theta K & \frac{1}{\sigma} I
\end{array}\right]
$$

Operator Splitting Methods

Michael Moeller

Thomas Möllenhoff Emanuel Laude

Relations

Monotone Operators
Fixed Point Iterations
Proximal Point
Algorithm
PDHG Revisited

Douglas-Rachford Splitting

PDHG as Proximal Point Method

- Consider the following:

$$
0 \in M\left[\begin{array}{l}
u^{k+1}-u^{k} \\
p^{k+1}-p^{k}
\end{array}\right]+\underbrace{\left[\begin{array}{c}
\partial G\left(u^{k+1}\right)+K^{T} p^{k+1} \\
\partial F^{*}\left(p^{k+1}\right)-K u^{k+1}
\end{array}\right]}_{=: T(\tilde{u}, \tilde{p})}
$$

- Step size $M \in \mathbb{R}^{(n+m) \times(n+m)}$ is now a matrix
- Take the following choice

$$
M=\left[\begin{array}{cc}
\frac{1}{\tau} I & -K^{\top} \\
-\theta K & \frac{1}{\sigma} I
\end{array}\right]
$$

- Allows to recover PDHG as proximal point algorithm (PPA)

$$
\begin{aligned}
u^{k+1} & =\operatorname{prox}_{\tau G}\left(u^{k}-\tau K^{\top} p^{k}\right), \\
p^{k+1} & =\operatorname{prox}_{\sigma F *}\left(p^{k}+\sigma K\left(u^{k+1}+\theta\left(u^{k+1}-u^{k}\right)\right)\right)
\end{aligned}
$$

PDHG as Proximal Point Method

- Consider the following:

$$
0 \in M\left[\begin{array}{l}
u^{k+1}-u^{k} \\
p^{k+1}-p^{k}
\end{array}\right]+\underbrace{\left[\begin{array}{l}
\partial G\left(u^{k+1}\right)+K^{T} p^{k+1} \\
\partial F^{*}\left(p^{k+1}\right)-K u^{k+1}
\end{array}\right]}_{=: T(\tilde{u}, \tilde{p})}
$$

- Step size $M \in \mathbb{R}^{(n+m) \times(n+m)}$ is now a matrix
- Take the following choice

$$
M=\left[\begin{array}{cc}
\frac{1}{\tau} I & -K^{\top} \\
-\theta K & \frac{1}{\sigma} I
\end{array}\right]
$$

- Allows to recover PDHG as proximal point algorithm (PPA)

$$
\begin{aligned}
u^{k+1} & =\operatorname{prox}_{\tau G}\left(u^{k}-\tau K^{\top} p^{k}\right), \\
p^{k+1} & =\operatorname{prox}_{\sigma F^{*}}\left(p^{k}+\sigma K\left(u^{k+1}+\theta\left(u^{k+1}-u^{k}\right)\right)\right)
\end{aligned}
$$

- This is called generalized or customized PPA:

$$
0 \in M\left(z^{k+1}-z^{k}\right)+T z^{k+1} \Leftrightarrow z^{k+1}=(M+T)^{-1} M z^{k}
$$

Convergence of Customized Proximal Point Method

- For symmetric, positive definite M, we can write $M=L^{T} L$, L invertible (Cholesky decomposition)

Relations

Monotone Operators
Fixed Point Iterations
Proximal Point
Algorithm
PDHG Revisited
Douglas-Rachford Splitting

[^13]
Convergence of Customized Proximal Point Method

- For symmetric, positive definite M, we can write $M=L^{T} L$, L invertible (Cholesky decomposition)
- Apply classical PPA to operator $T^{\prime}=L^{-T} \circ T \circ L^{-1}$

$$
y^{k+1}=\left(I+L^{-T} \circ T \circ L^{-1}\right)^{-1} y^{k}
$$

[^14]
Convergence of Customized Proximal Point Method

- For symmetric, positive definite M, we can write $M=L^{T} L$, L invertible (Cholesky decomposition)
- Apply classical PPA to operator $T^{\prime}=L^{-T} \circ T \circ L^{-1}$

$$
y^{k+1}=\left(I+L^{-T} \circ T \circ L^{-1}\right)^{-1} y^{k}
$$

- T (maximally) monotone $\Rightarrow L^{-T} \circ T \circ L^{-1}$ (maximally) monotone ${ }^{5}$

Relations
Monotone Operators
Fixed Point Iterations
Proximal Point
Algorithm
PDHG Revisited
Douglas-Rachford Splitting

[^15]
Convergence of Customized Proximal Point Method

- For symmetric, positive definite M, we can write $M=L^{T} L$, L invertible (Cholesky decomposition)
- Apply classical PPA to operator $T^{\prime}=L^{-T} \circ T \circ L^{-1}$

$$
y^{k+1}=\left(I+L^{-T} \circ T \circ L^{-1}\right)^{-1} y^{k}
$$

- T (maximally) monotone $\Rightarrow L^{-T} \circ T \circ L^{-1}$ (maximally) monotone ${ }^{5}$
- Define $L x=y$, then $0 \in\left(L^{-T} \circ T \circ L^{-1}\right) y \Leftrightarrow 0 \in T x$

Relations

Monotone Operators
Fixed Point Iterations
Proximal Point
Algorithm
PDHG Revisited
Douglas-Rachford Splitting

[^16]
Convergence of Customized Proximal Point Method

- For symmetric, positive definite M, we can write $M=L^{T} L$, L invertible (Cholesky decomposition)
- Apply classical PPA to operator $T^{\prime}=L^{-T} \circ T \circ L^{-1}$

$$
y^{k+1}=\left(I+L^{-T} \circ T \circ L^{-1}\right)^{-1} y^{k}
$$

- T (maximally) monotone $\Rightarrow L^{-T} \circ T \circ L^{-1}$ (maximally) monotone ${ }^{5}$
- Define $L x=y$, then $0 \in\left(L^{-T} \circ T \circ L^{-1}\right) y \Leftrightarrow 0 \in T x$
- Writing out the algorithm in terms of x yields

$$
0 \in M\left(x^{k+1}-x^{k}\right)+T x^{k+1}
$$

[^17]Relations
Monotone Operators
Fixed Point Iterations
Proximal Point
Algorithm
PDHG Revisited
Douglas-Rachford Splitting

Convergence of Customized Proximal Point Method

- For symmetric, positive definite M, we can write $M=L^{T} L$, L invertible (Cholesky decomposition)
- Apply classical PPA to operator $T^{\prime}=L^{-T} \circ T \circ L^{-1}$

$$
y^{k+1}=\left(I+L^{-T} \circ T \circ L^{-1}\right)^{-1} y^{k}
$$

- T (maximally) monotone $\Rightarrow L^{-T} \circ T \circ L^{-1}$ (maximally) monotone ${ }^{5}$
- Define $L x=y$, then $0 \in\left(L^{-T} \circ T \circ L^{-1}\right) y \Leftrightarrow 0 \in T x$
- Writing out the algorithm in terms of x yields

$$
0 \in M\left(x^{k+1}-x^{k}\right)+T x^{k+1}
$$

- Hence customized PPA inherits convergence from classical proximal point

[^18]Relations
Monotone Operators
Fixed Point Iterations
Proximal Point
Algorithm
PDHG Revisited
Douglas-Rachford

Convergence of PDHG

- When is the step size matrix symmetric positive definite?

$$
M=\left[\begin{array}{cc}
\frac{1}{\tau} I & -K^{T} \\
-\theta K & \frac{1}{\sigma} I
\end{array}\right]
$$

Operator Splitting Methods

Michael Moeller

Thomas Möllenhoff Emanuel Laude

Relations
Monotone Operators
Fixed Point Iterations
Proximal Point
Algorithm
PDHG Revisited
Douglas-Rachford Splitting
${ }^{6}$ T. Pock, A. Chambolle, Diagonal Preconditioning for first-order primal-dual algorithms in convex optimization, ICCV 2011

Convergence of PDHG

- When is the step size matrix symmetric positive definite?

$$
M=\left[\begin{array}{cc}
\frac{1}{\tau} I & -K^{T} \\
-\theta K & \frac{1}{\sigma} I
\end{array}\right]
$$

- Step size requirement for PDHG is $\tau \sigma\|K\|^{2}<1, \tau \sigma>0$

Operator Splitting Methods
Michael Moeller
Thomas Möllenhoff Emanuel Laude

Relations

Monotone Operators
Fixed Point Iterations
Proximal Point
Algorithm
PDHG Revisited
Douglas-Rachford Splitting

[^19] algorithms in convex optimization, ICCV 2011

Convergence of PDHG

- When is the step size matrix symmetric positive definite?

$$
M=\left[\begin{array}{cc}
\frac{1}{\tau} I & -K^{T} \\
-\theta K & \frac{1}{\sigma} I
\end{array}\right]
$$

- Step size requirement for PDHG is $\tau \sigma\|K\|^{2}<1, \tau \sigma>0$

Lemma (Pock-Chambolle-2011 ${ }^{6}$)

Let $\theta=1, \mathrm{~T}$ and Σ symmetric positive definite maps satisfying

$$
\left\|\Sigma^{\frac{1}{2}} K \mathrm{~T}^{\frac{1}{2}}\right\|^{2}<1
$$

then the block matrix

$$
M=\left[\begin{array}{cc}
\mathrm{T}^{-1} & -K^{T} \\
-\theta K & \Sigma^{-1}
\end{array}\right]
$$

is symmetric and positive definite.

[^20]
Summary

Operator Splitting Methods
Michael Moeller
Thomas Möllenhoff Emanuel Laude

- Customized proximal point algorithms yield a whole family of methods, many choices of M are concievable

$$
0 \in M\left(z^{k+1}-z^{k}\right)+T z^{k+1}
$$

Summary

Operator Splitting

- Customized proximal point algorithms yield a whole family of methods, many choices of M are concievable

$$
0 \in M\left(z^{k+1}-z^{k}\right)+T z^{k+1}
$$

- PDHG corresponds to one particular choice of M

Methods
Michael Moeller
Thomas Möllenhoff Emanuel Laude

Relations
Monotone Operators
Fixed Point Iterations
Proximal Point
Algorithm
PDHG Revisited
Douglas-Rachford Splitting

Summary

- Customized proximal point algorithms yield a whole family of methods, many choices of M are concievable

$$
0 \in M\left(z^{k+1}-z^{k}\right)+T z^{k+1}
$$

- PDHG corresponds to one particular choice of M
- Overrelaxation with $\theta=1$ required to make M symmetric

Relations
Monotone Operators
Fixed Point Iterations
Proximal Point
Algorithm
PDHG Revisited
Douglas-Rachford Splitting

Summary

- Customized proximal point algorithms yield a whole family of methods, many choices of M are concievable

$$
0 \in M\left(z^{k+1}-z^{k}\right)+T z^{k+1}
$$

- PDHG corresponds to one particular choice of M
- Overrelaxation with $\theta=1$ required to make M symmetric
- Convergence follows from convergence of classical proximal point algorithm

Relations
Monotone Operators
Fixed Point Iterations
Proximal Point
Algorithm
PDHG Revisited
Douglas-Rachford Splitting

Summary

- Customized proximal point algorithms yield a whole family of methods, many choices of M are concievable

$$
0 \in M\left(z^{k+1}-z^{k}\right)+T z^{k+1}
$$

- PDHG corresponds to one particular choice of M
- Overrelaxation with $\theta=1$ required to make M symmetric
- Convergence follows from convergence of classical proximal point algorithm
- Classical proximal point converges as it is fixed point iteration of averaged operator

Summary

- Customized proximal point algorithms yield a whole family of methods, many choices of M are concievable

$$
0 \in M\left(z^{k+1}-z^{k}\right)+T z^{k+1}
$$

- PDHG corresponds to one particular choice of M
- Overrelaxation with $\theta=1$ required to make M symmetric
- Convergence follows from convergence of classical proximal point algorithm
- Classical proximal point converges as it is fixed point iteration of averaged operator
- Next lecture: Douglas-Rachford splitting and ADMM

Organizational Remarks

Exams:

- Important: Registration deadline 30.06. in TUMonline!

Operator Splitting Methods

Michael Moeller

Thomas Möllenhoff
Emanuel Laude

Relations

Monotone Operators

Fixed Point Iterations

Proximal Point
Algorithm
PDHG Revisited

Douglas-Rachford Splitting

Organizational Remarks

Exams:

- Important: Registration deadline 30.06. in TUMonline!
- Exam (oral): 18.07. and 19.07.

Operator Splitting Methods

Michael Moeller

Thomas Möllenhoff Emanuel Laude

Relations

Monotone Operators

Fixed Point Iterations
Proximal Point
Algorithm
PDHG Revisited
Douglas-Rachford Splitting

Organizational Remarks

Exams:

- Important: Registration deadline 30.06. in TUMonline!
- Exam (oral): 18.07. and 19.07.
- Repeat exam (oral): 05.10. and 06.10.

Operator Splitting Methods

Michael Moeller

Thomas Möllenhoff Emanuel Laude

Relations

Monotone Operators
Fixed Point Iterations
Proximal Point
Algorithm
PDHG Revisited
Douglas-Rachford Splitting

Organizational Remarks

Exams:

- Important: Registration deadline 30.06. in TUMonline!
- Exam (oral): 18.07. and 19.07.
- Repeat exam (oral): 05.10. and 06.10.
- Sign up for timeslots in exercise class on Friday 17.06.

Michael Moeller

Thomas Möllenhoff Emanuel Laude

Relations

Monotone Operators
Fixed Point Iterations
Proximal Point
Algorithm
PDHG Revisited
Douglas-Rachford Splitting

Organizational Remarks

Exams:

- Important: Registration deadline 30.06. in TUMonline!
- Exam (oral): 18.07. and 19.07.
- Repeat exam (oral): 05.10. and 06.10.
- Sign up for timeslots in exercise class on Friday 17.06.

Remaining lectures:

- Next Monday 20.06. hints for getting started with the optimization challenge!

Relations

Monotone Operators
Fixed Point Iterations

Proximal Point
Algorithm
PDHG Revisited
Douglas-Rachford Splitting

Organizational Remarks

Exams:

- Important: Registration deadline 30.06. in TUMonline!
- Exam (oral): 18.07. and 19.07.
- Repeat exam (oral): 05.10. and 06.10.
- Sign up for timeslots in exercise class on Friday 17.06.

Remaining lectures:

- Next Monday 20.06. hints for getting started with the optimization challenge!
- 22.06. Some practical considerations of PDHG/ADMM

Organizational Remarks

Exams:

- Important: Registration deadline 30.06. in TUMonline!
- Exam (oral): 18.07. and 19.07.
- Repeat exam (oral): 05.10. and 06.10.
- Sign up for timeslots in exercise class on Friday 17.06.

Remaining lectures:

- Next Monday 20.06. hints for getting started with the optimization challenge!
- 22.06. Some practical considerations of PDHG/ADMM
- 27.06. - 01.07. no lecture / exercises, repeat and review what you have learned!

Relations

Monotone Operators
Fixed Point Iterations

Proximal Point
Algorithm
PDHG Revisited
Douglas-Rachford Splitting

Organizational Remarks

Exams:

- Important: Registration deadline 30.06. in TUMonline!
- Exam (oral): 18.07. and 19.07.
- Repeat exam (oral): 05.10. and 06.10.
- Sign up for timeslots in exercise class on Friday 17.06.

Remaining lectures:

- Next Monday 20.06. hints for getting started with the optimization challenge!
- 22.06. Some practical considerations of PDHG/ADMM
- 27.06. - 01.07. no lecture / exercises, repeat and review what you have learned!
- 04.07. - 11.07. Miscellaneous topics on modifications and accelerations, open research questions/challenges

Relations

Monotone Operators
Fixed Point Iterations

Proximal Point
Algorithm
PDHG Revisited
Douglas-Rachford Splitting

Organizational Remarks

Exams:

- Important: Registration deadline 30.06. in TUMonline!
- Exam (oral): 18.07. and 19.07.
- Repeat exam (oral): 05.10. and 06.10.
- Sign up for timeslots in exercise class on Friday 17.06.

Remaining lectures:

- Next Monday 20.06. hints for getting started with the optimization challenge!
- 22.06. Some practical considerations of PDHG/ADMM
- 27.06. - 01.07. no lecture / exercises, repeat and review what you have learned!
- 04.07. - 11.07. Miscellaneous topics on modifications and accelerations, open research questions/challenges
- Last lecture on 13.07. repeat of content, questions

Michael Moeller

Thomas Möllenhoff
Emanuel Laude

Douglas-Rachford Splitting

Relations
Monotone Operators
Fixed Point Iterations
Proximal Point
Algorithm
PDHG Revisited
Douglas-Rachford
Splitting

Motivation

- Last lecture: proximal point algorithm for finding the zero of a monotone operator T

$$
0 \in T u \Leftrightarrow u=(I+\lambda T)^{-1} u
$$

Operator Splitting Methods

Michael Moeller

Thomas Möllenhoff
Emanuel Laude

Relations

Monotone Operators
Fixed Point Iterations
Proximal Point
Algorithm
PDHG Revisited

Motivation

- Last lecture: proximal point algorithm for finding the zero of a monotone operator T

$$
0 \in T u \Leftrightarrow u=(I+\lambda T)^{-1} u
$$

- Often the resolvent $J_{\lambda T}:=(I+\lambda T)^{-1}$ is hard to compute

Operator Splitting Methods

Michael Moeller

Thomas Möllenhoff Emanuel Laude

Relations

Monotone Operators
Fixed Point Iterations
Proximal Point
Algorithm
PDHG Revisited
Douglas-Rachford
Splitting

Motivation

- Last lecture: proximal point algorithm for finding the zero of a monotone operator T

$$
0 \in T u \Leftrightarrow u=(I+\lambda T)^{-1} u
$$

- Often the resolvent $J_{\lambda T}:=(I+\lambda T)^{-1}$ is hard to compute
- One remedy: matrix-valued step-size / customized PPA

$$
u^{k+1}=(M+T)^{-1} M u^{k}
$$

Operator Splitting Methods

Michael Moeller Thomas Möllenhoff Emanuel Laude

Relations

Monotone Operators
Fixed Point Iterations
Proximal Point
Algorithm
PDHG Revisited
Douglas-Rachford
Splitting

Motivation

- Last lecture: proximal point algorithm for finding the zero of a monotone operator T

$$
0 \in T u \Leftrightarrow u=(I+\lambda T)^{-1} u
$$

- Often the resolvent $J_{\lambda T}:=(I+\lambda T)^{-1}$ is hard to compute
- One remedy: matrix-valued step-size / customized PPA

$$
u^{k+1}=(M+T)^{-1} M u^{k}
$$

- Another possibility are splitting methods

Operator Splitting Methods

Michael Moeller Thomas Möllenhoff Emanuel Laude

Relations

Monotone Operators
Fixed Point Iterations

Proximal Point
Algorithm
PDHG Revisited

Motivation

- Last lecture: proximal point algorithm for finding the zero of a monotone operator T

$$
0 \in T u \Leftrightarrow u=(I+\lambda T)^{-1} u
$$

- Often the resolvent $J_{\lambda T}:=(I+\lambda T)^{-1}$ is hard to compute
- One remedy: matrix-valued step-size / customized PPA

$$
u^{k+1}=(M+T)^{-1} M u^{k}
$$

- Another possibility are splitting methods
- They exploit further structure of the problem:

$$
T=A+B
$$

Motivation

- Last lecture: proximal point algorithm for finding the zero of a monotone operator T

$$
0 \in T u \Leftrightarrow u=(I+\lambda T)^{-1} u
$$

- Often the resolvent $J_{\lambda T}:=(I+\lambda T)^{-1}$ is hard to compute
- One remedy: matrix-valued step-size / customized PPA

$$
u^{k+1}=(M+T)^{-1} M u^{k}
$$

- Another possibility are splitting methods
- They exploit further structure of the problem:

$$
T=A+B
$$

- Resolvents $J_{\lambda A}=(I+\lambda A)^{-1}$ and $J_{\lambda B}=(I+\lambda B)^{-1}$ can be more easily evaluated than $J_{\lambda T}$

Splitting methods

Operator Splitting Methods

Michael Moeller

Thomas Möllenhoff
Emanuel Laude

- $T=A+B, A$ and B maximal monotone

Relations
Monotone Operators
Fixed Point Iterations
Proximal Point
Algorithm
PDHG Revisited
Douglas-Rachford
Splitting

Splitting methods

Operator Splitting Methods
Michael Moeller
Thomas Möllenhoff Emanuel Laude

- $T=A+B, A$ and B maximal monotone
- Cayley operators $C_{A}=2 J_{A}-I$ and $C_{B}=2 J_{A}-I$ are nonexpansive

Relations

Monotone Operators
Fixed Point Iterations
Proximal Point
Algorithm
PDHG Revisited
Douglas-Rachford Splitting

Splitting methods

Operator Splitting Methods
Michael Moeller Thomas Möllenhoff Emanuel Laude

- $T=A+B, A$ and B maximal monotone
- Cayley operators $C_{A}=2 J_{A}-I$ and $C_{B}=2 J_{A}-I$ are nonexpansive
- Composition $C_{A} C_{B}$ also nonexpansive

Relations

Monotone Operators
Fixed Point Iterations
Proximal Point
Algorithm
PDHG Revisited
Douglas-Rachford
Splitting

Splitting methods

Operator Splitting Methods
Michael Moeller
Thomas Möllenhoff Emanuel Laude

- $T=A+B, A$ and B maximal monotone
- Cayley operators $C_{A}=2 J_{A}-I$ and $C_{B}=2 J_{A}-I$ are nonexpansive
- Composition $C_{A} C_{B}$ also nonexpansive
- Main result: (\rightarrow board!)

$$
0 \in A u+B u \Leftrightarrow C_{A} C_{B} v=v, u=J_{B} v
$$

Relations

Monotone Operators
Fixed Point Iterations
Proximal Point
Algorithm
PDHG Revisited
Douglas-Rachford
Splitting

Splitting methods

Operator Splitting Methods
Michael Moeller
Thomas Möllenhoff Emanuel Laude

Relations
Monotone Operators
Fixed Point Iterations
Proximal Point
Algorithm
PDHG Revisited
Douglas-Rachford
Splitting

- Hence, solutions can be found from fixed point of the operator $C_{A} C_{B}$

Splitting methods

Operator Splitting Methods
Michael Moeller
Thomas Möllenhoff Emanuel Laude

- $T=A+B, A$ and B maximal monotone
- Cayley operators $C_{A}=2 J_{A}-I$ and $C_{B}=2 J_{A}-I$ are nonexpansive
- Composition $C_{A} C_{B}$ also nonexpansive
- Main result: (\rightarrow board!)

$$
0 \in A u+B u \Leftrightarrow C_{A} C_{B} v=v, u=J_{B} v
$$

- Hence, solutions can be found from fixed point of the operator $C_{A} C_{B}$
\rightarrow Draw a picture for $T=\partial \iota c_{1}+\partial \iota c_{2}!$

Splitting Methods

Operator Splitting Methods
Michael Moeller
Thomas Möllenhoff Emanuel Laude

- Peaceman-Rachford splitting is undamped iteration

$$
v^{k+1}=C_{A} C_{B} v^{k}
$$

Monotone Operators
Fixed Point Iterations
Proximal Point
Algorithm
PDHG Revisited
Douglas-Rachford
Splitting

[^21]
Splitting Methods

- Peaceman-Rachford splitting is undamped iteration

$$
v^{k+1}=C_{A} C_{B} v^{k}
$$

- Doesn't converge in the general case, needs either C_{A} or C_{B} to be a contraction

Relations
Monotone Operators
Fixed Point Iterations
Proximal Point
Algorithm
PDHG Revisited
Douglas-Rachford
Splitting

[^22]
Splitting Methods

- Peaceman-Rachford splitting is undamped iteration

$$
v^{k+1}=C_{A} C_{B} v^{k}
$$

- Doesn't converge in the general case, needs either C_{A} or C_{B} to be a contraction
- Douglas-Rachford splitting ${ }^{7}$ is the damped iteration

$$
v^{k+1}=\left(\frac{1}{2} I+\frac{1}{2} C_{A} C_{B}\right) v^{k}
$$

Relations
Monotone Operators
Fixed Point Iterations
Proximal Point
Algorithm
PDHG Revisited

[^23]
Splitting Methods

- Peaceman-Rachford splitting is undamped iteration

$$
v^{k+1}=C_{A} C_{B} v^{k}
$$

- Doesn't converge in the general case, needs either C_{A} or C_{B} to be a contraction
- Douglas-Rachford splitting ${ }^{7}$ is the damped iteration

$$
v^{k+1}=\left(\frac{1}{2} I+\frac{1}{2} C_{A} C_{B}\right) v^{k}
$$

Relations

Monotone Operators
Fixed Point Iterations
Proximal Point
Algorithm
PDHG Revisited
Douglas-Rachford
Splitting

- Recover solution by $u^{*}=J_{B} v^{*}$

[^24]
Splitting Methods

- Peaceman-Rachford splitting is undamped iteration

$$
v^{k+1}=C_{A} C_{B} v^{k}
$$

- Doesn't converge in the general case, needs either C_{A} or C_{B} to be a contraction
- Douglas-Rachford splitting ${ }^{7}$ is the damped iteration

$$
v^{k+1}=\left(\frac{1}{2} I+\frac{1}{2} C_{A} C_{B}\right) v^{k},
$$

- Recover solution by $u^{*}=J_{B} v^{*}$
- Always converges if there exists a solution $0 \in A u^{*}+B u^{*}$, since it's fixed point iteration of averaged operator

[^25]
Douglas-Rachford Splitting (DRS)

Operator Splitting Methods
Michael Moeller
Thomas Möllenhoff Emanuel Laude

Relations

Monotone Operators
Fixed Point Iterations
Proximal Point
Algorithm
PDHG Revisited
Douglas-Rachford Splitting

Douglas-Rachford Splitting (DRS)

Operator Splitting Methods
Michael Moeller
Thomas Möllenhoff Emanuel Laude

Relations

Monotone Operators
Fixed Point Iterations
Proximal Point
Algorithm
PDHG Revisited
Douglas-Rachford Splitting

- u_{a}^{k} and u_{b}^{k} can be thought of estimates to a solution

Douglas-Rachford Splitting (DRS)

Operator Splitting Methods
Michael Moeller
Thomas Möllenhoff Emanuel Laude

Relations
Monotone Operators
Fixed Point Iterations
Proximal Point
Algorithm
PDHG Revisited
Douglas-Rachford
Splitting

- u_{a}^{k} and u_{b}^{k} can be thought of estimates to a solution
- v^{k} running sum of residuals, drives u_{a}^{k} and u_{b}^{k} together

Application to Convex Optimization

Operator Splitting Methods

Michael Moeller

Thomas Möllenhoff Emanuel Laude

- Let's apply DRS to minimize

$$
\min _{u \in \mathbb{R}^{n}} G(u)+F(u)
$$

Monotone Operators

Fixed Point Iterations
Proximal Point
Algorithm
PDHG Revisited
Douglas-Rachford
Splitting

Application to Convex Optimization

Operator Splitting Methods

Michael Moeller Thomas Möllenhoff Emanuel Laude

- Let's apply DRS to minimize

$$
\min _{u \in \mathbb{R}^{n}} G(u)+F(u)
$$

- $G: \mathbb{R}^{n} \rightarrow \mathbb{R} \cup\{\infty\}, F: \mathbb{R}^{n} \rightarrow \mathbb{R} \cup\{\infty\}$ closed, proper, cvx.

Relations

Monotone Operators
Fixed Point Iterations
Proximal Point
Algorithm
PDHG Revisited

Douglas-Rachford
Splitting

Application to Convex Optimization

Operator Splitting Methods

Michael Moeller Thomas Möllenhoff Emanuel Laude

- Let's apply DRS to minimize

$$
\min _{u \in \mathbb{R}^{n}} G(u)+F(u)
$$

- $G: \mathbb{R}^{n} \rightarrow \mathbb{R} \cup\{\infty\}, F: \mathbb{R}^{n} \rightarrow \mathbb{R} \cup\{\infty\}$ closed, proper, cvx.
- Optimality conditions (assuming ri(dom $G) \cap \mathrm{ri}(\operatorname{dom} F) \neq \emptyset)$:

$$
0 \in \tau \partial G(u)+\tau \partial F(u)
$$

Relations

Monotone Operators

Fixed Point Iterations

Proximal Point Algorithm

PDHG Revisited

Douglas-Rachford
Splitting

Application to Convex Optimization

Operator Splitting Methods

Michael Moeller Thomas Möllenhoff Emanuel Laude

- Let's apply DRS to minimize

$$
\min _{u \in \mathbb{R}^{n}} G(u)+F(u)
$$

- $G: \mathbb{R}^{n} \rightarrow \mathbb{R} \cup\{\infty\}, F: \mathbb{R}^{n} \rightarrow \mathbb{R} \cup\{\infty\}$ closed, proper, cvx.
- Optimality conditions (assuming ri(dom $G) \cap \mathrm{ri}(\operatorname{dom} F) \neq \emptyset)$:

$$
0 \in \tau \partial G(u)+\tau \partial F(u)
$$

- Find zero of $T=A+B, A=\tau \partial G, B=\tau \partial F$

Relations

Monotone Operators
Fixed Point Iterations
Proximal Point Algorithm

PDHG Revisited

Douglas-Rachford
Splitting

Application to Convex Optimization

Operator Splitting Methods

Michael Moeller Thomas Möllenhoff Emanuel Laude

- Let's apply DRS to minimize

$$
\min _{u \in \mathbb{R}^{n}} G(u)+F(u)
$$

- $G: \mathbb{R}^{n} \rightarrow \mathbb{R} \cup\{\infty\}, F: \mathbb{R}^{n} \rightarrow \mathbb{R} \cup\{\infty\}$ closed, proper, cvx.
- Optimality conditions (assuming ri(domG) $\cap \mathrm{ri}(\operatorname{dom} F) \neq \emptyset)$:

$$
0 \in \tau \partial G(u)+\tau \partial F(u)
$$

- Find zero of $T=A+B, A=\tau \partial G, B=\tau \partial F$
- The algorithm becomes (after slight simplifications):

$$
\begin{aligned}
u^{k+1} & =\operatorname{prox}_{\tau G}\left(v^{k}\right), \\
v^{k+1} & =\operatorname{prox}_{\tau F}\left(2 u^{k+1}-v^{k}\right)+v^{k}-u^{k+1} .
\end{aligned}
$$

Reformulation of DRS

Operator Splitting Methods
Michael Moeller
Thomas Möllenhoff Emanuel Laude

- We can rewrite the step in $v^{k+1} u s i n g$ Moreau's Identity

$$
\begin{aligned}
u^{k+1} & =\operatorname{prox}_{\tau G}\left(v^{k}\right) \\
v^{k+1} & =\operatorname{prox}_{\tau F}\left(2 u^{k+1}-v^{k}\right)+v^{k}-u^{k+1} \\
& =u^{k+1}+\tau \operatorname{prox}_{(1 / \tau) F^{*}}\left(\left(2 u^{k+1}-v^{k}\right) / \tau\right)
\end{aligned}
$$

Relations

Monotone Operators
Fixed Point Iterations
Proximal Point
Algorithm
PDHG Revisited
Douglas-Rachford
Splitting

Reformulation of DRS

Operator Splitting Methods
Michael Moeller
Thomas Möllenhoff Emanuel Laude

- We can rewrite the step in $v^{k+1} u s i n g$ Moreau's Identity

$$
\begin{aligned}
u^{k+1} & =\operatorname{prox}_{\tau G}\left(v^{k}\right), \\
v^{k+1} & =\operatorname{prox}_{\tau F}\left(2 u^{k+1}-v^{k}\right)+v^{k}-u^{k+1} \\
& =u^{k+1}+\tau \operatorname{prox}_{(1 / \tau) F^{*}}\left(\left(2 u^{k+1}-v^{k}\right) / \tau\right)
\end{aligned}
$$

- Introduce variable $p^{k}=\frac{u^{k}-v^{k}}{\tau} \Leftrightarrow v^{k}=u^{k}-\tau p^{k}, \sigma=1 / \tau$

$$
\begin{aligned}
& u^{k+1}=\operatorname{prox}_{\tau G}\left(u^{k}-\tau p^{k}\right), \\
& p^{k+1}=\operatorname{prox}_{\sigma F^{*}}\left(p^{k}+\sigma\left(2 u^{k+1}-u^{k}\right)\right)
\end{aligned}
$$

Relations

Monotone Operators

Proximal Point Algorithm

PDHG Revisited
Douglas-Rachford Splitting

Reformulation of DRS

Operator Splitting Methods
Michael Moeller
Thomas Möllenhoff Emanuel Laude

- We can rewrite the step in $v^{k+1} u s i n g$ Moreau's Identity

$$
\begin{aligned}
u^{k+1} & =\operatorname{prox}_{\tau G}\left(v^{k}\right), \\
v^{k+1} & =\operatorname{prox}_{\tau F}\left(2 u^{k+1}-v^{k}\right)+v^{k}-u^{k+1} \\
& =u^{k+1}+\tau \operatorname{prox}_{(1 / \tau) F^{*}}\left(\left(2 u^{k+1}-v^{k}\right) / \tau\right)
\end{aligned}
$$

- Introduce variable $p^{k}=\frac{u^{k}-v^{k}}{\tau} \Leftrightarrow v^{k}=u^{k}-\tau p^{k}, \sigma=1 / \tau$

$$
\begin{aligned}
& u^{k+1}=\operatorname{prox}_{\tau G}\left(u^{k}-\tau p^{k}\right), \\
& p^{k+1}=\operatorname{prox}_{\sigma F^{*}}\left(p^{k}+\sigma\left(2 u^{k+1}-u^{k}\right)\right)
\end{aligned}
$$

- Looks familiar? :-)

Reformulation of DRS

Operator Splitting Methods
Michael Moeller
Thomas Möllenhoff Emanuel Laude

- We can rewrite the step in $v^{k+1} u s i n g$ Moreau's Identity

$$
\begin{aligned}
u^{k+1} & =\operatorname{prox}_{\tau G}\left(v^{k}\right), \\
v^{k+1} & =\operatorname{prox}_{\tau F}\left(2 u^{k+1}-v^{k}\right)+v^{k}-u^{k+1} \\
& =u^{k+1}+\tau \operatorname{prox}_{(1 / \tau) F^{*}}\left(\left(2 u^{k+1}-v^{k}\right) / \tau\right)
\end{aligned}
$$

- Introduce variable $p^{k}=\frac{u^{k}-v^{k}}{\tau} \Leftrightarrow v^{k}=u^{k}-\tau p^{k}, \sigma=1 / \tau$

$$
\begin{aligned}
& u^{k+1}=\operatorname{prox}_{\tau G}\left(u^{k}-\tau p^{k}\right) \\
& p^{k+1}=\operatorname{prox}_{\sigma F *}\left(p^{k}+\sigma\left(2 u^{k+1}-u^{k}\right)\right)
\end{aligned}
$$

- Looks familiar? :-)
- Applying DRS on the primal problem $\min _{u} G(u)+F(u)$ is equivalent to PDHG!

Optimization Problems with Compositions

- Ideally we'd like to solve problems of the form

Operator Splitting Methods
Michael Moeller
Thomas Möllenhoff Emanuel Laude

Relations
Monotone Operators
Fixed Point Iterations
Proximal Point
Algorithm
PDHG Revisited
Douglas-Rachford
Splitting

Optimization Problems with Compositions

- Ideally we'd like to solve problems of the form

$$
\min _{u} G(u)+F(w), \quad \text { s.t. } \quad w=K u
$$

- In many applications we would actually like to minimize

$$
\min _{u} G(u)+\sum_{i=1}^{N} F_{i}\left(K_{i} u\right)
$$

Optimization Problems with Compositions

- Ideally we'd like to solve problems of the form

$$
\min _{u} G(u)+F(w), \quad \text { s.t. } \quad w=K u
$$

- In many applications we would actually like to minimize

$$
\min _{u} G(u)+\sum_{i=1}^{N} F_{i}\left(K_{i} u\right)
$$

- Rewrite using trick:

$$
w=\left[\begin{array}{c}
w_{1} \\
\vdots \\
w_{N}
\end{array}\right], K=\left[\begin{array}{c}
K_{1} \\
\ldots \\
K_{N}
\end{array}\right], \quad \rightarrow F(w)=\sum_{i=1}^{N} F_{i}\left(w_{i}\right)
$$

Operator Splitting Methods
Michael Moeller
Thomas Möllenhoff Emanuel Laude

Relations
Monotone Operators
Fixed Point Iterations
Proximal Point
Algorithm
PDHG Revisited
Douglas-Rachford
Splitting

Optimization Problems with Compositions

- Ideally we'd like to solve problems of the form

$$
\min _{u} G(u)+F(w), \quad \text { s.t. } \quad w=K u
$$

- In many applications we would actually like to minimize

$$
\min _{u} G(u)+\sum_{i=1}^{N} F_{i}\left(K_{i} u\right)
$$

- Rewrite using trick:

$$
w=\left[\begin{array}{c}
w_{1} \\
\vdots \\
w_{N}
\end{array}\right], K=\left[\begin{array}{c}
K_{1} \\
\ldots \\
K_{N}
\end{array}\right], \quad \rightarrow F(w)=\sum_{i=1}^{N} F_{i}\left(w_{i}\right)
$$

- Virtually any convex optimization problem fits into this form

Optimization Problems with Compositions

- Ideally we'd like to solve problems of the form

$$
\min _{u} G(u)+F(w), \quad \text { s.t. } \quad w=K u
$$

- In many applications we would actually like to minimize

$$
\min _{u} G(u)+\sum_{i=1}^{N} F_{i}\left(K_{i} u\right)
$$

- Rewrite using trick:

$$
w=\left[\begin{array}{c}
w_{1} \\
\vdots \\
w_{N}
\end{array}\right], K=\left[\begin{array}{c}
K_{1} \\
\ldots \\
K_{N}
\end{array}\right], \quad \rightarrow F(w)=\sum_{i=1}^{N} F_{i}\left(w_{i}\right)
$$

- Virtually any convex optimization problem fits into this form
- Even problems looking very complicated at first glance can be split up into many simple substeps

Option 1: Graph Projection Splitting

Operator Splitting Methods
Michael Moeller
Thomas Möllenhoff Emanuel Laude

- We want to minimize for $K: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$

$$
\min _{\mathbb{R}^{n}, w \in \mathbb{R}^{m}} G(u)+F(w) \quad \text { s.t. } \quad K u=w
$$

Relations

Monotone Operators
Fixed Point Iterations
Proximal Point
Algorithm
PDHG Revisited

Option 1: Graph Projection Splitting

- We want to minimize for $K: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$

$$
\min _{u \in \mathbb{R}^{n}, w \in \mathbb{R}^{m}} G(u)+F(w) \quad \text { s.t. } \quad K u=w
$$

- Rewrite problem using $(u, w) \in \mathbb{R}^{n+m}$ as

$$
\min _{u, w} \tilde{G}(u, w)+\tilde{F}(u, w)
$$

Operator Splitting Methods
Michael Moeller Thomas Möllenhoff Emanuel Laude

Relations
Monotone Operators
Fixed Point Iterations
Proximal Point
Algorithm
PDHG Revisited
Douglas-Rachford
Splitting

Option 1: Graph Projection Splitting

- We want to minimize for $K: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$

$$
\min _{u \in \mathbb{R}^{n}, w \in \mathbb{R}^{m}} G(u)+F(w) \quad \text { s.t. } \quad K u=w
$$

- Rewrite problem using $(u, w) \in \mathbb{R}^{n+m}$ as

$$
\min _{u, w} \tilde{G}(u, w)+\tilde{F}(u, w)
$$

- Set $\tilde{G}(u, w)=G(u)+F(w)$

Operator Splitting Methods
Michael Moeller Thomas Möllenhoff Emanuel Laude

Relations
Monotone Operators
Fixed Point Iterations
Proximal Point
Algorithm
PDHG Revisited
Douglas-Rachford
Splitting

Option 1: Graph Projection Splitting

- We want to minimize for $K: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$

$$
\min _{u \in \mathbb{R}^{n}, w \in \mathbb{R}^{m}} G(u)+F(w) \quad \text { s.t. } \quad K u=w
$$

- Rewrite problem using $(u, w) \in \mathbb{R}^{n+m}$ as

$$
\min _{u, w} \tilde{G}(u, w)+\tilde{F}(u, w)
$$

- Set $\tilde{G}(u, w)=G(u)+F(w)$
- Set $\tilde{F}(u, w)= \begin{cases}0, & \text { if } K u=w \\ \infty, & \text { else. }\end{cases}$

Operator Splitting Methods
Michael Moeller Thomas Möllenhoff Emanuel Laude

Relations
Monotone Operators
Fixed Point Iterations
Proximal Point
Algorithm
PDHG Revisited
Douglas-Rachford Splitting

Option 1: Graph Projection Splitting

- We want to minimize for $K: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$

$$
\min _{u \in \mathbb{R}^{n}, w \in \mathbb{R}^{m}} G(u)+F(w) \quad \text { s.t. } \quad K u=w
$$

- Rewrite problem using $(u, w) \in \mathbb{R}^{n+m}$ as

$$
\min _{u, w} \tilde{G}(u, w)+\tilde{F}(u, w)
$$

- Set $\tilde{G}(u, w)=G(u)+F(w)$
- Set $\tilde{F}(u, w)= \begin{cases}0, & \text { if } K u=w \\ \infty, & \text { else. }\end{cases}$

Operator Splitting Methods

Michael Moeller Thomas Möllenhoff Emanuel Laude

Relations

Monotone Operators
Fixed Point Iterations
Proximal Point
Algorithm
PDHG Revisited
Douglas-Rachford
Splitting

- Proximal operator for \tilde{G} is simple if proximal operators for F and G are simple

Option 1: Graph Projection Splitting

- We want to minimize for $K: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$

$$
\min _{u \in \mathbb{R}^{n}, w \in \mathbb{R}^{m}} G(u)+F(w) \quad \text { s.t. } \quad K u=w
$$

- Rewrite problem using $(u, w) \in \mathbb{R}^{n+m}$ as

$$
\min _{u, w} \tilde{G}(u, w)+\tilde{F}(u, w)
$$

- Set $\tilde{G}(u, w)=G(u)+F(w)$
- Set $\tilde{F}(u, w)= \begin{cases}0, & \text { if } K u=w \\ \infty, & \text { else. }\end{cases}$
- Proximal operator for \tilde{G} is simple if proximal operators for F and G are simple
- Proximal operator for \tilde{F} is projection onto the graph of $K u=w$ (solving a least squares problem)

Option 1: Graph Projection Splitting

- Iterations can be written as ${ }^{8}$

$$
\begin{aligned}
& \left(u^{k+1 / 2}, w^{k+1 / 2}\right)=\left(\operatorname{prox}_{G}\left(u^{k}-\tilde{u}^{k}\right), \operatorname{prox}_{F}\left(w^{k}-\tilde{w}^{k}\right)\right) \\
& \left(u^{k+1}, w^{k+1}\right)=\Pi\left(u^{k+1 / 2}+\tilde{u}^{k}, w^{k+1 / 2}+\tilde{w}^{k}\right) \\
& \left(\tilde{u}^{k+1}, \tilde{w}^{k+1}\right)=\left(\tilde{u}^{k}+u^{k+1 / 2}-u^{k+1}, \tilde{w}^{k}+w^{k+1 / 2}-w^{k+1}\right)
\end{aligned}
$$

Operator Splitting Methods
Michael Moeller
Thomas Möllenhoff Emanuel Laude

Relations

Monotone Operators

Proximal Point Algorithm

PDHG Revisited

Option 1: Graph Projection Splitting

- Iterations can be written as ${ }^{8}$

$$
\begin{aligned}
& \left(u^{k+1 / 2}, w^{k+1 / 2}\right)=\left(\operatorname{prox}_{G}\left(u^{k}-\tilde{u}^{k}\right), \operatorname{prox}_{F}\left(w^{k}-\tilde{w}^{k}\right)\right) \\
& \left(u^{k+1}, w^{k+1}\right)=\Pi\left(u^{k+1 / 2}+\tilde{u}^{k}, w^{k+1 / 2}+\tilde{w}^{k}\right) \\
& \left(\tilde{u}^{k+1}, \tilde{w}^{k+1}\right)=\left(\tilde{u}^{k}+u^{k+1 / 2}-u^{k+1}, \tilde{w}^{k}+w^{k+1 / 2}-w^{k+1}\right)
\end{aligned}
$$

Operator Splitting Methods
Michael Moeller
Thomas Möllenhoff Emanuel Laude

Relations

Monotone Operators
Fixed Point Iterations
Proximal Point Algorithm

PDHG Revisited

[^26]
Option 1: Graph Projection Splitting

- Iterations can be written as ${ }^{8}$

$$
\begin{aligned}
& \left(u^{k+1 / 2}, w^{k+1 / 2}\right)=\left(\operatorname{prox}_{G}\left(u^{k}-\tilde{u}^{k}\right), \operatorname{prox}_{F}\left(w^{k}-\tilde{w}^{k}\right)\right), \\
& \left(u^{k+1}, w^{k+1}\right)=\Pi\left(u^{k+1 / 2}+\tilde{u}^{k}, w^{k+1 / 2}+\tilde{w}^{k}\right) \\
& \left(\tilde{u}^{k+1}, \tilde{w}^{k+1}\right)=\left(\tilde{u}^{k}+u^{k+1 / 2}-u^{k+1}, \tilde{w}^{k}+w^{k+1 / 2}-w^{k+1}\right) .
\end{aligned}
$$

- Can use (preconditioned) conjugate gradient to approximately compute projection

[^27]
Option 1: Graph Projection Splitting

- Iterations can be written as ${ }^{8}$

$$
\begin{aligned}
& \left(u^{k+1 / 2}, w^{k+1 / 2}\right)=\left(\operatorname{prox}_{G}\left(u^{k}-\tilde{u}^{k}\right), \operatorname{prox}_{F}\left(w^{k}-\tilde{w}^{k}\right)\right) \\
& \left(u^{k+1}, w^{k+1}\right)=\Pi\left(u^{k+1 / 2}+\tilde{u}^{k}, w^{k+1 / 2}+\tilde{w}^{k}\right) \\
& \left(\tilde{u}^{k+1}, \tilde{w}^{k+1}\right)=\left(\tilde{u}^{k}+u^{k+1 / 2}-u^{k+1}, \tilde{w}^{k}+w^{k+1 / 2}-w^{k+1}\right) .
\end{aligned}
$$

Relations
Monotone Operators

- Can use (preconditioned) conjugate gradient to approximately compute projection
- Important: warm-start linear system solver with solution from previous iteration

[^28]
Option 1: Graph Projection Splitting

- Iterations can be written as ${ }^{8}$

$$
\begin{aligned}
& \left(u^{k+1 / 2}, w^{k+1 / 2}\right)=\left(\operatorname{prox}_{G}\left(u^{k}-\tilde{u}^{k}\right), \operatorname{prox}_{F}\left(w^{k}-\tilde{w}^{k}\right)\right) \\
& \left(u^{k+1}, w^{k+1}\right)=\Pi\left(u^{k+1 / 2}+\tilde{u}^{k}, w^{k+1 / 2}+\tilde{w}^{k}\right) \\
& \left(\tilde{u}^{k+1}, \tilde{w}^{k+1}\right)=\left(\tilde{u}^{k}+u^{k+1 / 2}-u^{k+1}, \tilde{w}^{k}+w^{k+1 / 2}-w^{k+1}\right) .
\end{aligned}
$$

Relations
Monotone Operators

- Can use (preconditioned) conjugate gradient to approximately compute projection
- Important: warm-start linear system solver with solution from previous iteration
- Other possibility: factorization caching

[^29]
Option 2: DRS for Problems with Compositions

- Consider the dual problem to $\min _{u} G(u)+F(K u)$

$$
\min _{p} G^{*}\left(-K^{*} p\right)+F^{*}(p)=\left(G^{*} \circ-K^{*}\right)(p)+F^{*}(p)
$$

Operator Splitting Methods

Michael Moeller

 Thomas Möllenhoff Emanuel Laude
Relations

Monotone Operators
Fixed Point Iterations
Proximal Point
Algorithm
PDHG Revisited
Douglas-Rachford
Splitting

Option 2: DRS for Problems with Compositions

- Consider the dual problem to $\min _{u} G(u)+F(K u)$

$$
\min _{p} G^{*}\left(-K^{*} p\right)+F^{*}(p)=\left(G^{*} \circ-K^{*}\right)(p)+F^{*}(p)
$$

- Applying DRS yields the following:

$$
\begin{aligned}
& u^{k+1}=\operatorname{prox}_{\sigma\left(G^{*} \circ-K^{*}\right)}\left(v^{k}\right) \\
& v^{k+1}=\operatorname{prox}_{\sigma F^{*}}\left(2 u^{k+1}-v^{k}\right)+v^{k}-u^{k+1}
\end{aligned}
$$

Operator Splitting Methods
Michael Moeller Thomas Möllenhoff Emanuel Laude

Relations

Monotone Operators
Fixed Point Iterations
Proximal Point Algorithm

PDHG Revisited
Douglas-Rachford
Splitting

Option 2: DRS for Problems with Compositions

- Consider the dual problem to $\min _{u} G(u)+F(K u)$

$$
\min _{p} G^{*}\left(-K^{*} p\right)+F^{*}(p)=\left(G^{*} \circ-K^{*}\right)(p)+F^{*}(p)
$$

- Applying DRS yields the following:

$$
\begin{aligned}
u^{k+1} & =\operatorname{prox}_{\sigma\left(G^{*} 0-K^{*}\right)}\left(v^{k}\right) \\
v^{k+1} & =\operatorname{prox}_{\sigma F *}\left(2 u^{k+1}-v^{k}\right)+v^{k}-u^{k+1}
\end{aligned}
$$

Operator Splitting Methods
Michael Moeller Thomas Möllenhoff Emanuel Laude

Relations
Monotone Operators
Fixed Point Iterations
Proximal Point
Algorithm
PDHG Revisited
Douglas-Rachford
Splitting

- Reorder slightly with new variable w^{k+1}

$$
\begin{aligned}
u^{k+1} & =\operatorname{prox}_{\sigma\left(G^{*} 0-K^{*}\right)}\left(v^{k}\right), \\
p^{k+1} & =\operatorname{prox}_{\sigma F F^{*}}\left(2 u^{k+1}-v^{k}\right), \\
v^{k+1} & =p^{k+1}+v^{k}-u^{k+1}
\end{aligned}
$$

Option 2: DRS for Problems with Compositions

- The prox involving the composition is given by:

$$
\operatorname{prox}_{\sigma\left(G^{*} \circ-K^{*}\right)}(v)=v+\sigma K \underset{u}{\operatorname{argmin}} G(u)+\frac{\sigma}{2}\left\|K u+\frac{v}{\sigma}\right\|^{2}
$$

Operator Splitting Methods
Michael Moeller Thomas Möllenhoff Emanuel Laude

Relations

Monotone Operators
Fixed Point Iterations
Proximal Point
Algorithm
PDHG Revisited
Douglas-Rachford
Splitting

Option 2: DRS for Problems with Compositions

- The prox involving the composition is given by:

$$
\operatorname{prox}_{\sigma\left(G^{*} 0-K^{*}\right)}(v)=v+\sigma K \underset{u}{\operatorname{argmin}} G(u)+\frac{\sigma}{2}\left\|K u+\frac{v}{\sigma}\right\|^{2}
$$

- Often expensive or difficult to eväluate due to the $K u$-term

Operator Splitting Methods
Michael Moeller
Thomas Möllenhoff Emanuel Laude

Relations

Monotone Operators
Fixed Point Iterations
Proximal Point
Algorithm
PDHG Revisited
Douglas-Rachford
Splitting

Option 2: DRS for Problems with Compositions

- The prox involving the composition is given by:

$$
\operatorname{prox}_{\sigma\left(G^{*} 0-K^{*}\right)}(v)=v+\sigma K \underset{u}{\operatorname{argmin}} G(u)+\frac{\sigma}{2}\left\|K u+\frac{v}{\sigma}\right\|^{2}
$$

- Often expensive or difficult to evaluate due to the $K u$-term
- Iteration can be written as

$$
\begin{aligned}
u^{k+1} & =\underset{u}{\operatorname{argmin}} G(u)+\frac{\sigma}{2}\left\|K u+\frac{v^{k}}{\sigma}\right\|^{2}, \\
\tilde{u}^{k+1} & =v^{k}+\sigma K u^{k+1} \\
p^{k+1} & =\operatorname{prox}_{\sigma F *}\left(2 \tilde{u}^{k+1}-v^{k}\right), \\
v^{k+1} & =p^{k+1}+v^{k}-\tilde{u}^{k+1}
\end{aligned}
$$

Relations
Monotone Operators
Fixed Point Iterations
Proximal Point
Algorithm
PDHG Revisited
Douglas-Rachford
Splitting

Option 2: DRS for Problems with Compositions

- The prox involving the composition is given by:

$$
\operatorname{prox}_{\sigma\left(G^{*} 0-K^{*}\right)}(v)=v+\sigma K \underset{u}{\operatorname{argmin}} G(u)+\frac{\sigma}{2}\left\|K u+\frac{v}{\sigma}\right\|^{2}
$$

- Often expensive or difficult to evaluate due to the Ku-term
- Iteration can be written as

$$
\begin{aligned}
u^{k+1} & =\underset{u}{\operatorname{argmin}} G(u)+\frac{\sigma}{2}\left\|K u+\frac{v^{k}}{\sigma}\right\|^{2}, \\
\tilde{u}^{k+1} & =v^{k}+\sigma K u^{k+1}, \\
p^{k+1} & =\operatorname{prox}_{\sigma F^{*}}\left(2 \tilde{u}^{k+1}-v^{k}\right), \\
v^{k+1} & =p^{k+1}+v^{k}-\tilde{u}^{k+1}
\end{aligned}
$$

Relations
Monotone Operators
Fixed Point Iterations
Proximal Point
Algorithm
PDHG Revisited

- Alternatively this can be simplified to

$$
\begin{aligned}
u^{k+1} & =\underset{u}{\operatorname{argmin}} G(u)+\frac{\sigma}{2}\left\|K u+\frac{v^{k}}{\sigma}\right\|^{2}, \\
p^{k+1} & =\operatorname{prox}_{\sigma F^{*}}\left(v^{k}+2 \sigma K u^{k+1}\right), \\
v^{k+1} & =p^{k+1}-\sigma K u^{k+1}
\end{aligned}
$$

Option 2: DRS for Problems with Compositions

- Even more simple:

$$
\begin{aligned}
u^{k+1} & =\underset{u}{\operatorname{argmin}} G(u)+\frac{\sigma}{2}\left\|K u+\frac{p^{k}-\sigma K u^{k}}{\sigma}\right\|^{2} \\
p^{k+1} & =\operatorname{prox}_{\sigma F^{*}}\left(p^{k}+\sigma K\left(2 u^{k+1}-u^{k}\right)\right)
\end{aligned}
$$

Operator Splitting Methods
Michael Moeller Thomas Möllenhoff Emanuel Laude

Relations

Monotone Operators
Fixed Point Iterations
Proximal Point
Algorithm
PDHG Revisited
Douglas-Rachford Splitting

Option 2: DRS for Problems with Compositions

- Even more simple:

$$
\begin{aligned}
& u^{k+1}=\underset{u}{\operatorname{argmin}} G(u)+\frac{\sigma}{2}\left\|K u+\frac{p^{k}-\sigma K u^{k}}{\sigma}\right\|^{2} \\
& p^{k+1}=\operatorname{prox}_{\sigma F^{*}}\left(p^{k}+\sigma K\left(2 u^{k+1}-u^{k}\right)\right)
\end{aligned}
$$

- Optimality conditions for the iterates:

$$
\begin{aligned}
& 0 \in \partial G\left(u^{k+1}\right)+\sigma K^{T}\left(K u^{k+1}+\frac{1}{\sigma}\left(p^{k}-\sigma K u^{k}\right)\right) \\
& 0 \in \partial F^{*}\left(p^{k+1}\right)+\frac{1}{\sigma}\left(p^{k+1}-p^{k}-\sigma K 2 u^{k+1}+\sigma K u^{k}\right)
\end{aligned}
$$

Operator Splitting Methods
Michael Moeller
Thomas Möllenhoff Emanuel Laude

Relations

Monotone Operators
Fixed Point Iterations
Proximal Point
Algorithm
PDHG Revisited
Douglas-Rachford Splitting

Option 2: DRS for Problems with Compositions

- Even more simple:

Operator Splitting Methods
Michael Moeller
Thomas Möllenhoff Emanuel Laude

$$
\begin{aligned}
& u^{k+1}=\underset{u}{\operatorname{argmin}} G(u)+\frac{\sigma}{2}\left\|K u+\frac{p^{k}-\sigma K u^{k}}{\sigma}\right\|^{2}, \\
& p^{k+1}=\operatorname{prox}_{\sigma F^{*}}\left(p^{k}+\sigma K\left(2 u^{k+1}-u^{k}\right)\right)
\end{aligned}
$$

- Optimality conditions for the iterates:

$$
\begin{aligned}
& 0 \in \partial G\left(u^{k+1}\right)+\sigma K^{T}\left(K u^{k+1}+\frac{1}{\sigma}\left(p^{k}-\sigma K u^{k}\right)\right) \\
& 0 \in \partial F^{*}\left(p^{k+1}\right)+\frac{1}{\sigma}\left(p^{k+1}-p^{k}-\sigma K 2 u^{k+1}+\sigma K u^{k}\right)
\end{aligned}
$$

- Adding and substracting $K^{T} p^{k+1}$ to first line yields

$$
\begin{aligned}
& 0 \in \partial G\left(u^{k+1}\right)+K^{\top} p^{k+1}+\sigma K^{\top} K\left(u^{k+1}-u^{k}\right)-K^{\top}\left(p^{k+1}-p^{k}\right) \\
& 0 \in \partial F^{*}\left(p^{k+1}\right)-K u^{k+1}-K\left(u^{k+1}-u^{k}\right)+\frac{1}{\sigma}\left(p^{k+1}-p^{k}\right)
\end{aligned}
$$

Relation to PDHG

- Previous iterations can be written as PPA, $z=(u, p)^{T}$:

$$
0 \in \underbrace{\left[\begin{array}{cc}
\partial G & K^{T} \\
-K & \partial F^{*}
\end{array}\right]\left[\begin{array}{l}
u^{k+1} \\
p^{k+1}
\end{array}\right]}_{T z^{k+1}}+\underbrace{\left[\begin{array}{cc}
\sigma K^{T} K & -K^{T} \\
-K & \frac{1}{\sigma} I
\end{array}\right]}_{M} \underbrace{\left[\begin{array}{l}
u^{k+1}-u^{k} \\
p^{k+1}-p^{k}
\end{array}\right]}_{z^{k+1}-z^{k}}
$$

Operator Splitting Methods

Michael Moeller

Thomas Möllenhoff Emanuel Laude

Relations
Monotone Operators
Fixed Point Iterations
Proximal Point
Algorithm
PDHG Revisited
Douglas-Rachford
Splitting

Relation to PDHG

- Previous iterations can be written as PPA, $z=(u, p)^{T}$:

$$
0 \in \underbrace{\left[\begin{array}{cc}
\partial G & K^{T} \\
-K & \partial F^{*}
\end{array}\right]\left[\begin{array}{c}
u^{k+1} \\
p^{k+1}
\end{array}\right]}_{T z^{k+1}}+\underbrace{\left[\begin{array}{cc}
\sigma K^{T} K & -K^{T} \\
-K & \frac{1}{\sigma} I
\end{array}\right]}_{M} \underbrace{\left[\begin{array}{c}
u^{k+1}-u^{k} \\
p^{k+1}-p^{k}
\end{array}\right]}_{z^{k+1}-z^{k}}
$$

- Matrix M only positive semidefinite, our convergence result for Proximal Point algorithm does not apply directly

Operator Splitting Methods

Michael Moeller
Thomas Möllenhoff Emanuel Laude

Relations

Monotone Operators
Fixed Point Iterations
Proximal Point Algorithm

PDHG Revisited

Relation to PDHG

- Previous iterations can be written as PPA, $z=(u, p)^{T}$:

$$
0 \in \underbrace{\left[\begin{array}{cc}
\partial G & K^{T} \\
-K & \partial F^{*}
\end{array}\right]\left[\begin{array}{c}
u^{k+1} \\
p^{k+1}
\end{array}\right]}_{T z^{k+1}}+\underbrace{\left[\begin{array}{cc}
\sigma K^{\top} K & -K^{T} \\
-K & \frac{1}{\sigma} I
\end{array}\right]}_{M} \underbrace{\left[\begin{array}{c}
u^{k+1}-u^{k} \\
p^{k+1}-p^{k}
\end{array}\right]}_{z^{k+1}-z^{k}}
$$

- Matrix M only positive semidefinite, our convergence result for Proximal Point algorithm does not apply directly

Operator Splitting Methods
Michael Moeller
Thomas Möllenhoff Emanuel Laude

Relations

Monotone Operators
Fixed Point Iterations
Proximal Point
Algorithm
PDHG Revisited
Douglas-Rachford
Splitting

$$
\sigma K^{T} K \approx \frac{1}{\tau} I
$$

Relation to PDHG

- Previous iterations can be written as PPA, $z=(u, p)^{T}$:

$$
0 \in \underbrace{\left[\begin{array}{cc}
\partial G & K^{T} \\
-K & \partial F^{*}
\end{array}\right]\left[\begin{array}{c}
u^{k+1} \\
p^{k+1}
\end{array}\right]}_{T z^{k+1}}+\underbrace{\left[\begin{array}{cc}
\frac{1}{\tau} I & -K^{T} \\
-K & \frac{1}{\sigma}
\end{array}\right]}_{M} \underbrace{\left[\begin{array}{c}
u^{k+1}-u^{k} \\
p^{k+1}-p^{k}
\end{array}\right]}_{z^{k+1}-z^{k}}
$$

Operator Splitting Methods

Michael Moeller
Thomas Möllenhoff Emanuel Laude

Relations
Monotone Operators
Fixed Point Iterations
Proximal Point
Algorithm
PDHG Revisited

Douglas-Rachford
Splitting

$$
\sigma K^{T} K \approx \frac{1}{\tau} I
$$

Relation to PDHG

- Previous iterations can be written as PPA, $z=(u, p)^{T}$:

$$
0 \in \underbrace{\left[\begin{array}{cc}
\partial G & K^{T} \\
-K & \partial F^{*}
\end{array}\right]\left[\begin{array}{c}
u^{k+1} \\
p^{k+1}
\end{array}\right]}_{T z^{k+1}}+\underbrace{\left[\begin{array}{cc}
\frac{1}{\tau} I & -K^{T} \\
-K & \frac{1}{\sigma}
\end{array}\right]}_{M} \underbrace{\left[\begin{array}{c}
u^{k+1}-u^{k} \\
p^{k+1}-p^{k}
\end{array}\right]}_{z^{k+1}-z^{k}}
$$

Operator Splitting Methods

Michael Moeller
Thomas Möllenhoff Emanuel Laude

Relations

Monotone Operators
Fixed Point Iterations
Proximal Point
Algorithm
PDHG Revisited
Douglas-Rachford
Splitting

$$
\sigma K^{\top} K \approx \frac{1}{\tau} I
$$

- Often makes iterations much cheaper

Relation to PDHG

- Previous iterations can be written as PPA, $z=(u, p)^{T}$:

$$
0 \in \underbrace{\left[\begin{array}{cc}
\partial G & K^{T} \\
-K & \partial F^{*}
\end{array}\right]\left[\begin{array}{c}
u^{k+1} \\
p^{k+1}
\end{array}\right]}_{T z^{k+1}}+\underbrace{\left[\begin{array}{cc}
\frac{1}{\tau} I & -K^{T} \\
-K & \frac{1}{\sigma}
\end{array}\right]}_{M} \underbrace{\left[\begin{array}{c}
u^{k+1}-u^{k} \\
p^{k+1}-p^{k}
\end{array}\right]}_{z^{k+1}-z^{k}}
$$

- Matrix M only positive semidefinite, our convergence result for Proximal Point algorithm does not apply directly
- PDHG with $\theta=1$ can be seen as inexact/approximative DRS,

$$
\sigma K^{T} K \approx \frac{1}{\tau} I
$$

- Often makes iterations much cheaper
- For semi-orthogonal ($K^{\top} K=\nu l$) this approximation is exact

Relation to PDHG

- Previous iterations can be written as PPA, $z=(u, p)^{T}$:

$$
0 \in \underbrace{\left[\begin{array}{cc}
\partial G & K^{T} \\
-K & \partial F^{*}
\end{array}\right]\left[\begin{array}{c}
u^{k+1} \\
p^{k+1}
\end{array}\right]}_{T z^{k+1}}+\underbrace{\left[\begin{array}{cc}
\frac{1}{\tau} I & -K^{T} \\
-K & \frac{1}{\sigma}
\end{array}\right]}_{M} \underbrace{\left[\begin{array}{c}
u^{k+1}-u^{k} \\
p^{k+1}-p^{k}
\end{array}\right]}_{z^{k+1}-z^{k}}
$$

- Matrix M only positive semidefinite, our convergence result for Proximal Point algorithm does not apply directly
- PDHG with $\theta=1$ can be seen as inexact/approximative DRS,

$$
\sigma K^{T} K \approx \frac{1}{\tau} I
$$

- Often makes iterations much cheaper
- For semi-orthogonal ($K^{\top} K=\nu l$) this approximation is exact

Alternating Direction Method of Multipliers (ADMM)

- Recall this formulation

$$
\begin{aligned}
u^{k+1} & =\underset{u}{\operatorname{argmin}} G(u)+\frac{\sigma}{2}\left\|K u+\frac{v^{k}}{\sigma}\right\|^{2}, \\
p^{k+1} & =\operatorname{prox}_{\sigma F^{*}}\left(v^{k}+2 \sigma K u^{k+1}\right), \\
v^{k+1} & =p^{k+1}-\sigma K u^{k+1}
\end{aligned}
$$

Operator Splitting Methods
Michael Moeller Thomas Möllenhoff Emanuel Laude

Relations

Monotone Operators
Fixed Point Iterations
Proximal Point
Algorithm
PDHG Revisited
Douglas-Rachford
Splitting

Alternating Direction Method of Multipliers (ADMM)

- Recall this formulation

$$
\begin{aligned}
u^{k+1} & =\underset{u}{\operatorname{argmin}} G(u)+\frac{\sigma}{2}\left\|K u+\frac{v^{k}}{\sigma}\right\|^{2}, \\
p^{k+1} & =\operatorname{prox}_{\sigma F *}\left(v^{k}+2 \sigma K u^{k+1}\right), \\
v^{k+1} & =p^{k+1}-\sigma K u^{k+1}
\end{aligned}
$$

- Apply Moreau's identity to step in p^{k+1}

$$
\begin{aligned}
u^{k+1} & =\underset{u}{\operatorname{argmin}} G(u)+\frac{\sigma}{2}\left\|K u+\frac{v^{k}}{\sigma}\right\|^{2}, \\
p^{k+1} & =v^{k}+2 \sigma K u^{k+1}-\sigma \operatorname{prox}_{\sigma F}\left(\frac{v^{k}}{\sigma}+2 K u^{k+1}\right), \\
v^{k+1} & =p^{k+1}-\sigma K u^{k+1}
\end{aligned}
$$

Operator Splitting Methods

Michael Moeller
Thomas Möllenhoff Emanuel Laude

Relations

Monotone Operators
Fixed Point Iterations
Proximal Point
Algorithm
PDHG Revisited
Douglas-Rachford
Splitting

Alternating Direction Method of Multipliers (ADMM)

- Make new variable for prox $^{\sigma}{ }_{F}$-step, write prox as argmin:

$$
\begin{aligned}
u^{k+1} & =\underset{u}{\operatorname{argmin}} G(u)+\frac{\sigma}{2}\left\|K u+\frac{v^{k}}{\sigma}\right\|^{2}, \\
w^{k+1} & =\underset{w}{\operatorname{argmin}} F(w)+\frac{\sigma}{2}\left\|w-\frac{v^{k}}{\sigma}-2 K u^{k+1}\right\|^{2}, \\
p^{k+1} & =v^{k}+2 \sigma K u^{k+1}-\sigma w^{k+1}, \\
v^{k+1} & =p^{k+1}-\sigma K u^{k+1}
\end{aligned}
$$

Operator Splitting Methods

Michael Moeller
Thomas Möllenhoff Emanuel Laude

Relations

Monotone Operators
Fixed Point Iterations
Proximal Point
Algorithm
PDHG Revisited
Douglas-Rachford
Splitting

Alternating Direction Method of Multipliers (ADMM)

- Make new variable for prox $_{\sigma}{ }_{F}$-step, write prox as argmin:

$$
\begin{aligned}
u^{k+1} & =\underset{u}{\operatorname{argmin}} G(u)+\frac{\sigma}{2}\left\|K u+\frac{v^{k}}{\sigma}\right\|^{2}, \\
w^{k+1} & =\underset{w}{\operatorname{argmin}} F(w)+\frac{\sigma}{2}\left\|w-\frac{v^{k}}{\sigma}-2 K u^{k+1}\right\|^{2}, \\
p^{k+1} & =v^{k}+2 \sigma K u^{k+1}-\sigma w^{k+1}, \\
v^{k+1} & =p^{k+1}-\sigma K u^{k+1}
\end{aligned}
$$

Operator Splitting Methods

Michael Moeller

Thomas Möllenhoff Emanuel Laude

Relations

Monotone Operators
Fixed Point Iterations

Proximal Point Algorithm

PDHG Revisited
Douglas-Rachford
Splitting

- Replacing the variable v^{k} in the u^{k+1} update yields

$$
u^{k+1}=\underset{u}{\operatorname{argmin}} G(u)+\frac{\sigma}{2}\left\|K u+\frac{p^{k}-\sigma K u^{k}}{\sigma}\right\|^{2}
$$

Alternating Direction Method of Multipliers (ADMM)

- Replace variable p^{k} in all update steps

$$
\begin{aligned}
u^{k+1} & =\underset{u}{\operatorname{argmin}} G(u)+\frac{\sigma}{2}\left\|K u+\frac{v^{k-1}+\sigma K u^{k}-\sigma w^{k}}{\sigma}\right\|^{2} \\
w^{k+1} & =\underset{w}{\operatorname{argmin}} F(w)+\frac{\sigma}{2}\left\|w-\frac{v^{k}}{\sigma}-2 K u^{k+1}\right\|^{2} \\
v^{k+1} & =v^{k}+\sigma\left(K u^{k+1}-w^{k+1}\right)
\end{aligned}
$$

Operator Splitting Methods

Michael Moeller
Thomas Möllenhoff Emanuel Laude

Relations

Monotone Operators
Fixed Point Iterations
Proximal Point
Algorithm
PDHG Revisited
Douglas-Rachford
Splitting

Alternating Direction Method of Multipliers (ADMM)

- Replace variable p^{k} in all update steps

$$
\begin{aligned}
u^{k+1} & =\underset{u}{\operatorname{argmin}} G(u)+\frac{\sigma}{2}\left\|K u+\frac{v^{k-1}+\sigma K u^{k}-\sigma w^{k}}{\sigma}\right\|^{2}, \\
w^{k+1} & =\underset{w}{\operatorname{argmin}} F(w)+\frac{\sigma}{2}\left\|w-\frac{v^{k}}{\sigma}-2 K u^{k+1}\right\|^{2}, \\
v^{k+1} & =v^{k}+\sigma\left(K u^{k+1}-w^{k+1}\right)
\end{aligned}
$$

Operator Splitting Methods

Michael Moeller

Thomas Möllenhoff Emanuel Laude

Relations

Monotone Operators
Fixed Point Iterations
Proximal Point
Algorithm
PDHG Revisited

- Rewrite as:

$$
\begin{aligned}
u^{k+1} & =\underset{u}{\operatorname{argmin}} G(u)+\frac{\sigma}{2}\left\|K u-w^{k}+\frac{v^{k-1}+\sigma K u^{k}}{\sigma}\right\|^{2} \\
w^{k+1} & =\underset{w}{\operatorname{argmin}} F(w)+\frac{\sigma}{2}\left\|w-K u^{k+1}-\frac{v^{k}+\sigma K u^{k+1}}{\sigma}\right\|^{2} \\
v^{k+1} & =v^{k}+\sigma\left(K u^{k+1}-w^{k+1}\right)
\end{aligned}
$$

Alternating Direction Method of Multipliers (ADMM)

- Using the following fact we can further rewrite the updates:

$$
\underset{a}{\operatorname{argmin}} \frac{\sigma}{2}\left\|a-\frac{b}{\sigma}\right\|^{2}=\underset{a}{\operatorname{argmin}}-\langle a, b\rangle+\frac{\sigma}{2}\|a\|^{2}
$$

```
Relations
```

Monotone Operators
Fixed Point Iterations
Proximal Point
Algorithm
PDHG Revisited
Douglas-Rachford
Splitting

Alternating Direction Method of Multipliers (ADMM)

- Using the following fact we can further rewrite the updates:

$$
\underset{a}{\operatorname{argmin}} \frac{\sigma}{2}\left\|a-\frac{b}{\sigma}\right\|^{2}=\underset{a}{\operatorname{argmin}}-\langle a, b\rangle+\frac{\sigma}{2}\|a\|^{2}
$$

- Pulling terms of the squared norm:

$$
\begin{aligned}
u^{k+1} & =\underset{u}{\operatorname{argmin}} G(u)+\left\langle K u, v^{k-1}+\sigma K u^{k}\right\rangle+\frac{\sigma}{2}\left\|K u-w^{k}\right\|^{2} \\
w^{k+1} & =\underset{w}{\operatorname{argmin}} F(w)-\left\langle w, v^{k}+\sigma K u^{k+1}\right\rangle+\frac{\sigma}{2}\left\|w-K u^{k+1}\right\|^{2}, \\
v^{k+1} & =v^{k}+\sigma\left(K u^{k+1}-w^{k+1}\right)
\end{aligned}
$$

Operator Splitting Methods

Michael Moeller
Thomas Möllenhoff Emanuel Laude

Relations

Monotone Operators
Fixed Point Iterations
Proximal Point Algorithm

PDHG Revisited
Douglas-Rachford Splitting

Alternating Direction Method of Multipliers (ADMM)

- Using the following fact we can further rewrite the updates:

$$
\underset{a}{\operatorname{argmin}} \frac{\sigma}{2}\left\|a-\frac{b}{\sigma}\right\|^{2}=\underset{a}{\operatorname{argmin}}-\langle a, b\rangle+\frac{\sigma}{2}\|a\|^{2}
$$

- Pulling terms of the squared norm:

$$
\begin{aligned}
u^{k+1} & =\underset{u}{\operatorname{argmin}} G(u)+\left\langle K u, v^{k-1}+\sigma K u^{k}\right\rangle+\frac{\sigma}{2}\left\|K u-w^{k}\right\|^{2} \\
w^{k+1} & =\underset{w}{\operatorname{argmin}} F(w)-\left\langle w, v^{k}+\sigma K u^{k+1}\right\rangle+\frac{\sigma}{2}\left\|w-K u^{k+1}\right\|^{2}, \\
v^{k+1} & =v^{k}+\sigma\left(K u^{k+1}-w^{k+1}\right)
\end{aligned}
$$

Operator Splitting Methods

Michael Moeller
Thomas Möllenhoff Emanuel Laude

Relations

Monotone Operators
Fixed Point Iterations
Proximal Point Algorithm

PDHG Revisited
Douglas-Rachford Splitting

Alternating Direction Method of Multipliers (ADMM)

- Using the following fact we can further rewrite the updates:

$$
\underset{a}{\operatorname{argmin}} \frac{\sigma}{2}\left\|a-\frac{b}{\sigma}\right\|^{2}=\underset{a}{\operatorname{argmin}}-\langle a, b\rangle+\frac{\sigma}{2}\|a\|^{2}
$$

- Pulling terms of the squared norm:

$$
\begin{aligned}
u^{k+1} & =\underset{u}{\operatorname{argmin}} G(u)+\left\langle K u, v^{k-1}+\sigma K u^{k}\right\rangle+\frac{\sigma}{2}\left\|K u-w^{k}\right\|^{2}, \\
w^{k+1} & =\underset{w}{\operatorname{argmin}} F(w)-\left\langle w, v^{k}+\sigma K u^{k+1}\right\rangle+\frac{\sigma}{2}\left\|w-K u^{k+1}\right\|^{2}, \\
v^{k+1} & =v^{k}+\sigma\left(K u^{k+1}-w^{k+1}\right)
\end{aligned}
$$

Operator Splitting Methods
Michael Moeller
Thomas Möllenhoff Emanuel Laude

Relations

Monotone Operators Fixed Point Iterations

Proximal Point Algorithm

- Reintroduce $p^{k+1}=v^{k}+\sigma K u^{k+1}$, can be rewritten as:

$$
\begin{aligned}
u^{k+1} & =\underset{u}{\operatorname{argmin}} G(u)+\left\langle K u, p^{k}\right\rangle+\frac{\sigma}{2}\left\|K u-w^{k}\right\|^{2} \\
w^{k+1} & =\underset{w}{\operatorname{argmin}} F(w)-\left\langle w, p^{k+1}\right\rangle+\frac{\sigma}{2}\left\|w-K u^{k+1}\right\|^{2} \\
p^{k+1} & =p^{k}+\sigma\left(K u^{k+1}-w^{k}\right)
\end{aligned}
$$

Alternating Direction Method of Multipliers (ADMM)

- Let $\bar{w}^{k+1}=w^{k}$:

$$
\begin{aligned}
u^{k+1} & =\underset{u}{\operatorname{argmin}} G(u)+\left\langle K u, p^{k}\right\rangle+\frac{\sigma}{2}\left\|K u-\bar{w}^{k+1}\right\|^{2} \\
\bar{w}^{k+2} & =\underset{w}{\operatorname{argmin}} F(w)-\left\langle w, p^{k+1}\right\rangle+\frac{\sigma}{2}\left\|w-K u^{k+1}\right\|^{2} \\
p^{k+1} & =p^{k}+\sigma\left(K u^{k+1}-\bar{w}^{k+1}\right)
\end{aligned}
$$

Operator Splitting Methods

Michael Moeller

Thomas Möllenhoff Emanuel Laude

Relations

Monotone Operators
Fixed Point Iterations
Proximal Point
Algorithm
PDHG Revisited

Alternating Direction Method of Multipliers (ADMM)

- Let $\bar{w}^{k+1}=w^{k}$:

$$
\begin{aligned}
u^{k+1} & =\underset{u}{\operatorname{argmin}} G(u)+\left\langle K u, p^{k}\right\rangle+\frac{\sigma}{2}\left\|K u-\bar{w}^{k+1}\right\|^{2} \\
\bar{w}^{k+2} & =\underset{w}{\operatorname{argmin}} F(w)-\left\langle w, p^{k+1}\right\rangle+\frac{\sigma}{2}\left\|w-K u^{k+1}\right\|^{2}, \\
p^{k+1} & =p^{k}+\sigma\left(K u^{k+1}-\bar{w}^{k+1}\right)
\end{aligned}
$$

Operator Splitting Methods

Michael Moeller

Thomas Möllenhoff Emanuel Laude

Relations
Monotone Operators
Fixed Point Iterations
Proximal Point
Algorithm
PDHG Revisited

- Change order of first two iterates:

$$
\begin{aligned}
& \bar{w}^{k+1}=\underset{w}{\operatorname{argmin}} F(w)-\left\langle w, p^{k}\right\rangle+\frac{\sigma}{2}\left\|w-K u^{k}\right\|^{2}, \\
& u^{k+1}=\underset{u}{\operatorname{argmin}} G(u)+\left\langle K u, p^{k}\right\rangle+\frac{\sigma}{2}\left\|K u-\bar{w}^{k+1}\right\|^{2}, \\
& p^{k+1}=p^{k}+\sigma\left(K u^{k+1}-\bar{w}^{k+1}\right)
\end{aligned}
$$

Alternating Direction Method of Multipliers (ADMM)

- Final update equations:

$$
\begin{aligned}
w^{k+1} & =\underset{w}{\operatorname{argmin}} F(w)-\left\langle w, p^{k}\right\rangle+\frac{\sigma}{2}\left\|w-K u^{k}\right\|^{2} \\
u^{k+1} & =\underset{u}{\operatorname{argmin}} G(u)+\left\langle K u, p^{k}\right\rangle+\frac{\sigma}{2}\left\|K u-w^{k+1}\right\|^{2}, \\
p^{k+1} & =p^{k}+\sigma\left(K u^{k+1}-w^{k+1}\right)
\end{aligned}
$$

Operator Splitting Methods

Michael Moeller
Thomas Möllenhoff Emanuel Laude

Relations
Monotone Operators
Fixed Point Iterations
Proximal Point
Algorithm
PDHG Revisited
Douglas-Rachford
Splitting

[^30]
Alternating Direction Method of Multipliers (ADMM)

- Final update equations:

$$
\begin{aligned}
& w^{k+1}=\underset{w}{\operatorname{argmin}} F(w)-\left\langle w, p^{k}\right\rangle+\frac{\sigma}{2}\left\|w-K u^{k}\right\|^{2} \\
& u^{k+1}=\underset{u}{\operatorname{argmin}} G(u)+\left\langle K u, p^{k}\right\rangle+\frac{\sigma}{2}\left\|K u-w^{k+1}\right\|^{2}, \\
& p^{k+1}=p^{k}+\sigma\left(K u^{k+1}-w^{k+1}\right)
\end{aligned}
$$

- Alternating minimization of the augmented Lagrangian:

$$
L_{\mathrm{aug}}^{\tau}(u, w, p)=G(u)+F(w)+\langle p, K u-w\rangle+\frac{\tau}{2}\|K u-w\|^{2}
$$

[^31]
Alternating Direction Method of Multipliers (ADMM)

- Final update equations:

$$
\begin{aligned}
& w^{k+1}=\underset{w}{\operatorname{argmin}} F(w)-\left\langle w, p^{k}\right\rangle+\frac{\sigma}{2}\left\|w-K u^{k}\right\|^{2}, \\
& u^{k+1}=\underset{u}{\operatorname{argmin}} G(u)+\left\langle K u, p^{k}\right\rangle+\frac{\sigma}{2}\left\|K u-w^{k+1}\right\|^{2}, \\
& p^{k+1}=p^{k}+\sigma\left(K u^{k+1}-w^{k+1}\right)
\end{aligned}
$$

- Alternating minimization of the augmented Lagrangian:

$$
L_{\text {aug }}^{\tau}(u, w, p)=G(u)+F(w)+\langle p, K u-w\rangle+\frac{\tau}{2}\|K u-w\|^{2}
$$

- The method in this form is called Alternating Direction Method of Multipliers (ADMM)

[^32]
Alternating Direction Method of Multipliers (ADMM)

- Final update equations:

$$
\begin{aligned}
& w^{k+1}=\underset{w}{\operatorname{argmin}} F(w)-\left\langle w, p^{k}\right\rangle+\frac{\sigma}{2}\left\|w-K u^{k}\right\|^{2} \\
& u^{k+1}=\underset{u}{\operatorname{argmin}} G(u)+\left\langle K u, p^{k}\right\rangle+\frac{\sigma}{2}\left\|K u-w^{k+1}\right\|^{2}, \\
& p^{k+1}=p^{k}+\sigma\left(K u^{k+1}-w^{k+1}\right)
\end{aligned}
$$

- Alternating minimization of the augmented Lagrangian:

$$
L_{\text {aug }}^{\tau}(u, w, p)=G(u)+F(w)+\langle p, K u-w\rangle+\frac{\tau}{2}\|K u-w\|^{2}
$$

- The method in this form is called Alternating Direction Method of Multipliers (ADMM)
- It has gained enormous popularity recently ${ }^{9}$, over 3458 citations in 5 years

[^33]
Conclusion

Operator Splitting Methods
Michael Moeller
Thomas Möllenhoff
Emanuel Laude

Relations
Monotone Operators
Fixed Point Iterations
Proximal Point
Algorithm
PDHG Revisited

Conclusion

- Splitting methods split problem into simpler subproblems
- Many other splitting approaches exist that can explicitly handle differentiable functions (Forward-Backward, Forward-Backward-Forward, Davis-Yin, ...)

Relations
Monotone Operators
Fixed Point Iterations
Proximal Point
Algorithm
PDHG Revisited

Conclusion

- Splitting methods split problem into simpler subproblems
- Many other splitting approaches exist that can explicitly handle differentiable functions (Forward-Backward, Forward-Backward-Forward, Davis-Yin, ...)
- Many relations exist between the primal-dual algorithms, often special cases of one another

Relations
Monotone Operators
Fixed Point Iterations
Proximal Point
Algorithm
PDHG Revisited

Conclusion

- Splitting methods split problem into simpler subproblems
- Many other splitting approaches exist that can explicitly handle differentiable functions (Forward-Backward, Forward-Backward-Forward, Davis-Yin, ...)
- Many relations exist between the primal-dual algorithms, often special cases of one another
- Depending on the problem structure, better to use either Graph Projection/DRS/ADMM or PDHG (more next week!)

Relations
Monotone Operators
Fixed Point Iterations
Proximal Point
Algorithm
PDHG Revisited

Conclusion

- Splitting methods split problem into simpler subproblems
- Many other splitting approaches exist that can explicitly handle differentiable functions (Forward-Backward, Forward-Backward-Forward, Davis-Yin, ...)
- Many relations exist between the primal-dual algorithms, often special cases of one another
- Depending on the problem structure, better to use either Graph Projection/DRS/ADMM or PDHG (more next week!)
- Rule of thumb: Graph Projection/DRS/ADMM few expensive iterations, PDHG many cheap iterations

[^0]: ${ }^{1}$ This is again abuse of notation for $\langle u-v, p-q\rangle \geq 0, \forall p \in T u, \forall q \in T v$

[^1]: ${ }^{1}$ This is again abuse of notation for $\langle u-v, p-q\rangle \geq 0, \forall p \in T u, \forall q \in T v$

[^2]: ${ }^{1}$ This is again abuse of notation for $\langle u-v, p-q\rangle \geq 0, \forall p \in T u, \forall q \in T v$

[^3]: ${ }^{1}$ This is again abuse of notation for $\langle u-v, p-q\rangle \geq 0, \forall p \in T u, \forall q \in T v$

[^4]: ${ }^{1}$ This is again abuse of notation for $\langle u-v, p-q\rangle \geq 0, \forall p \in T u, \forall q \in T v$

[^5]: ${ }^{1}$ This is again abuse of notation for $\langle u-v, p-q\rangle \geq 0, \forall p \in T u, \forall q \in T v$

[^6]: ${ }^{2}$ This theorem is also known as the Banach fixed point theorem.

[^7]: ${ }^{2}$ This theorem is also known as the Banach fixed point theorem.

[^8]: ${ }^{2}$ This theorem is also known as the Banach fixed point theorem.

[^9]: ${ }^{2}$ This theorem is also known as the Banach fixed point theorem.

[^10]: ${ }^{3}$ R. T. Rockafellar, Monotone Operators and the Proximal Point Algorithm, SIAM J. Control and Optimization, 1976

[^11]: ${ }^{3}$ R. T. Rockafellar, Monotone Operators and the Proximal Point Algorithm, SIAM J. Control and Optimization, 1976

[^12]: ${ }^{3}$ R. T. Rockafellar, Monotone Operators and the Proximal Point Algorithm, SIAM J. Control and Optimization, 1976

[^13]: ${ }^{5}$ Bauschke, Combettes, Convex Analysis and Monotone Operator Theory in Hilbert Spaces, Theorem 24.5

[^14]: ${ }^{5}$ Bauschke, Combettes, Convex Analysis and Monotone Operator Theory in Hilbert Spaces, Theorem 24.5

[^15]: ${ }^{5}$ Bauschke, Combettes, Convex Analysis and Monotone Operator Theory in Hilbert Spaces, Theorem 24.5

[^16]: ${ }^{5}$ Bauschke, Combettes, Convex Analysis and Monotone Operator Theory in Hilbert Spaces, Theorem 24.5

[^17]: ${ }^{5}$ Bauschke, Combettes, Convex Analysis and Monotone Operator Theory in Hilbert Spaces, Theorem 24.5

[^18]: ${ }^{5}$ Bauschke, Combettes, Convex Analysis and Monotone Operator Theory in Hilbert Spaces, Theorem 24.5

[^19]: ${ }^{6}$ T. Pock, A. Chambolle, Diagonal Preconditioning for first-order primal-dual

[^20]: ${ }^{6}$ T. Pock, A. Chambolle, Diagonal Preconditioning for first-order primal-dual algorithms in convex optimization, ICCV 2011

[^21]: ${ }^{7}$ J. Douglas, H. H. Rachford, On the numerical solution of heat conduction problems in two and three space variables. Transactions of the AMS, 1956.

[^22]: ${ }^{7}$ J. Douglas, H. H. Rachford, On the numerical solution of heat conduction problems in two and three space variables. Transactions of the AMS, 1956.

[^23]: ${ }^{7}$ J. Douglas, H. H. Rachford, On the numerical solution of heat conduction problems in two and three space variables. Transactions of the AMS, 1956.

[^24]: ${ }^{7}$ J. Douglas, H. H. Rachford, On the numerical solution of heat conduction problems in two and three space variables. Transactions of the AMS, 1956.

[^25]: ${ }^{7}$ J. Douglas, H. H. Rachford, On the numerical solution of heat conduction problems in two and three space variables. Transactions of the AMS, 1956.

[^26]: ${ }^{8}$ N. Parikh, S. Boyd, Block Splitting for Distributed Optimization, 2014

[^27]: ${ }^{8}$ N. Parikh, S. Boyd, Block Splitting for Distributed Optimization, 2014

[^28]: ${ }^{8}$ N. Parikh, S. Boyd, Block Splitting for Distributed Optimization, 2014

[^29]: ${ }^{8}$ N. Parikh, S. Boyd, Block Splitting for Distributed Optimization, 2014

[^30]: ${ }^{9}$ Boyd et al., Distributed optimization and statistical learning via the alternating direction method of multipliers, 2011

[^31]: ${ }^{9}$ Boyd et al., Distributed optimization and statistical learning via the alternating direction method of multipliers, 2011

[^32]: ${ }^{9}$ Boyd et al., Distributed optimization and statistical learning via the alternating direction method of multipliers, 2011

[^33]: ${ }^{9}$ Boyd et al., Distributed optimization and statistical learning via the alternating direction method of multipliers, 2011

