Convex Optimization for Computer Vision Lecture: M. Möller and T. Möllenhoff

Exercises: E. Laude Summer Semester 2016 Computer Vision Group Institut für Informatik Technische Universität München

Weekly Exercises 3

Room: 02.09.023 Friday, 6.5.2016, 09:00-11:00

Submission deadline: Wednesday, 4.5.2016, 14:00, Room 02.09.023

Theory: Strong convexity, Lipschitz continuity and subgradient descent (12 Points)

Exercise 1 (4 Points). Prove the following theorem: If $E \in \mathcal{S}_{m,L}^{1,1}(\mathbb{R}^n)$, then for any $u, v \in \mathbb{R}^n$ we have

$$\langle \nabla E(u) - \nabla E(v), u - v \rangle \ge \frac{mL}{m+L} \|u - v\|^2 + \frac{1}{m+L} \|\nabla E(u) - \nabla E(v)\|^2$$

Solution. Let E be L-smooth and m-strongly convex. In case L=m, combining cocoercivity and strong monotonicity of ∇E directly gives:

$$\frac{1}{2}\langle \nabla E(u) - \nabla E(v), u - v \rangle \ge \frac{1}{2L} \left\| \nabla E(u) - \nabla E(v) \right\|^2, \tag{1}$$

$$\frac{1}{2}\langle \nabla E(u) - \nabla E(v), u - v \rangle \ge \frac{m}{2} \|u - v\|^2, \tag{2}$$

and adding the above yields the desired result.

Now let m < L (note that it always holds that $m \le L$). Then

$$g(u) = E(u) - \frac{m}{2} ||x||^2$$

is convex and (L-m)-smooth.

Cocoercivity of q then gives

$$\langle \nabla g(u) - \nabla g(v), u - v \rangle \ge \frac{1}{L - m} \left\| \nabla g(u) - \nabla g(v) \right\|^2 \tag{3}$$

$$\Leftrightarrow \langle \nabla E(u) - \nabla E(v) - m(u - v), u - v \rangle \ge \frac{1}{L - m} \left\| \nabla E(u) - \nabla E(v) - m(u - v) \right\|^2$$
(4)

$$\Leftrightarrow \langle \nabla E(u) - \nabla E(v), u - v \rangle \ge m \|u - v\|^2 + \frac{1}{L - m} \|\nabla E(u) - \nabla E(v) - m(u - v)\|^2$$
(5)

The right-hand side can be rewritten as

$$m \|u - v\|^2 + \frac{1}{L - m} \|\nabla E(u) - \nabla E(v) - m(u - v)\|^2$$
 (6)

$$= m \|u - v\|^2 + \frac{m^2}{L - m} \|u - v\|^2 + \frac{1}{L - m} \|\nabla E(u) - \nabla E(v)\|^2 -$$
 (7)

$$\frac{2m}{L-m} \langle \nabla E(u) - \nabla E(v), u - v \rangle \tag{8}$$

Multiplying both sides with L-m and rearranging and combining things yields

$$(L+m)\langle \nabla E(u) - \nabla E(v), u - v \rangle \ge \tag{9}$$

$$m(L-m) \|u-v\|^2 + m^2 \|u-v\|^2 + \|\nabla E(u) - \nabla E(v)\|^2$$
 (10)

Dividing by L + m finally gives the desired result

$$\langle \nabla E(u) - \nabla E(v), u - v \rangle \ge \frac{mL}{m+L} \|u - v\|^2 + \frac{1}{m+L} \|\nabla E(u) - \nabla E(v)\|^2.$$
 (11)

Exercise 2 (4 Points). Compute the subdifferentials of the following convex functions:

- 1. $f: \mathbb{R}^n \to \mathbb{R}$ with $f(x) = ||x||_1$.
- 2. $f: \mathbb{R}^n \to \mathbb{R}$ with $f(x) = ||x||_2$.
- 3. $f: \mathbb{R}^{n \times m} \to \mathbb{R}$ with $f(X) = ||X||_{2,1} := \sum_{i=1}^m ||x^i||_2$, where $x^i \in \mathbb{R}^n$ is the *i*-th column of X.

Solution. 1. We have that $f(x) = ||x||_1 = \sum_{i=1}^n |x_i|$. Since $dom(|(\cdot)_i|) = \mathbb{R}^n$, we can apply the sum rule for the subdifferential and obtain

$$\partial f(x) = \sum_{i=1}^{n} |(\cdot)_i|,$$

and therefore

$$\partial f(x) = \{ p \in \mathbb{R}^n : p_i \in \partial |x|, \ 1 \le i \le n \}.$$

It remains to compute the subdifferential $\partial |\cdot|$ of the absolute value function $|\cdot|: \mathbb{R} \to \mathbb{R}$. Since $|x| = ||x||_2$ for $x \in \mathbb{R}$ we refer to part 2 of this exercise.

2. For $x \neq 0$ f is differentiable and we have $\partial f(x) = \left\{\frac{x}{\|x\|_2}\right\}$. For $p \in \mathbb{R}^n$ with $\|p\|_2 \leq 1$ we have $f(y) - f(x) = \|y\|_2 \geq \|y\|_2 \cdot \|p\|_2 \geq \langle y, p \rangle$. Therefore $p \in \partial f(0)$. For $\|p\|_2 > 1$ and y = p we have

$$f(p) - f(0) = ||p||_2 < ||p||_2^2 = \langle p, p \rangle.$$

Together this yields

$$\partial ||x||_2 = \begin{cases} \frac{x}{||x||_2} & \text{if } x \neq 0\\ B_1(0) & \text{if } x = 0. \end{cases}$$

3. For $f(X) := ||X||_{2,1} = \sum_{i=1}^m ||x^i||_2$ we can again apply the sum rule of the subdifferential. Together with part 2 of the exercise we get

$$\partial f(X) := \{ P \in \mathbb{R}^{n \times m} : p^i \in \partial ||x^i||_2 \}.$$

Exercise 3 (4 Points). Let $f \in \mathbb{R}^n$. Show that the ℓ_1 -norm proximity operator of f defined as the solution u of the convex optimization problem

$$\arg\min_{u \in \mathbb{R}^n} \frac{1}{2\lambda} ||u - f||^2 + ||u||_1,$$

is given as

$$u \in \mathbb{R}^n$$
, $u_i := \begin{cases} f_i + \lambda & \text{if } f_i < -\lambda \\ 0 & \text{if } f_i \in [-\lambda, \lambda] \\ f_i - \lambda & \text{if } f_i > \lambda. \end{cases}$

Hint: Note that the above optimization problem is decoupled in the sense that one can look for the individual entries u_i of the optimal u separately.

Solution. We begin reformulating the optimality condition

$$0 \in \partial \left(\frac{1}{2\lambda} (u_i - f_i)^2 + |u_i| \right)$$

of the optimal u_i

$$0 = \frac{1}{\lambda}(u_i - f_i) + p, \quad p \in \partial |u_i| := \begin{cases} -1 & \text{if } u_i < 0 \\ [-1, 1] & \text{if } u_i = 0 \\ 1 & \text{if } u_i > 0 \end{cases}$$

$$f_i \in u_i + \begin{cases} -\lambda & \text{if } u_i < 0\\ [-\lambda, \lambda] & \text{if } u_i = 0\\ \lambda & \text{if } u_i > 0. \end{cases}$$

Recall that we are looking for a u_i that satisfies the condition above given a fixed f_i . We distinguish the following cases:

- 1. Assume $f_i \in [-\lambda, \lambda]$. Choosing $u_i := 0$ satisfies the condition above.
- 2. Assume $f_i > \lambda$. Choosing $u_i := f_i \lambda$ again satisfies the condition.
- 3. Assume $f_i < -\lambda$. Choosing $u_i := f_i + \lambda$ is the right choice.

Programming: TV- ℓ_1 -denoising (12 Points)

Exercise 4 (12 Points). Denoise the noisy input image f, given in the file fish_saltpepper.png by minimizing the following robust denoising energy:

$$E(u) = \frac{\lambda}{2} \|u - f\|_1 + \|Du\|_{2,1}$$

with subgradient descent, where D is a finite difference color gradient operator, and the $\ell_{2,1}$ -norm is defined as on exercise sheet 0.