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Question

What is the relation to between ”implicit” gradient
descent and proximity operators?

• Consider
∂tu(t) = −∇E(u(t))

and think about possible discretizations.

• Compute the optimality conditions for a prox-operator with
τE .

• Show the implicit gradient descent is unconditionally
stable.
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Question

Why did we look at the gradient map

φr (u) =
1
τ
(u − proxτG(u − τ∇F (u))))

in the convergence proof of the proximal gradient
method?

• Remember uk+1 − uk = −τ∇E in the gradient descent
case, and uk+1 − uk = −τφr (uk ) in the proximal gradient
case.

• We were able to carry out the convergence analysis of the
proximal gradient method in full analogy to the gradient
descent method using φ.
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Question

What are different ways to compute

proxα‖·−f‖1
(v)

with or without duality and with or without
substitution?

• proxα‖·−f‖1
(v) = arg minu

1
2‖u − v‖2 + α‖u − f‖1

substitution + shrinkage

• Moreaus identity and projection on convex conjugate.

• Substitutions are always good if they simplify your
problem!
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Question

In chapter 5 we derived a fixed point iteration of the
form

v k+1 = CACBv k

for CA and CB being the Caley operators of
maximally monotone operators A and B. Then we
replaced this by

v k+1 =

(
1
2

I +
1
2

CACB

)
v k .

Why are we allowed to do this? Why does it make
sense?

• Fixed point iteration with averaged operator→
convergence!

• The fixed point remains the same!
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Question

In chapter 5 slide 35 we showed that applying DRS
on the primal problem minu G(u)+F (u) is equivalent
to PDHG. Does it also apply to minu G(u) + F (Ku)?

• No, consider that DRS applied to our standard
minimization problem was the same as ADMM.

• Recall the customized proximal point formulations of
ADMM and PDHG, e.g.

0 ∈

[
∂G K T

−K ∂F ∗

][
uk+1

pk+1

]
+

[
1
λ I −K T

−K λKK T

][
uk+1 − uk

pk+1 − pk

]
,

0 ∈

[
∂G K T

−K ∂F ∗

][
uk+1

pk+1

]
+

[
1
τ I −K T

−K 1
σ I

][
uk+1 − uk

pk+1 − pk

]
.

• For KK T = c I, λ = τ , σ = 1
cτ the algorithms are the same.

Otherwise they are not.
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Thomas Möllenhoff
Emanuel Laude

updated 15.07.2016

Question

In chapter 5 slide 35 we showed that applying DRS
on the primal problem minu G(u)+F (u) is equivalent
to PDHG. Does it also apply to minu G(u) + F (Ku)?

• No, consider that DRS applied to our standard
minimization problem was the same as ADMM.

• Recall the customized proximal point formulations of
ADMM and PDHG, e.g.

0 ∈

[
∂G K T

−K ∂F ∗

][
uk+1

pk+1

]
+

[
1
λ I −K T

−K λKK T

][
uk+1 − uk

pk+1 − pk

]
,

0 ∈

[
∂G K T

−K ∂F ∗

][
uk+1

pk+1

]
+

[
1
τ I −K T

−K 1
σ I

][
uk+1 − uk

pk+1 − pk

]
.

• For KK T = c I, λ = τ , σ = 1
cτ the algorithms are the same.

Otherwise they are not.



Questions (and
answers!) :-)

Michael Moeller
Thomas Möllenhoff
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Question

We applied algorithms like PDHG, ADMM or DRS
sometimes on the primal and sometimes on the dual
problem. Why? What is the influence? Will a
sometimes get a wrong solution if I use one or the
other?

• Why? → Increase the number of options we have.

• Influence? → Hard to say in general. Problem specific.

• Wrong solutions? → Not if you didn’t mess up the
derivation! :-)
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Question

Why may we formulate our problem as

min
u,d

max
p

G(u) + F (d) + 〈Du − d ,p〉?

There seems to be a strong relation between this
Lagrangian form and the primal-dual saddle point
form.

• It actually holds that
δ(D −I)·=0(u,d) = (δ(D −I)·=0)

∗∗(u,d) = supp〈Du − d ,p〉.
• Furthermore, after exchanging mind maxp = maxp mind we

arrive at the saddle point form.
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Question

In the script the graph-projection ADMM algorithm first applies
a prox operator and then a projection. On the optimization
challenge slides there is a graph projection PDHG method
which does not even project. Why? What is their relation?

Moreover the PDHG projection method does not even have an
indicator function, but a Lagrange multiplier instead. Is

G(u) + F (d) + 〈Du − d ,p〉

really the right form for calling it a graph-projection?

• Our problem is equivalent to

min
u,d

G(u) + F (d)︸ ︷︷ ︸
=G̃(u,d)

+ δ(D −I)·=0(u,d)︸ ︷︷ ︸
F̃ (K (u,d))

Applying ADMM yields the graph projection method of the
lecture, appyling PDHG yields the one of the challenge.
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Thomas Möllenhoff
Emanuel Laude

updated 15.07.2016

Question

In the script the graph-projection ADMM algorithm first applies
a prox operator and then a projection. On the optimization
challenge slides there is a graph projection PDHG method
which does not even project. Why? What is their relation?
Moreover the PDHG projection method does not even have an
indicator function, but a Lagrange multiplier instead. Is

G(u) + F (d) + 〈Du − d ,p〉

really the right form for calling it a graph-projection?

• Our problem is equivalent to

min
u,d

G(u) + F (d)︸ ︷︷ ︸
=G̃(u,d)

+ δ(D −I)·=0(u,d)︸ ︷︷ ︸
F̃ (K (u,d))

Applying ADMM yields the graph projection method of the
lecture, appyling PDHG yields the one of the challenge.



Questions (and
answers!) :-)

Michael Moeller
Thomas Möllenhoff
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Question

When commenting on the challenge, Michael said
that gradient descent on L-smooth, m-strongly
convex problems has a linear convergence rate,
which is the fastest asymptotic rate we discussed.
But isn’t quadratic convergence - by which I mean
O(1/k2) - faster than linear convergence?

• Linear convergence means O(ck ) for c < 1.

• For every c < 1 there exists a K such that ck < 1/k2 for all
k ≥ K .



Questions (and
answers!) :-)

Michael Moeller
Thomas Möllenhoff
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Question

When we stated customized proximal point
algorithms we always had some operator of the form[

0
0

]
∈

[
∂G K T

−K ∂F ∗

][
u
p

]
.

However, if I consider the optimality condition of the
saddle-point formulation G(u) + 〈Ku,p〉 − F ∗(p) I get[

0
0

]
∈

[
∂G K T

K −∂F ∗

][
u
p

]
.

Why did we multiply the second part with −1? Why
is it more convenient?

To get a maximally monotone operator!
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Question

Can you explain (again) the figure from the
Ecksten’s dissertation addressing the intuition
behind the proximal point algorithm?


