Convex Optimization for Computer Vision
Lecture: M. Möller and T. Möllenhoff
Exercises: E. Laude
Summer Semester 2016

Computer Vision Group Institut für Informatik
Technische Universität München

Weekly Exercises 4

Room 01.09.014
Friday, 13.5.2016, 09:00-11:00
Submission deadline: Wednesday, 11.5.2016, 14:00, Room: 02.09.023

Theory: Projected gradient descent (8+8 Points)

Exercise 1 (4 Points). Let $A \in \mathbb{R}^{n \times n}$ be orthonormal, meaning that $A^{\top} A=A A^{\top}=$ I. Let the convex set C be given as

$$
C:=\left\{u \in \mathbb{R}^{n}:\|A u\|_{\infty} \leq 1\right\} .
$$

Compute a formula for the projection onto C given as

$$
\Pi_{C}(v):=\operatorname{argmin}_{u \in \mathbb{R}^{n}} \frac{1}{2}\|u-v\|_{2}^{2}, \quad \text { s.t. } u \in C \text {. }
$$

Hint: Show that the ℓ_{2}-norm of a vector is invariant under a multiplication with an orthonormal matrix A, meaning that $\|u\|_{2}=\|A u\|_{2}$.

Exercise 2 (8 Points). Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be coercive, differentiable and let ∇f be locally Lipschitz continuous i.e. for each $x \in \mathbb{R}^{n}$ there exists $\epsilon>0$ and a constant $L_{\epsilon}>0$, such that ∇f is L_{ϵ}-Lipschitz on $B_{\epsilon}(x)$.

1. Give an example of a function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ that meets the above assumptions, but for which ∇f is not Lipschitz continuous. (With a proof).
2. Let f be an arbitrary function meeting the above assumptions. Show that for any $\alpha \geq \min _{x} f(x)$ there exists a constant L_{α} such that f is L_{α}-smooth on the sublevel set $S_{\alpha}:=\{x: f(x) \leq \alpha\}$.
Hint: You can use the topological definition of compactness: Any subset $X \subset \mathbb{R}^{n}$ is called compact (closed and bounded in the Euclidean case that we consider) if each of its open covers has a finite subcover (see https: //en.wikipedia.org/wiki/Compact_space). One possible open cover of X is the union of all ϵ-balls with any $\epsilon: \bigcup_{x \in X} B_{\epsilon}(x)$.
3. Show that $x^{+}:=x-\tau \nabla f(x) \in S_{\alpha}$ if $\tau<\frac{1}{L_{\alpha}}$ and $x \in S_{\alpha}$.
4. Conclude that for each initialization x_{0}, there exists a $\tau_{x_{0}}$ such that gradient descent with the constant step size $\tau_{x_{0}}$ converges.

Exercise 3 (4 Points). Let $C_{i}, 1 \leq i \leq n$ be a family of closed convex sets such that

$$
\bigcap_{1 \leq i \leq n} C_{i} \neq \emptyset
$$

Show that the problem of finding an element u^{*} in the intersection

$$
u^{*} \in \bigcap_{1 \leq i \leq n} C_{i}
$$

can be formulated as the following optimization problem:

$$
u^{*} \in \arg \min _{u \in \bigcap_{i \in \mathcal{I}} C_{i}} \sum_{\substack{j \notin \mathcal{I} \\ 1 \leq j \leq n}} d^{2}\left(u, C_{j}\right),
$$

where $\mathcal{I} \subseteq\{1,2, \ldots, n\}$ can be arbitrary (including the empty set) and $d(z, X)$ is the distance of a point z to the closed convex set X defined as

$$
d(z, X):=\min _{x \in X}\|x-z\|_{2}
$$

Programming: SUDOKU

(12 Points)
Exercise 4 (12 Points). Solve the SUDOKUs given in the files exampleSudoku1. mat and exampleSudoku2.mat with projected gradient descent. For that you need to find a point

$$
u^{*} \in \bigcap_{1 \leq i \leq n+m+1} C_{i}
$$

where the convex sets in the intersection are given as

$$
\begin{gathered}
C_{i}:=\left\{u \in \mathbb{R}^{729}:\left\langle a_{i}, u\right\rangle=1\right\}, \quad 1 \leq i \leq n, \\
C_{i}:=\left\{u \in \mathbb{R}^{729}: u_{j}=1, j \in \mathcal{B}\right\}, \quad n+1 \leq i \leq n+m,
\end{gathered}
$$

and \mathcal{B} is the set of indexes corresponding to the known numbers and

$$
C_{n+m+1}:=\left\{u \in \mathbb{R}^{729}: u_{j} \in[0,1], \forall 1 \leq j \leq 729\right\}
$$

For a more precise definition of the constraint sets see lecture.
Solve the programming assignment in the spirit of exercise 3 using the following two partitions of the indexes $\{1,2, \ldots, n+m+1\}$:

1. $\mathcal{I}_{1}:=\{n+m+1\}$ and
2. $\mathcal{I}_{2}:=\{n+1, n+2, \ldots, n+m+1\}$,
and plot the resulting energy decays.
Hint: Show that for the linear constraint sets $C_{i}, 1 \leq i \leq n$ the distance $d\left(z, C_{i}\right)$ of a point z to the set C_{i} is equal to $\left|\left\langle a_{i}, z\right\rangle-1\right|$.
