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Theory: Strong convexity, Lipschitz continuity and
subgradient descent (12 Points)

Exercise 1 (4 Points). Prove the following theorem: If E € S, L(R”) then for any
u,v € R" we have

(VE(u)~VE(v),u—v) >

7 IVE(@) - VE@)|*

Solution. Let F be L-smooth and m-strongly convex. In case L = m, combining
cocoercivity and strong monotonicity of VFE directly gives:

1 1 2
S (VE() = VE@),u~v) > 5= [VE(w) - VEQ)|*, (1)
S(VE(w) = VE),u—v) > T Ju—of?, 2

and adding the above yields the desired result.
Now let m < L (note that it always holds that m < L). Then

g(u) = E(u) = = |2

is convex and (L — m)-smooth.
Cocoercivity of g then gives

V() — V(o) )

L IVE() ~ VE@) — m(u— o)

(Vg(u) = Vg(v),u —v) > 7

< (VE(u) — VE() —m(u —v),u —v) > 7

& (VE() — VEW),u—v) >m|u—v| + 7 _1 - IVE(u) — VE(v) — m(u — v)|?



The right-hand side can be rewritten as

1

mlu —v|* + 7 IVE() — VE(v) = m(u—)| (6)
==l + 7 fu =l + = IVE@w) - VEG) = (7)
LQi"m (VE(u) — VE(v),u — ) (8)

Multiplying both sides with L — m and rearranging and combining things yields

(L+m)(VE(u) — VE(v),u—v) > (9)
m(L —m) |lu—v|* +m® |lu —o||* + | VE(u) = VE(v)| (10)

Dividing by L 4+ m finally gives the desired result

mL 9 1 9
— E(u)—-VE . (11
a0l + ——— [ VE(@) - V@) (11)

(VE(u) — VE(v),u —v) >
Exercise 2 (4 Points). Compute the subdifferentials of the following convex func-
tions:

1. f:R" = R with f(z) = ||z|:.

2. f:R" = R with f(x) = ||z||2.

3. [ R™™ = R with f(X) = || X|l21 := >t [|2"]|]2, where z* € R™ is the i-th
column of X.

Solution. 1. We have that f(z) = ||z|; = > ., |2i|. Since dom(|(-);|) = R", we
can apply the sum rule for the subdifferential and obtain

Of(x) =Y _1()l,
i=1
and therefore

Of(x) ={peR":p, €0|z], 1 <i<n}.

It remains to compute the subdifferential 9| - | of the absolute value function
|-]: R — R. Since |z| = ||z]|]; for x € R we refer to part 2 of this exercise.

2. For x # 0 f is differentiable and we have df(z) = {m} For p € R™ with

Ipll2 < 1 we have f(y) — f(z) = [lylz = llyll2 - pllz = (y,p). Therefore
p € 0f(0). For [|p||l2 > 1 and y = p we have

f(p) = f(0) = pll2 < lIpll3 = (p. p)-

d|zll2 = [EIE ifx #£0
Bl(o) if r =0.

Together this yields

2



3. For f(X) = || X]21 = Yit, |#"]]2 we can again apply the sum rule of the
subdifferential. Together with part 2 of the exercise we get

Of(X) :={P e R™™: p' € 9||2"|2}.

Exercise 3 (4 Points). Let f € R". Show that the ¢;-norm proximity operator of
f defined as the solution u of the convex optimization problem

1 )
arg min o [ju — fI* + Jlulh,

is given as
fi+ X it fi<—=A
ueR" w =40 if fi e [=\ A
fi—X it fi> A\

Hint: Note that the above optimization problem is decoupled in the sense that one
can look for the individual entries u; of the optimal u separately.

Solution. We begin reformulating the optimality condition

0€d (%(Uz —fi)*+ |Uz|>

of the optimal wu;

-1 ifu; <0
O:%(ui—fi)ﬂLp, p €0 :=q[-1,1] ifu;=0
1 ifu; >0
—A if u; <0
fieuw+ < [=\A] ifu; =0
A if u; > 0.

Recall that we are looking for a w; that satisfies the condition above given a fixed
fi- We distinguish the following cases:

1. Assume f; € [\, A]. Choosing u; := 0 satisfies the condition above.
2. Assume f; > A. Choosing u; := f; — A again satisfies the condition.

3. Assume f; < —A. Choosing u; := f; + A is the right choice.

Programming: TV-/;-denoising (12 Points)

Exercise 4 (12 Points). Denoise the noisy input image f, given in the file fish_saltpepper.png
by minimizing the following robust denoising energy:

A
Bw) =5 Ju— 1, + 1Dl

with subgradient descent, where D is a finite difference color gradient operator, and
the {5 ;-norm is defined as on exercise sheet 0.



