
Convex Optimization for Computer Vision Computer Vision Group
Lecture: M. Möller and T. Möllenhoff Institut für Informatik
Exercises: E. Laude Technische Universität München
Summer Semester 2016

Weekly Exercises 2
Room: 02.09.023

Friday, 29.04.2016, 09:00-11:00
Submission deadline: Wednesday, 27.04.2016, 14:00, Room 02.09.023

Theory: The Subdifferential, optimality conditions
and gradient descent (12+8 Points)
Exercise 1 (4 Points). Let the convex function f : Rn → R∪{∞} be differentiable
at u ∈ int(dom(f)). Then

∂f(u) = {∇f(u)}.

Definition (Karush-Kuhn-Tucker KKT conditions). Let f : Rn → R, g : Rn → Rm

be continuously differentiable. A point x ∈ Rn satisfies the KKT-conditions if there
exists a Lagrange multiplier λ ∈ Rm s.t.

• 0 = ∇f(x) +
∑m

i=1 λi∇gi(x)

• λi ≥ 0, gi(x) ≤ 0, λigi(x) = 0 for 1 ≤ i ≤ m

Definition (Guignard Constraint Qualification GCQ). Let f : Rn → R, g : Rn →
Rm be continuously differentiable and convex. Let

X := {x ∈ Rn : gi(x) ≤ 0, 1 ≤ i ≤ m}

denote the feasible set and x ∈ X. Then the condition

NX(x) := {v ∈ Rn : 〈v, y − x〉 ≤ 0, ∀ y ∈ X}

=

 ∑
i∈A(x)

λi∇gi(x) : λi ≥ 0, i ∈ A(x)

 ,

is called GCQ. NX(x) is called the normal cone of the set X at the point x ∈ X and
A(x) is the set of active constraints at the point x:

A(x) := {i : 1 ≤ i ≤ m, gi(x) = 0}.

Definition (Slater’s condition). Let f : Rn → R, g : Rn → Rm be continuously
differentiable and convex. Let X := {x ∈ Rn : gi(x) ≤ 0, 1 ≤ i ≤ m} denote the
feasible set. The condition

∃x ∈ X s.t. gi(x) < 0, ∀ 1 ≤ i ≤ m

is called Slater’s condition.
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Proposition. Slater’s condition is a constraint qualification CQ, i.e. it implies
GCQ.

Exercise 2 (8 Points). Let f : Rn → R, g : Rn → Rm be continuously differentiable
and convex and let X := {x ∈ Rn : gi(x) ≤ 0, 1 ≤ i ≤ m} denote the feasible
set. Let Slater’s condition be satisfied. Show that X is convex and then prove the
equivalence of the following statements:

• x solves
min
x∈Rn

f(x) + ιX(x). (1)

• −∇f(x) is an element of the normal cone NX(x) of X at x.

• x satisfies the KKT-conditions.

Hint: Use the proposition stated above. Explain why Slater’s condition enables you
to apply the sum rule for the subdifferential.

Exercise 3 (4 points). Let D ∈ R2m×m be a finite difference gradient operator.
Let the function f : Rm → R be given as

h(u) := g(Du), g(v) =
2m∑
i=1

ϕ(vi), ϕ(x) =
√
x2 + ε2.

1. Show that the function h is L-smooth with L = ‖D‖2
ε

.

2. Show that the function E(u) := λ
2
‖u− f‖2 + h(u) is m-strongly convex, with

m = λ.

Programming: Image denoising (12 Points)
Exercise 4 (12 Points). Denoise the noisy input image f , given in the file noisy_input.png
by minimizing the energy from Ex. 3:

E(u) =
λ

2
‖u− f‖2 +

2m∑
i=1

√
(Du)2i + ε2

with gradient descent. To guarantee convergence choose your step size τ so that

0 < τ ≤ 2

m+ L
.

Use MATLABs normest to estimate the norm ‖D‖ of your gradient finite difference
operator D.
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