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Theory: The Subdifferential, optimality conditions
and gradient descent (8+8 Points)

Exercise 1 (4 Points). Let the convex function f : R" — RU{oo} be differentiable
at u € int(dom(f)). Show that

Of (u) ={Vf(u)}.

Hint: Use the definition of the subdifferential and the directional derivative. For f
being differentiable at the interior of its domain, some direction v € R™ and some
point x € int(dom(f)) the directional derivative 0, f of f is given as

Oy f(z) = lim flw+ev) = i) = lim J(x) = o = ) = (Vf(x),v).

Definition (Karush-Kuhn-Tucker KKT conditions). Let f : R* — R, g : R” — R™
be continuously differentiable. A point z € R" satisfies the KKT-conditions if there
exists a Lagrange multiplier A € R™ s.t.

e 0=Vf(z)+2 L AiVagi(x)
e )\, >0, gi(x) <0, Nigi(x) =0for 1 <i<m

Definition (Guignard Constraint Qualification GCQ). Let f : R" - R, g : R" —
R™ be continuously differentiable and convex. Let

X ={zeR":g(x)<0,1<i<m}
denote the feasible set and z € X. Then the condition
Nx(z):={veR": (v,y—2z) <0,Vy e X}

=) AVgiz) s A >0,i€ Alx) o,
1€ A(x)

is called GCQ. Nx(x) is called the normal cone of the set X at the point x € X and
A(x) is the set of active constraints at the point z:

A(z) :={i:1<i<m, gi(x) =0}.
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Definition (Slater’s condition). Let f : R" — R, g : R® — R™ be continuously
differentiable and convex. Let X := {z € R" : g;(z) < 0,1 < i < m} denote the
feasible set. The condition

Jr e X st gi(r) <0,V1<i<m
is called Slater’s condition.

Proposition. Slater’s condition is a constraint qualification CQ, i.e. it implies

GCQ.

Exercise 2 (8 Points). Let f : R" — R, g : R* — R™ be continuously differentiable
and convex and let X := {z € R" : g;(z) < 0,1 < i < m} denote the feasible
set. Let Slater’s condition be satisfied. Show that X is convex and then prove the
equivalence of the following statements:

e 1 solves

0 ifzxeX
i + , = . 1
ek f(@) + ex(x) x(2) {oo otherwise M)
e —Vf(z) is an element of the normal cone Nx(x) of X at .

e 1z satisfies the KKT-conditions.

Hint: Use the proposition stated above. Explain why Slater’s condition allows you
to apply the sum rule for the subdifferential.

Exercise 3 (4 points). Let the function £ : R" — R be given as
E(u) :=t(u) + h(u).

where the function A : R™ — R is defined as
2n
h(u):=g(Du),  gv)=> ov), @)= Va>+e,
i=1

with D € R?"" being a finite difference gradient operator and ¢ : R™ — R is defined
as

A
tw) = Sllu— I

1. Show that the function F is L-smooth with L = \ + @.

2. Show that the function E is m-strongly convex, with m = \.



Programming: Image denoising (12 Points)

Exercise 4 (12 Points). Denoise the noisy input image f, given in the file noisy_input.png
by minimizing the energy from Ex. 3:

A 2n
Bu) =5 lu— fIF+ 3 (0w + e
=1

with gradient descent. To guarantee convergence choose your step size 7 so that

O0<7<

m+ L’

Use MATLABs normest to estimate the norm || D|| of your finite difference gradient
operator D. Here, n is the number of pixels times the number of color channels.



