Convex Optimization for Computer Vision Lecture: M. Möller and T. Möllenhoff

Exercises: E. Laude Summer Semester 2016 Computer Vision Group Institut für Informatik Technische Universität München

## Weekly Exercises 2

Room: 02.09.023

Friday, 29.04.2016, 09:00-11:00

Submission deadline: Wednesday, 27.04.2016, 14:00, Room 02.09.023

## Theory: The Subdifferential, optimality conditions and gradient descent (8+8 Points)

**Exercise 1** (4 Points). Let the convex function  $f : \mathbb{R}^n \to \mathbb{R} \cup \{\infty\}$  be differentiable at  $u \in \text{int}(\text{dom}(f))$ . Show that

$$\partial f(u) = {\nabla f(u)}.$$

Hint: Use the definition of the subdifferential and the directional derivative. For f being differentiable at the interior of its domain, some direction  $v \in \mathbb{R}^n$  and some point  $x \in \text{int}(\text{dom}(f))$  the directional derivative  $\partial_v f$  of f is given as

$$\partial_v f(x) := \lim_{\epsilon \to 0} \frac{f(x + \epsilon v) - f(x)}{\epsilon} = \lim_{\epsilon \to 0} \frac{f(x) - f(x - \epsilon v)}{\epsilon} = \langle \nabla f(x), v \rangle.$$

**Definition** (Karush-Kuhn-Tucker KKT conditions). Let  $f: \mathbb{R}^n \to \mathbb{R}$ ,  $g: \mathbb{R}^n \to \mathbb{R}^m$  be continuously differentiable. A point  $x \in \mathbb{R}^n$  satisfies the KKT-conditions if there exists a Lagrange multiplier  $\lambda \in \mathbb{R}^m$  s.t.

- $0 = \nabla f(x) + \sum_{i=1}^{m} \lambda_i \nabla g_i(x)$
- $\lambda_i \ge 0$ ,  $g_i(x) \le 0$ ,  $\lambda_i g_i(x) = 0$  for  $1 \le i \le m$

**Definition** (Guignard Constraint Qualification GCQ). Let  $f : \mathbb{R}^n \to \mathbb{R}$ ,  $g : \mathbb{R}^n \to \mathbb{R}^m$  be continuously differentiable and convex. Let

$$X := \{x \in \mathbb{R}^n : g_i(x) \le 0, \ 1 \le i \le m\}$$

denote the feasible set and  $x \in X$ . Then the condition

$$N_X(x) := \left\{ v \in \mathbb{R}^n : \langle v, y - x \rangle \le 0, \ \forall y \in X \right\}$$
$$= \left\{ \sum_{i \in A(x)} \lambda_i \nabla g_i(x) : \lambda_i \ge 0, \ i \in \mathcal{A}(x) \right\},$$

is called GCQ.  $N_X(x)$  is called the normal cone of the set X at the point  $x \in X$  and  $\mathcal{A}(x)$  is the set of active constraints at the point x:

$$\mathcal{A}(x) := \{i : 1 \le i \le m, \ g_i(x) = 0\}.$$

**Definition** (Slater's condition). Let  $f: \mathbb{R}^n \to \mathbb{R}$ ,  $g: \mathbb{R}^n \to \mathbb{R}^m$  be continuously differentiable and convex. Let  $X := \{x \in \mathbb{R}^n : g_i(x) \leq 0, 1 \leq i \leq m\}$  denote the feasible set. The condition

$$\exists x \in X \text{ s.t. } g_i(x) < 0, \forall 1 \le i \le m$$

is called Slater's condition.

**Proposition.** Slater's condition is a constraint qualification CQ, i.e. it implies GCQ.

**Exercise 2** (8 Points). Let  $f: \mathbb{R}^n \to \mathbb{R}$ ,  $g: \mathbb{R}^n \to \mathbb{R}^m$  be continuously differentiable and convex and let  $X:=\{x\in \mathbb{R}^n: g_i(x)\leq 0, 1\leq i\leq m\}$  denote the feasible set. Let Slater's condition be satisfied. Show that X is convex and then prove the equivalence of the following statements:

• x solves

$$\min_{x \in \mathbb{R}^n} f(x) + \iota_X(x), \qquad \iota_X(x) := \begin{cases} 0 & \text{if } x \in X \\ \infty & \text{otherwise} \end{cases}.$$
(1)

- $-\nabla f(x)$  is an element of the normal cone  $N_X(x)$  of X at x.
- x satisfies the KKT-conditions.

Hint: Use the proposition stated above. Explain why Slater's condition allows you to apply the sum rule for the subdifferential.

**Exercise 3** (4 points). Let the function  $E: \mathbb{R}^n \to \mathbb{R}$  be given as

$$E(u) := t(u) + h(u).$$

where the function  $h: \mathbb{R}^n \to \mathbb{R}$  is defined as

$$h(u) := g(Du),$$
  $g(v) = \sum_{i=1}^{2n} \varphi(v_i),$   $\varphi(x) = \sqrt{x^2 + \epsilon^2},$ 

with  $D \in \mathbb{R}^{2n \times n}$  being a finite difference gradient operator and  $t : \mathbb{R}^n \to \mathbb{R}$  is defined as

$$t(u) := \frac{\lambda}{2} ||u - f||^2.$$

- 1. Show that the function E is L-smooth with  $L = \lambda + \frac{\|D\|^2}{\epsilon}$ .
- 2. Show that the function E is m-strongly convex, with  $m = \lambda$ .

## Programming: Image denoising

(12 Points)

Exercise 4 (12 Points). Denoise the noisy input image f, given in the file noisy\_input.png by minimizing the energy from Ex. 3:

$$E(u) = \frac{\lambda}{2} \|u - f\|^2 + \sum_{i=1}^{2n} \sqrt{(Du)_i^2 + \epsilon^2}$$

with gradient descent. To guarantee convergence choose your step size  $\tau$  so that

$$0 < \tau \le \frac{2}{m+L}.$$

Use MATLABs normest to estimate the norm ||D|| of your finite difference gradient operator D. Here, n is the number of pixels times the number of color channels.