Convex Optimization for Computer Vision
Lecture: M. Möller and T. Möllenhoff
Exercises: E. Laude
Summer Semester 2016

Weekly Exercises 1

Room: 02.09.023
Friday, 22.04.2016, 09:00-11:00
Submission deadline: Wednesday, 20.04.2016, 14:00, Room 02.09.023

Theory: Convex Sets and Functions

(12+8 Points)
Exercise 1 (4 Points). Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R} \cup\{+\infty\}$ be proper. Prove the equivalence of the following statements:

- f is convex.
- $\operatorname{epi}(f):=\left\{\binom{x}{y} \in \mathbb{R}^{n+1}: f(x) \leq y\right\}$ is convex.

Solution. Let f be convex, $\lambda \in[0,1]$ and $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \in \operatorname{epi}(f)$. This means $f\left(x_{1}\right) \leq y_{1}<\infty$ and $f\left(x_{2}\right) \leq y_{2}<\infty$ and therefore $x_{1}, x_{2} \in \operatorname{dom}(f)$. Due to the convexity of f we have that:

1. $\operatorname{dom}(f)$ convex and therefore $\lambda x_{1}+(1-\lambda) x_{2} \in \operatorname{dom}(f)$, and
2. $f\left(\lambda x_{1}+(1-\lambda) x_{2}\right) \leq \lambda f\left(x_{1}\right)+(1-\lambda) f\left(x_{2}\right) \leq \lambda y_{1}+(1-\lambda) y_{2}$.

This means that

$$
\binom{\lambda x_{1}+(1-\lambda) x_{2}}{\lambda y_{1}+(1-\lambda) y_{2}}=\lambda\binom{x_{1}}{y_{1}}+(1-\lambda)\binom{x_{2}}{y_{2}} \in \operatorname{epi}(f)
$$

and therefore $\operatorname{epi}(f)$ convex. Let conversely epi (f) be convex and $x_{1}, x_{2} \in \operatorname{dom}(f):=$ $\left\{x \in \mathbb{R}^{n}: f(x)<\infty\right\}$. By definition of the epigraph set $\left(x_{1}, f\left(x_{1}\right)\right),\left(x_{2}, f\left(x_{2}\right)\right) \in$ epi (f) and due to the convexity of epi (f)

$$
\lambda\binom{x_{1}}{f\left(x_{1}\right)}+(1-\lambda)\binom{x_{2}}{f\left(x_{2}\right)} \in \operatorname{epi}(f) .
$$

This means

$$
f\left(\lambda x_{1}+(1-\lambda) x_{2}\right) \leq \lambda f\left(x_{1}\right)+(1-\lambda) f\left(x_{2}\right)
$$

It remains to show that $\operatorname{dom}(f)$ is convex. We have:

$$
\begin{aligned}
\operatorname{dom}(f) & =\left\{x \in \mathbb{R}^{n}: f(x)<\infty\right\} \\
& =\left\{x \in \mathbb{R}^{n}: \exists y \in \mathbb{R}: f(x) \leq y\right\} \\
& =\left\{x \in \mathbb{R}^{n}: \exists y \in \mathbb{R} \text { s.t. }(x, y) \in \operatorname{epi}(f)\right\}
\end{aligned}
$$

Since epi (f) is convex it immediatly follows, that $\operatorname{dom}(f)$ is convex. Overall this proves that f convex.

Exercise 2 (4 Points). Let $g: \mathbb{R}^{n} \rightarrow \mathbb{R} \cup\{+\infty\}$ be convex. Show that the perspective function $f: \mathbb{R}^{n} \times \mathbb{R} \rightarrow \mathbb{R} \cup\{+\infty\}$ of g given as

$$
f(x, t):= \begin{cases}\operatorname{tg}\left(\frac{x}{t}\right) & \text { if } t>0 \text { and } \frac{x}{t} \in \operatorname{dom}(g) \\ +\infty & \text { otherwise }\end{cases}
$$

is convex.
Solution. Let $\lambda \in[0,1]$, and $\left(x_{1}, t_{1}\right),\left(x_{2}, t_{2}\right) \in \operatorname{dom}(f)$. That means $x_{1}, x_{2} \in \mathbb{R}^{n}$ and $t_{1}, t_{2}>0$ s.t. $\frac{x_{1}}{t_{1}}, \frac{x_{2}}{t_{2}} \in \operatorname{dom}(g)$. We have:

$$
\begin{aligned}
f\left(\lambda x_{1}+(1-\lambda) x_{2}, \lambda t_{1}+(1-\lambda) t_{2}\right) & =\left(\lambda t_{1}+(1-\lambda) t_{2}\right) g\left(\frac{\lambda x_{1}+(1-\lambda) x_{2}}{\lambda t_{1}+(1-\lambda) t_{2}}\right) \\
& =\left(\lambda t_{1}+(1-\lambda) t_{2}\right) g\left(\frac{\lambda t_{1} \frac{x_{1}}{t_{1}}+(1-\lambda) t_{2} \frac{x_{2}}{t_{2}}}{\lambda t_{1}+(1-\lambda) t_{2}}\right) \\
& =\left(\lambda t_{1}+(1-\lambda) t_{2}\right) \\
& g(\underbrace{\frac{\lambda t_{1}}{\lambda t_{1}+(1-\lambda) t_{2}} \frac{x_{1}}{t_{1}}+\frac{(1-\lambda) t_{2}}{\lambda t_{2}+(1-\lambda) t_{2}} \frac{x_{2}}{t_{2}}}_{:=\alpha \frac{x_{1}}{t_{1}}+(1-\alpha) \frac{x_{2}}{t_{2}}, 0 \leq \alpha \leq 1}) \\
& \leq\left(\lambda t_{1}+(1-\lambda) t_{2}\right) \\
& \left(\frac{\lambda t_{1}}{\lambda t_{1}+(1-\lambda) t_{2}} g\left(\frac{x_{1}}{t_{1}}\right)+\frac{(1-\lambda) t_{2}}{\lambda t_{2}+(1-\lambda) t_{2}} g\left(\frac{x_{2}}{t_{2}}\right)\right) \\
& =\lambda t_{1} g\left(\frac{x_{1}}{t_{1}}\right)+(1-\lambda) t_{2} g\left(\frac{x_{2}}{t_{2}}\right)<+\infty
\end{aligned}
$$

The above computation shows that both f is convex on its domain

$$
\operatorname{dom}(f)=\left\{(x, t) \in \mathbb{R}^{n+1}: t>0, \frac{x}{t} \in \operatorname{dom}(g)\right\}
$$

and $\operatorname{dom}(f)$ is a convex set. This implies that f is convex.
Exercise 3 (4 Points). Let $\emptyset \neq X \subset \mathbb{R}^{n}$. Prove the equivalence of the following statements:

- X is closed.
- Every convergent sequence $\left\{x_{n}\right\}_{n \in \mathbb{N}} \subset X$ attains its limit in X.

Solution. Let X be closed. By definition this means that the complement of X given as $X_{C}:=\mathbb{R}^{n} \backslash X$ is open meaning that for all $x \in X_{C}$ there exists $\epsilon>0$ s.t. the ball $B_{\epsilon}(x)$ is entirely contained in X_{C} :

$$
B_{\epsilon}(x) \cap X=\emptyset .
$$

Suppose that there exists a convergent sequence $X \supset\left\{x_{n}\right\}_{n \in \mathbb{N}} \rightarrow x$ with $x \notin X$. However, by definition of convergence for all $\epsilon>0$ there exists $N \in \mathbb{N}$ s.t.

$$
X \ni x_{n} \in B_{\epsilon}(x)
$$

for all $n \geq N$, which contradicts the assumption. Let conversely X not be closed (not the same as open). That means there exists $x \notin X$ s.t. for all $\epsilon>0$ it holds that $B_{\epsilon}(x) \cap X \neq \emptyset$. This means that for all $\epsilon_{n}:=\frac{1}{n}>0$ there exists $x_{n} \in B_{\epsilon}(x) \cap X$. By construction we have a sequence $\left\{x_{n}\right\}_{n \in \mathbb{N}}$ converging to $x \notin X$ but with elements in X.

Exercise 4 (4 Points). Let $X \subset \mathbb{R}^{n}$ open and convex and let $f: X \rightarrow \mathbb{R}$ be twice continuously differentiable. Prove the equivalence of the following statements:

- f is convex.
- For all $x \in X$ the Hessian $\nabla^{2} f(x)$ is positive semidefinite $\left(\forall v \in \mathbb{R}^{n}: v^{\top} \nabla^{2} f(x) v \geq\right.$ $0)$.

Hints: You can use that for $x, y \in X$ it holds that f is convex iff

$$
(y-x)^{\top} \nabla f(x) \leq f(y)-f(x)
$$

Further recall that there are two variants of the Taylor expansion:

$$
f(x+t v)=f(x)+t v^{\top} \nabla f(x)+\frac{t^{2}}{2} v^{\top} \nabla^{2} f(x) v+o\left(t^{2}\right)
$$

with $\lim _{t \rightarrow 0} \frac{o\left(t^{2}\right)}{t^{2}}=0$ and

$$
f(x+v)=f(x)+v^{\top} \nabla f(x)+\frac{1}{2} v^{\top} \nabla^{2} f(x+t v) v
$$

for appropriate $t \in(0,1)$.
Solution. Let f be convex, $x \in X$ and $v \in \mathbb{R}^{n}$. Since X is open there exists $\tau>0$ s.t. for all $t \in(0, \tau]$ we have that $x+t v \in X$. Using the Taylor expansion given in the hint we obtain

$$
0 \stackrel{\text { Hint }}{\leq} f(x+t v)-f(x)-t v^{\top} \nabla f(x)=\frac{t^{2}}{2} v^{\top} \nabla^{2} f(x) v+o\left(t^{2}\right)
$$

Multiplying both sides with $\frac{2}{t^{2}}$ yields

$$
0 \leq v^{\top} \nabla^{2} f(x) v+2 \underbrace{\frac{o\left(t^{2}\right)}{t^{2}}}_{\rightarrow 0}
$$

Let conversely $\nabla^{2} f(z)$ be positive semidefinite for all $z \in X$ and let $x, y \in X$. Using the Taylor expansion we have
$f(y)=f(x+(y-x))=f(x)+(y-x)^{\top} \nabla f(x)+\frac{1}{2} \underbrace{(y-x)^{\top} \nabla^{2} f(x+t(y-x))(y-x)}_{\geq 0 \text { by assumption. }}$
and therefore

$$
f(y)-f(x) \geq(y-x)^{\top} \nabla f(x)
$$

which means that f is convex.
Exercise 5 (4 Points). Let $X \subset \mathbb{R}^{n}$ open and convex, $A \in \mathbb{R}^{n \times n}$ positive semidefinite, $b \in \mathbb{R}^{n}, c \in \mathbb{R}$. Show that that the quadratic form $f: X \rightarrow \mathbb{R}$ defined as

$$
f(x):=\frac{1}{2} x^{\top} A x+b^{\top} x+c,
$$

is convex.
Solution. To show that f is convex it suffices to show that the Hessian $\nabla^{2} f(x)$ is positive semidefinite, since f is twice continuously differentiable. We start rewriting $f(x)$ in terms of finite sums:

$$
\begin{aligned}
f(x) & =\frac{1}{2} \sum_{i=1}^{n} x_{i} \sum_{j=1}^{n} a_{i j} x_{j}+\sum_{i=1}^{n} x_{i} b_{i}+c \\
& =\frac{1}{2} \sum_{i=1}^{n} x_{i} \sum_{\substack{j=1, j \neq i}}^{n} a_{i j} x_{j}+\frac{1}{2} \sum_{i=1}^{n} a_{i i} x_{i}^{2}+\sum_{i=1}^{n} x_{i} b_{i}+c
\end{aligned}
$$

We now proceed computing the first and second order partial derivatives:

$$
\begin{aligned}
\frac{\partial f(x)}{\partial x_{k}} & =\frac{1}{2} \sum_{\substack{j=1, j \neq k}} a_{k j} x_{j}+\frac{1}{2} \sum_{\substack{i=1, i \neq k}} a_{i k} x_{i}+a_{k k} x_{k}+b_{k} \\
& =\frac{1}{2} \sum_{j=1} a_{k j} x_{j}+\frac{1}{2} \sum_{i=1} a_{i k} x_{i}+b_{k}
\end{aligned}
$$

Then we have for the gradient of f :

$$
\nabla f(x)=\frac{1}{2}\left(A+A^{\top}\right) x+b
$$

The second order derivatives are given as:

$$
\frac{\partial^{2} f(x)}{\partial x_{k}^{2}}=\frac{1}{2} a_{k k}+\frac{1}{2} a_{k k}=a_{k k},
$$

and

$$
\frac{\partial^{2} f(x)}{\partial x_{k} \partial x_{l}}=\frac{1}{2} a_{k l}+\frac{1}{2} a_{l k}
$$

The Hessian is then given as

$$
\nabla^{2} f(x)=\frac{1}{2}\left(A+A^{\top}\right)
$$

Since A is positive semidefinite also the Hessian $\nabla^{2} f(x)$ is positive semidefinite:

$$
v^{\top} \frac{1}{2}\left(A+A^{\top}\right) v=v^{\top} A v \geq 0
$$

Programming: Inpainting

(12 Points)

Exercise 6 (12 Points). Write a MATLAB program that solves the inpainting problem for the vegetable image:

$$
\min _{u \in \mathbb{R}^{n \times m}} \sum_{i, j}\left(u_{i, j}-u_{i-1, j}\right)^{2}+\left(u_{i, j}-u_{i, j-1}\right)^{2} \quad \text { s.t. } u_{i, j}=f_{i, j} \forall(i, j) \in I,
$$

with index set I of pixels to keep. Those can be identified as the white pixels of the mask image.
Hint: The constrained optimization problem can be reformulated so that it becomes unconstrained: Rewrite the objective as a least squares problem in terms of the unknown intensities $u_{i, j},(i, j) \notin I$ using sparse linear operators: Find linear operators X, Y s.t. u can be decomposed as

$$
u=X \tilde{u}+Y f
$$

where \tilde{u} contains only the unknown intensities. Optimize for \tilde{u} instead of u. You may use MATALBs mldivide.

