
Convex Optimization for Computer Vision Computer Vision Group
Lecture: M. Möller and T. Möllenhoff Institut für Informatik
Exercises: E. Laude Technische Universität München
Summer Semester 2016

Weekly Exercises 0
Room: 02.09.023

Friday, 15.04.2016, 09:00-11:00, Room 02.09.023

Intro to Sparse Linear Operators in MATLAB
Throughout the course we will work in the finite dimensional setting, i.e. we dis-
cretely represent gray value images f : Ω→ R or color images f : Ω→ R3 as (vector-
ized) matrices f ∈ Rm×n (vec(f) ∈ Rmn) respectively f ∈ Rm×n×3 (vec(f) ∈ R3mn).
To discretely express functionals like the total variation for smooth f

TV (f) :=

∫
Ω

‖∇f(x)‖ dx

you will therefore need a discrete gradient operator

∇ :=

(
Dx

Dy

)
for vectorized representations vec(f) of images f ∈ Rm×n so that

TV (f) = ‖∇vec(f)‖2,1 =
nm∑
i=1

√
(Dx · vec(f))2

i + (Dy · vec(f))2
i .

The aim of this exercise is to derive the gradient operator and learn how to implement
it with MATLAB.

Exercise 1. Let f ∈ Rm×n be a discrete grayvalue image. Your task is to find
matrices D̃x and D̃y for computing the forward differences fx, fy in x and y-direction
of the image f with Neumann boundary conditions so that:

fx = f · D̃x :=


f12 − f11 f13 − f12 . . . f1n − f1(n−1) 0
f22 − f21 . . . 0

...
... 0

fm2 − fm1 . . . fmn − fm(n−1) 0

 (1)

and

fy = D̃y · f =


f21 − f11 f22 − f12 . . . f2n − f1n

f31 − f21 . . . f3n − f2n
...

...
fm1 − f(m−1)1 . . . fmn − f(m−1)n

0 . . . 0 0

 . (2)

1

Solution. The corresponding operators D̃x and D̃y are given as follows:

D̃x =


−1 0 . . . 0 0
1 −1 . . . 0 0

0 1
. . . 0 0

0 0
. . . −1 0

0 . . . 1 0

 D̃y =



−1 1 . . . 0 0
0 −1 1 . . . 0 0

0 0
. 0 0

0 0 −1 1 0
0 0 . . . −1 1
0 0 . . . 0 0


(3)

Exercise 2. Implement the derivative operators from the previous exercise using
MATLABs spdiags command. Load the image from the file Vegetation-028.jpg
using the command imread and convert it to a grayvalue image using the command
rgb2gray. Finally apply the operators to the image and display your results using
imshow.

For our algorithms it is more convenient to represent an image f as a vector
vec(f) ∈ Rmn, that means that the columns of f are stacked one over the other.

Exercise 3. Derive a gradient operator

∇ =

(
Dx

Dy

)
for vectorized images so that

Dx · vec(f) = vec(fx) Dy · vec(f) = vec(fy)

You can use that it holds that for matrices A,X,B

AXB = C ⇐⇒ (B> ⊗ A)vec(X) = vec(C)

where ⊗ denote the Kronecker (MATLAB: kron) product.
Experimentally verify that the results of Ex. 2 and Ex. 3 are equal by reshaping

them to the same size using MATLABs reshape or the : operator, and showing
that the norm of the difference of both results is zero.

Solution. We have fx = f · D̃x = I · f · D̃x, where I is the identity matrix. If we
set A := I, X := f , B := D̃x and C := fx we obtain using the formula,

Dx = D̃>x ⊗ I. (4)

We have fy = D̃y · f = D̃y · f · I. We set A := D̃x, X := f , B := I and C := fy and
obtain using the formula:

Dy = I ⊗ D̃y. (5)

Exercise 4. Assemble an operator ∇c for computing the gradient (or more pre-
cisely the Jacobian) of a color image f ∈ Rn×m×3 using MATLABs cat and kron
commands.

2

Solution.

∇c :=


Dx 0 0
0 Dx 0
0 0 Dx

Dy 0 0
0 Dy 0
0 0 Dy

 =

(
I ⊗Dx

I ⊗Dy

)
(6)

Exercise 5. Compute the color total variation given as

TV (f) = ‖∇cvec(f)‖F,1 =
nm∑
i=1

∥∥∥∥((Dx · vec(fr))i (Dx · vec(fg))i (Dx · vec(fb))i
(Dy · vec(fr))i (Dy · vec(fg))i (Dy · vec(fb))i

)∥∥∥∥
F

of the two images Vegetation-028.jpg and Vegetation-043.jpg and compare the
values. What do you observe? Why?

3

