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Theory: The Subdifferential, optimality conditions
and gradient descent (8+8 Points)
Exercise 1 (4 Points). Let the convex function f : Rn → R∪{∞} be differentiable
at u ∈ int(dom(f)). Show that

∂f(u) = {∇f(u)}.

Hint: Use the definition of the subdifferential and the directional derivative. For f
being differentiable at the interior of its domain, some direction v ∈ Rn and some
point x ∈ int(dom(f)) the directional derivative ∂vf of f is given as

∂vf(x) := lim
ε→0

f(x+ εv)− f(x)
ε

= lim
ε→0

f(x)− f(x− εv)
ε

= 〈∇f(x), v〉.

Solution. Recall that the subdifferential ∂f(x) of some convex f at x ∈ dom(f) is
given as

{p ∈ Rn : f(y) ≥ f(x) + 〈p, y − x〉, ∀ y ∈ dom(f)} .

Since u ∈ int(dom(f)), we find that for all v ∈ Rn, u + εv ∈ dom(f) for ε small
enough since the interior of a set is open. By the definition of the subdifferential
and setting x := u and y := u+ εv or y := u− εv we have that if p ∈ ∂f(u) then

f(u+ εv) ≥ f(u) + ε〈p, v〉, f(u− εv) ≥ f(u)− ε〈p, v〉,

for all v ∈ Rn and ε small enough. This implies that

lim
ε→0

f(u+ εv)− f(u)
ε

≥ 〈p, v〉, lim
ε→0

f(u)− f(u− εv)
ε

≤ 〈p, v〉,

which means (using the hint)

〈∇f(u), v〉 ≥ 〈p, v〉, 〈∇f(u), v〉 ≤ 〈p, v〉

or
〈∇f(u)− p, v〉 ≥ 0, 〈∇f(u)− p, v〉 ≤ 0
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for all v ∈ Rn. For the particular choice of v := ∇f(u)− p we have that

〈∇f(u)− p,∇f(u)− p〉 = ‖∇f(u)− p‖22 = 0

which means p = ∇f(u). Clearly, ∂f(u) is non-empty (and bounded) since u ∈
int(dom(x)) implies u ∈ ri(dom(x)) (see Thm. Subdifferentiability). Together this
concludes the proof.

Definition (Karush-Kuhn-Tucker KKT conditions). Let f : Rn → R, g : Rn → Rm

be continuously differentiable. A point x ∈ Rn satisfies the KKT-conditions if there
exists a Lagrange multiplier λ ∈ Rm s.t.

• 0 = ∇f(x) +
∑m

i=1 λi∇gi(x)

• λi ≥ 0, gi(x) ≤ 0, λigi(x) = 0 for 1 ≤ i ≤ m

Definition (Guignard Constraint Qualification GCQ). Let f : Rn → R, g : Rn →
Rm be continuously differentiable and convex. Let

X := {x ∈ Rn : gi(x) ≤ 0, 1 ≤ i ≤ m}

denote the feasible set and x ∈ X. Then the condition

NX(x) := {v ∈ Rn : 〈v, y − x〉 ≤ 0, ∀ y ∈ X}

=

 ∑
i∈A(x)

λi∇gi(x) : λi ≥ 0, i ∈ A(x)

 ,

is called GCQ. NX(x) is called the normal cone of the set X at the point x ∈ X and
A(x) is the set of active constraints at the point x:

A(x) := {i : 1 ≤ i ≤ m, gi(x) = 0}.

Definition (Slater’s condition). Let f : Rn → R, g : Rn → Rm be continuously
differentiable and convex. Let X := {x ∈ Rn : gi(x) ≤ 0, 1 ≤ i ≤ m} denote the
feasible set. The condition

∃x ∈ X s.t. gi(x) < 0, ∀ 1 ≤ i ≤ m

is called Slater’s condition.

Proposition. Slater’s condition is a constraint qualification CQ, i.e. it implies
GCQ.

Exercise 2 (8 Points). Let f : Rn → R, g : Rn → Rm be continuously differentiable
and convex and let X := {x ∈ Rn : gi(x) ≤ 0, 1 ≤ i ≤ m} denote the feasible
set. Let Slater’s condition be satisfied. Show that X is convex and then prove the
equivalence of the following statements:
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• x solves

min
x∈Rn

f(x) + ιX(x), ιX(x) :=

{
0 if x ∈ X
∞ otherwise

. (1)

• −∇f(x) is an element of the normal cone NX(x) of X at x.

• x satisfies the KKT-conditions.

Hint: Use the proposition stated above. Explain why Slater’s condition allows you
to apply the sum rule for the subdifferential.

Solution. Starting with the definition of convexity it is straight forward to show
that X = dom(ιX) is a convex set. Since further f is a convex function, x solves
problem (1) iff the optimality condition

0
!
∈ ∂(f(x) + ιX(x))

holds. Slater’s condition means that ri(dom(ιX)) = ri(X) 6= ∅ and therefore

ri(dom(f)) ∩ ri(dom(ιX)) 6= ∅.

We can therefore apply the sum rule of the subdifferential s.t.

0 ∈ ∂f(x) + ∂ιX(x)

and using the result of Ex. 1 we can equivalently rewrite the optimality condition
as

−∇f(x) ∈ ∂ιX(x).

We proceed showing that ∂ιX(x) is the normal cone NX(x) of X at x. Since x ∈ X
(otherwise −∇f(x) ∈ ∂ιX(x) = ∅) we have

∂ιX(x) = {d ∈ Rn : ιX(y)− ιX(x) ≥ 〈d, y − x〉, ∀ y ∈ Rn}
= {d ∈ Rn : ιX(y) ≥ 〈d, y − x〉, ∀ y ∈ Rn}

Since for y /∈ X the inequality ιX(y) ≥ 〈d, y− x〉 is trivially satisfied we can rewrite
∂ιX(x) as

∂ιX(x) = {d ∈ Rn : 0 ≥ 〈d, y − x〉, ∀ y ∈ X} = NX(x).

It remains to show the equivalence of the last two bullet points. Since the above
proposition states that Slater’s condition is a CQ one can express the normal cone
NX(x) as

NX(x) =

 ∑
i∈A(x)

λi∇gi(x) : λi ≥ 0, i ∈ A(x)

 .

Let −∇f(x) ∈ NX(x). That means there exist λi ≥ 0, with i ∈ A(x) s.t.

−∇f(x) =
∑
i∈A(x)

λi∇gi(x).
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Defining the missing entries in λ ∈ Rm s.t. λj = 0 for all j /∈ A(x) and bringing
∇f(x) to the other side yields:

0 = ∇f(x) +
m∑
i=1

λi∇gi(x).

Further we have λi ≥ 0 and x ∈ X i.e. gi(x) ≤ 0. For all i ∈ A(x) we have
gi(x) = 0 and therefore λigi(x) = 0 and for all j /∈ A(x) we have λj = 0 and
therefore λjgj(x) = 0. Let conversely x satisfy the KKT conditions. That means
there exists λ ∈ Rm with λi ≥ 0 s.t.

−∇f(x) =
m∑
i=1

λi∇gi(x)

and for all i /∈ A(x) we have gi(x) < 0 and therefore (since the product gi(x)λi = 0)
we find λi = 0 so that we can rewrite

m∑
i=1

λi∇gi(x) =
∑
i∈A(x)

λi∇gi(x).

This concludes the proof.

Exercise 3 (4 points). Let the function E : Rn → R be given as

E(u) := t(u) + h(u).

where the function h : Rn → R is defined as

h(u) := g(Du), g(v) =
2n∑
i=1

ϕ(vi), ϕ(x) =
√
x2 + ε2,

with D ∈ R2n×n being a finite difference gradient operator and t : Rn → R is defined
as

t(u) :=
λ

2
‖u− f‖2.

1. Show that the function E is L-smooth with L = λ+ ‖D‖2
ε

.

2. Show that the function E is m-strongly convex, with m = λ.

Solution. To compute the (smallest) Lipschitz constant of ∇E we separately com-
pute the (smallest) Lipschitz constants of both ∇t(u) and ∇h(u): We first show
that h is ‖D‖

2

ε
-smooth and begin computing the gradient of the function h using the

chain rule and the quotient rule for ϕ:

∇h(u) = D>∇g(Du), ∇g(v) = (ϕ′(vi))
2n
i=1 , ϕ′(x) =

x√
x2 + ε2

.
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Starting with the left-hand side of the definition we have:

‖∇h(u)−∇h(v)‖ =
∥∥D>∇g(Du)−D>∇g(Dv)∥∥

≤ ‖D‖ · ‖∇g(Du)−∇g(Dv)‖

= ‖D‖ ·

√√√√ 2n∑
i=1

(ϕ′((Du)i)− ϕ′((Dv)i))2.

We will show that ϕ is 1
ε
-smooth, so that

‖D‖ ·

√√√√ 2n∑
i=1

(ϕ′((Du)i)− ϕ′((Dv)i))2 ≤ ‖D‖ ·

√√√√ 2n∑
i=1

(
1

ε
((Du)i − (Dv)i)

)2

=
‖D‖
ε
·

√√√√ 2n∑
i=1

((Du)i − (Dv)i)2

=
‖D‖
ε
· ‖Du−Dv‖

≤ ‖D‖
2

ε
· ‖u− v‖

This means that h is ‖D‖
2

ε
-smooth. It remains to show that ϕ is 1

ε
-smooth. We do

that by giving an upper bound on the absolute value of the second order derivative
ϕ′′ of ϕ: Using the quotient rule we obtian:

|ϕ′′(x)| = ϕ′′(x) =
1 ·
√
x2 + ε2 − x · 1

2
1√

x2+ε2
· 2x

x2 + ε2
=

x2+ε2−x2√
x2+ε2

x2 + ε2
=

ε2

(x2 + ε2)
3
2

Clearly the maximum of ϕ′′ is attained for x = 0 s.t.

ϕ′′(x) ≤ 1

ε
.

The data term t(u) is λ-smooth since the Hessian of

λ

2
‖u‖2 − λ

2
‖u− f‖2

is 0 which clearly is negative semidefinite. Overall we obtain using the triangle
inequality:

‖∇E(u)−∇E(v)‖ = ‖∇(t+ h)(u)−∇(t+ h)(v)‖
= ‖∇t(u) +∇h(u)−∇t(v)−∇h(v)‖
≤ ‖∇t(u)−∇t(v)‖+ ‖∇h(u)−∇h(v)‖

≤ λ‖u− v‖+ ‖D‖
2

ε
‖u− v‖ =

(
λ+
‖D‖2

ε

)
‖u− v‖.
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This concludes the proof of the first part of this exercise.

For the second part we first show that the data term t(u) = λ
2
‖u − f‖2 is λ-

strongly convex since the Hessian of

λ

2
‖u− f‖2 − λ

2
‖u‖2

is 0 which clearly is positive semidefinite. Since h(u) is also convex (this follows from
a straight forward computation starting with the definition of a convex function)
and, according to the lecture, the sum of two convex functions is convex we have
that

λ

2
‖u− f‖2 − λ

2
‖u‖2 + h(u)

is also convex and therefore the energy E(u) is λ-strongly convex.

Programming: Image denoising (12 Points)
Exercise 4 (12 Points). Denoise the noisy input image f , given in the file noisy_input.png
by minimizing the energy from Ex. 3:

E(u) =
λ

2
‖u− f‖2 +

2n∑
i=1

√
(Du)2i + ε2

with gradient descent. To guarantee convergence choose your step size τ so that

0 < τ ≤ 2

m+ L
.

Use MATLABs normest to estimate the norm ‖D‖ of your finite difference gradient
operator D. Here, n is the number of pixels times the number of color channels.
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