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Theory: The Subdifferential, optimality conditions
and gradient descent (1248 Points)

Exercise 1 (4 Points). Let the convex function f : R" — RU{oo} be differentiable
at u € int(dom(f)). Then

0f (u) ={Vf(u)}.

Definition (Karush-Kuhn-Tucker KKT conditions). Let f: R* — R, g : R" — R™
be continuously differentiable. A point z € R" satisfies the KKT-conditions if there
exists a Lagrange multiplier A € R™ s.t.

o 0=Vf(z)+ 2L, \Vyi(z)
e )\ >0, gi(x) <0, Njgi(x) =0for 1 <i<m

Definition (Guignard Constraint Qualification GCQ). Let f : R" - R, g : R" —
R™ be continuously differentiable and convex. Let

X ={zeR":g(x)<0,1<i<m}
denote the feasible set and z € X. Then the condition
Nx(z):={veR": (v,y—2z) <0,Vy € X}

= Z AiVgi(z) : Ai 20,0 € A(z) o,

i€A(x)

is called GCQ. Nx(x) is called the normal cone of the set X at the point x € X and
A(x) is the set of active constraints at the point z:

A(x) :={i:1<i<m, g;(x) =0}.

Definition (Slater’s condition). Let f : R" — R, g : R® — R™ be continuously
differentiable and convex. Let X := {z € R" : g;(z) < 0,1 < i < m} denote the
feasible set. The condition

dre X st gi(r) <0,V1<i<m

is called Slater’s condition.



Proposition. Slater’s condition is a constraint qualification CQ, i.e. it implies

GCQ.

Exercise 2 (8 Points). Let f: R” - R, g : R" — R™ be continuously differentiable
and convex and let X := {z € R" : g;(z) < 0,1 < i < m} denote the feasible
set. Let Slater’s condition be satisfied. Show that X is convex and then prove the
equivalence of the following statements:

e 1 solves

min (2) + 1x () 1)
e —V f(z) is an element of the normal cone Nx(z) of X at x.
e 1 satisfies the KKT-conditions.

Hint: Use the proposition stated above. Explain why Slater’s condition enables you
to apply the sum rule for the subdifferential.

Exercise 3 (4 points). Let the function £ : R™ — R be given as
E(u) = t(u) + h(u).

where the function A : R™ — R is defined as
h(u) := g(Du), g(v) = Z o(vi), o(r) = Va2 + e,

with D € R?™*™ being a finite difference gradient operator and ¢t : R™ — R is
defined as

A
t(u) = 5l = fIP.
1. Show that the function F is L-smooth with L = )\ + @.

2. Show that the function E is m-strongly convex, with m = A.

Programming: Image denoising (12 Points)

Exercise 4 (12 Points). Denoise the noisy input image f, given in the file noisy_input.png
by minimizing the energy from Ex. 3:

2m
B) = 5 Ju— 1P+ 3 \/(Dujz + &
=1

with gradient descent. To guarantee convergence choose your step size 7 so that

0<7t< .
T_m—i—L

Use MATLABs normest to estimate the norm || D|| of your finite difference gradient
operator D.



