Convex Optimization for Computer Vision Lecture: M. Möller and T. Möllenhoff Exercises: E. Laude Summer Semester 2016 Computer Vision Group Institut für Informatik Technische Universität München

Weekly Exercises 3

Room: 02.09.023 Friday, 6.5.2016, 09:00-11:00 Submission deadline: Wednesday, 4.5.2016, 14:00, Room 02.09.023

Theory: Strong convexity, Lipschitz continuity and subgradient descent (12 Points)

Exercise 1 (4 Points). Prove the following theorem: If $E \in \mathcal{S}_{m,L}^{1,1}(\mathbb{R}^n)$, then for any $u, v \in \mathbb{R}^n$ we have

$$\langle \nabla E(u) - \nabla E(v), u - v \rangle \ge$$

$$\frac{mL}{m+L} \left\| u - v \right\|^2 + \frac{1}{m+L} \left\| \nabla E(u) - \nabla E(v) \right\|^2$$

Exercise 2 (4 Points). Compute the subdifferentials of the following convex functions:

- 1. $f : \mathbb{R}^n \to \mathbb{R}$ with $f(x) = ||x||_1$.
- 2. $f : \mathbb{R}^n \to \mathbb{R}$ with $f(x) = ||x||_2$.
- 3. $f : \mathbb{R}^{n \times m} \to \mathbb{R}$ with $f(X) = ||X||_{2,1} := \sum_{i=1}^{m} ||x^i||_2$, where $x^i \in \mathbb{R}^n$ is the *i*-th column of X.

Exercise 3 (4 Points). Let $f \in \mathbb{R}^n$. Show that the ℓ_1 -norm proximity operator of f defined as the solution u of the convex optimization problem

$$\arg\min_{u\in\mathbb{R}^n}\frac{1}{2\lambda}\|u-f\|^2+\|u\|_1,$$

is given as

$$u \in \mathbb{R}^n, \quad u_i := \begin{cases} f_i + \lambda & \text{if } f_i < -\lambda \\ 0 & \text{if } f_i \in [-\lambda, \lambda] \\ f_i - \lambda & \text{if } f_i > \lambda. \end{cases}$$

Hint: Note that the above optimization problem is decoupled in the sense that one can look for the individual entries u_i of the optimal u separately.

Programming: $TV-\ell_1$ -denoising (12 Points)

Exercise 4 (12 Points). Denoise the noisy input image f, given in the file fish_saltpepper.png by minimizing the following robust denoising energy:

$$E(u) = \frac{\lambda}{2} \|u - f\|_1 + \|Du\|_{2,1}$$

with subgradient descent, where D is a finite difference color gradient operator, and the $\ell_{2,1}$ -norm is defined as on exercise sheet 0.