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Theory: Strong convexity, Lipschitz continuity and
subgradient descent (12 Points)

Exercise 1 (4 Points). Prove the following theorem: If E ∈ S1,1
m,L(Rn), then for any

u, v ∈ Rn we have

〈∇E(u)−∇E(v), u− v〉 ≥
mL

m+ L
‖u− v‖2 + 1

m+ L
‖∇E(u)−∇E(v)‖2

Exercise 2 (4 Points). Compute the subdifferentials of the following convex func-
tions:

1. f : Rn → R with f(x) = ‖x‖1.

2. f : Rn → R with f(x) = ‖x‖2.

3. f : Rn×m → R with f(X) = ‖X‖2,1 :=
∑m

i=1 ‖xi‖2, where xi ∈ Rn is the i-th
column of X.

Exercise 3 (4 Points). Let f ∈ Rn. Show that the `1-norm proximity operator of
f defined as the solution u of the convex optimization problem

arg min
u∈Rn

1

2λ
‖u− f‖2 + ‖u‖1,

is given as

u ∈ Rn, ui :=


fi + λ if fi < −λ
0 if fi ∈ [−λ, λ]
fi − λ if fi > λ.

Hint: Note that the above optimization problem is decoupled in the sense that one
can look for the individual entries ui of the optimal u separately.
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Programming: TV-`1-denoising (12 Points)
Exercise 4 (12 Points). Denoise the noisy input image f , given in the file fish_saltpepper.png
by minimizing the following robust denoising energy:

E(u) =
λ

2
‖u− f‖1 + ‖Du‖2,1

with subgradient descent, where D is a finite difference color gradient operator, and
the `2,1-norm is defined as on exercise sheet 0.

2


