Convex Optimization for Computer Vision
Lecture: M. Möller and T. Möllenhoff
Exercises: E. Laude
Summer Semester 2016

Computer Vision Group Institut für Informatik
Technische Universität München

Weekly Exercises 4

Room 01.09.014
Friday, 13.5.2016, 09:00-11:00
Submission deadline: Wednesday, 11.5.2016, 14:00, Room: 02.09.023

Theory: Projected gradient descent (8+8 Points)

Exercise 1 (4 Points). Let $A \in \mathbb{R}^{n \times n}$ be orthonormal, meaning that $A^{\top} A=A A^{\top}=$ I. Let the convex set C be given as

$$
C:=\left\{u \in \mathbb{R}^{n}:\|A u\|_{\infty} \leq 1\right\} .
$$

Compute a formula for the projection onto C given as

$$
\Pi_{C}(v):=\operatorname{argmin}_{u \in \mathbb{R}^{n}} \frac{1}{2}\|u-v\|_{2}^{2}, \quad \text { s.t. } u \in C \text {. }
$$

Hint: Show that the ℓ_{2}-norm of a vector is invariant under a multiplication with an orthonormal matrix A, meaning that $\|u\|_{2}=\|A u\|_{2}$.

Solution. We begin proving the hint:

$$
\|A x\|_{2}^{2}=\langle A x, A x\rangle=\left\langle A^{\top} A x, x\right\rangle=\langle x, x\rangle=\|x\|_{2}^{2}
$$

The idea is to rewrite the projection onto the set C in terms of the projection $\Pi_{\tilde{C}}$ onto the unit ball of the ℓ_{∞}-norm $\tilde{C}:=\left\{x \in \mathbb{R}^{n}:\|x\|_{\infty} \leq 1\right\}$. With the substitution

$$
w:=A u \Longleftrightarrow u=A^{\top} w
$$

and using the hint we obtain:

$$
\begin{aligned}
\Pi_{C}(v) & =\operatorname{argmin}_{\|A u\|_{\infty} \leq 1} \frac{1}{2}\|v-u\|^{2} \\
& =A^{\top} \operatorname{argmin}_{\|w\|_{\infty} \leq 1} \frac{1}{2}\left\|v-A^{\top} w\right\|^{2} \\
& =A^{\top} \operatorname{argmin}_{\|w\|_{\infty} \leq 1} \frac{1}{2}\left\|A\left(v-A^{\top} w\right)\right\|^{2} \\
& =A^{\top} \operatorname{argmin}_{\|w\|_{\infty} \leq 1} \frac{1}{2}\left\|A v-A A^{\top} w\right\|^{2} \\
& =A^{\top} \operatorname{argmin}_{\|w\|_{\infty} \leq 1} \frac{1}{2}\|A v-w\|^{2} \\
& =A^{\top} \Pi_{\tilde{C}}(A v) .
\end{aligned}
$$

Exercise 2 (8 Points). Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be coercive, differentiable and let ∇f be locally Lipschitz continuous i.e. for each $x \in \mathbb{R}^{n}$ there exists $\epsilon>0$ and a constant $L_{\epsilon}>0$, such that ∇f is L_{ϵ}-Lipschitz on $B_{\epsilon}(x)$.

1. Give an example of a function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ that meets the above assumptions, but for which ∇f is not Lipschitz continuous. (With a proof).
2. Let f be an arbitrary function meeting the above assumptions. Show that for any $\alpha \geq \min _{x} f(x)$ there exists a constant L_{α} such that f is L_{α}-smooth on the sublevel set $S_{\alpha}:=\{x: f(x) \leq \alpha\}$.
Hint: You can use the topological definition of compactness: Any subset $X \subset \mathbb{R}^{n}$ is called compact (closed and bounded in the Euclidean case that we consider) if each of its open covers has a finite subcover (see https: //en.wikipedia.org/wiki/Compact_space). One possible open cover of X is the union of all ϵ-balls with any $\epsilon: \bigcup_{x \in X} B_{\epsilon}(x)$.
3. Show that $x^{+}:=x-\tau \nabla f(x) \in S_{\alpha}$ if $\tau<\frac{1}{L_{\alpha}}$ and $x \in S_{\alpha}$.
4. Conclude that for each initialization x_{0}, there exists a $\tau_{x_{0}}$ such that gradient descent with the constant step size $\tau_{x_{0}}$ converges.

Solution. 1. A possible choice is the function $f(x):=x^{4}$. The first and second order derivatives of f are the given as

$$
f^{\prime}(x)=4 x^{3}, \quad f^{\prime \prime}(x)=12 x^{2}
$$

Then for any $x \in \mathbb{R}$ and any $\epsilon>0$ we have

$$
\sup _{y \in B_{\epsilon}(x)} 12 x^{2}=12(|x|+\epsilon)^{2}=: L_{\epsilon} .
$$

Thus $f^{\prime \prime}(y) \leq L_{\epsilon}$ for $y \in B_{\epsilon}(x)$ which means that f is L_{ϵ}-smooth on $B_{\epsilon}(x)$.
2. S_{α} is non-empty since $\alpha \geq \min _{x} f(x)$. Moreover, $S_{\alpha}=f^{-1}((-\infty, \alpha])$ is closed since it is the preimage of the closed set $(-\infty, \alpha]$ under the continuous function f. A characterization of continuity of a function $f: X \rightarrow Y$ is that preimages of open sets are open under f. Using this characterization one can show that the same holds for closed sets: If $D \subseteq Y$ is closed we have that $Y \backslash D$ is open and since f continuous

$$
f^{-1}(Y \backslash D)=X \backslash f^{-1}(D)
$$

is open. And therefore $X \backslash\left(X \backslash f^{-1}(D)\right)=f^{-1}(D)$ is closed. Since f is coercive S_{α} is bounded. Otherwise there would exist a sequence $\left\{x_{n}\right\}_{n \in \mathbb{N}} \subset$ S_{α} with $\left\|x_{n}\right\| \rightarrow \infty$ for $n \rightarrow \infty$ and then, since f coercive and continuous, $f\left(x_{n}\right) \rightarrow \infty$ for $n \rightarrow \infty$. So overall S_{α} is compact and therefore the closure of the convex hull $\operatorname{cl}\left(\operatorname{conv}\left(S_{\alpha}\right)\right)$ of S_{α} is compact too. Now, for any $x, y \in S_{\alpha}$ consider the closed line $M:=[x, y]:=\operatorname{conv}(\{x, y\}) \subset \operatorname{cl}\left(\operatorname{conv}\left(S_{\alpha}\right)\right)$. Now
$M \subset \bigcup_{x \in M} B_{\epsilon_{x}}(x)$ (where ϵ_{x} is chosen s.t. ∇f locally Lipschitz on $B_{\epsilon_{x}}(x)$ with constant $L_{\epsilon_{x}}$) has a finite subcover

$$
M \subset \bigcup_{i=1}^{N} B_{\epsilon_{x_{i}}}\left(x_{i}\right) .
$$

We can now construct a finite sequence $\left\{y_{i}\right\}_{i=1}^{N+1} \subset M$ with points along the line with

$$
\begin{aligned}
& x=y_{1} \in B_{\epsilon_{x_{1}}}\left(x_{1}\right), \quad y=y_{N+1} \in B_{\epsilon_{x_{N}}}\left(x_{N}\right) \\
& y_{i} \in B_{\epsilon_{x_{i-1}}}\left(x_{i-1}\right) \cap B_{\epsilon_{x_{i}}}\left(x_{i}\right), \quad 2 \leq i \leq N
\end{aligned}
$$

Then we have for $L_{\alpha}:=\max _{1 \leq i \leq N} L_{\epsilon_{x_{i}}}$

$$
\begin{aligned}
\|\nabla f(x)-\nabla f(y)\|_{2} & =\left\|\sum_{i=1}^{N} \nabla f\left(y_{i}\right)-\nabla f\left(y_{i+1}\right)\right\|_{2} \\
& \leq \sum_{i=1}^{N} \underbrace{\left\|\nabla f\left(y_{i}\right)-\nabla f\left(y_{i+1}\right)\right\|_{2}}_{y_{i}, y_{i+1} \in B_{\epsilon_{x_{i}}}\left(x_{i}\right)} \\
& \leq \sum_{i=1}^{N} L_{\epsilon_{x_{i}}}\left\|y_{i}-y_{i+1}\right\|_{2} \\
& \leq \sum_{i=1}^{N} L_{\alpha}\left\|y_{i}-y_{i+1}\right\|_{2} \\
& =L_{\alpha} \sum_{i=1}^{N}\left\|y_{i}-y_{i+1}\right\|_{2} \\
& =L_{\alpha}\|x-y\|_{2}
\end{aligned}
$$

Thus ∇f is L_{α}-Lipschitz on S_{α}.
3. We define

$$
g(t):=-f(x)+f(x-t \nabla f(x))
$$

Then, since f is differentiable we obtain

$$
g^{\prime}(t)=-\langle\nabla f(x), \nabla f(x-t \nabla f(x))\rangle
$$

Suppose $\nabla f(x) \neq 0$, otherwise the assertion would be trivially satisfied. Then $g^{\prime}(0)=-\|\nabla f(x)\|^{2}<0$ which means (due to the continuity of f) there exists $t>0$, such that $g^{\prime}(\tau)<0$ and (due to Taylor's theorem) $g(\tau)<0$ for all $\tau \in(0, t]$. Suppose there exists a $\tau^{\prime} \in\left(t, 1 / L_{\alpha}\right]$ so that $g\left(\tau^{\prime}\right)>0$. From the intermediate value theorem it follows that there exists a point $\tau^{\prime \prime} \in\left(\tau, \tau^{\prime}\right)$ with $g\left(\tau^{\prime \prime}\right)=0$ and from the mean value theorem of f it follows that there exists a
$\xi \in\left(\tau, \tau^{\prime \prime}\right)$ with $g^{\prime}(\xi)>0$ and $g(\xi)<0$. As $g(\xi)=f(x)+f(x-\xi \nabla f(x))<0$ we have that $x-\xi \nabla f(x) \in S_{\alpha}$. Then we get (since ∇f is L_{α}-Lipschitz)

$$
\begin{aligned}
g^{\prime}(\xi) & =-\langle\nabla f(x), \nabla f(x)-(\nabla f(x)-\nabla f(x-\xi \nabla f(x))\rangle \\
& =-\|\nabla f(x)\|_{2}^{2}+\langle\nabla f(x), \nabla f(x)-\nabla f(x-\xi \nabla f(x)\rangle \\
& \leq-\|\nabla f(x)\|_{2}^{2}+\|\nabla f(x)\|_{2}\|\nabla f(x)-\nabla f(x-\xi \nabla f(x))\|_{2} \\
& \leq-\|\nabla f(x)\|_{2}^{2}+\|\nabla f(x)\|_{2} L_{\alpha}\|x-x+\xi \nabla f(x)\|_{2} \\
& =-\|\nabla f(x)\|_{2}^{2}+\|\nabla f(x)\|_{2} L_{\alpha} \xi\|\nabla f(x)\|_{2} \\
& =\left(L_{\alpha} \xi-1\right)\|\nabla f(x)\|_{2}^{2}<0
\end{aligned}
$$

This contradicts the assumption and therefore

$$
g(t) \leq 0, \text { for all } t \in\left[0, \frac{1}{L_{\alpha}}\right]
$$

4. Set $\alpha:=f\left(x_{0}\right)$ and

$$
\tau_{x_{0}} \in\left(0, \frac{1}{L_{\alpha}}\right]
$$

Then, for $x_{k} \in S_{\alpha}$ we have

$$
x_{k+1}:=x_{k}-\tau_{x_{0}} \nabla f\left(x_{k}\right) \in S_{\alpha},
$$

and using the result from the previous exercise $\left\{f\left(x_{k}\right)\right\}_{k \in \mathbb{N}}$ is monotone decreasing and bounded since S_{α} compact and f and continuous. Together this yields that $\left\{f\left(x_{k}\right)\right\}_{k \in \mathbb{N}}$ converges.

Exercise 3 (4 Points). Let $C_{i}, 1 \leq i \leq n$ be a family of closed convex sets such that

$$
\bigcap_{1 \leq i \leq n} C_{i} \neq \emptyset
$$

Show that the problem of finding an element u^{*} in the intersection

$$
u^{*} \in \bigcap_{1 \leq i \leq n} C_{i}
$$

can be formulated as the following optimization problem:

$$
u^{*} \in \arg \min _{u \in \bigcap_{i \in \mathcal{I}} C_{i}} \sum_{\substack{j \notin \mathcal{I} \\ 1 \leq j \leq n}} d^{2}\left(u, C_{j}\right),
$$

where $\mathcal{I} \subseteq\{1,2, \ldots, n\}$ can be arbitrary (including the empty set) and $d(z, X)$ is the distance of a point z to the closed convex set X defined as

$$
d(z, X):=\min _{x \in X}\|x-z\|_{2} .
$$

Solution. Since all C_{i} are closed and convex, $d\left(u, C_{i}\right)$ is well defined. Since $d^{2}\left(u, C_{j}\right) \geq$ 0 and $d^{2}\left(u, C_{j}\right)=0 \Longleftrightarrow u \in C_{j}$,

$$
u \in \bigcap_{\substack{j \notin \mathcal{I} \\ 1 \leq j \leq n}} C_{j} \Longleftrightarrow \sum_{\substack{j \notin \mathcal{I} \\ 1 \leq j \leq n}} d^{2}\left(u, C_{j}\right)=0 .
$$

This yields that

$$
0=\sum_{\substack{j \notin \mathcal{I} \\ 1 \leq j \leq n}} d^{2}\left(u^{*}, C_{j}\right)+\iota \bigcap_{i \in \mathcal{I}} C_{i}\left(u^{*}\right)
$$

iff $u^{*} \in \bigcap_{1 \leq i \leq n} C_{i}$. Since $\bigcap_{1 \leq i \leq n} C_{i}$ non-empty

$$
\operatorname{argmin}_{u \in \bigcap_{i \in \mathcal{I}} C_{i}} \sum_{\substack{j \notin \mathcal{I} \\ 1 \leq j \leq n}} d^{2}\left(u, C_{j}\right) \subset \bigcap_{1 \leq i \leq n} C_{i} .
$$

Programming: SUDOKU

Exercise 4 (12 Points). Solve the SUDOKUs given in the files exampleSudoku1 . mat and exampleSudoku2.mat with projected gradient descent. For that you need to find a point

$$
u^{*} \in \bigcap_{1 \leq i \leq n+m+1} C_{i}
$$

where the convex sets in the intersection are given as

$$
\begin{gathered}
C_{i}:=\left\{u \in \mathbb{R}^{729}:\left\langle a_{i}, u\right\rangle=1\right\}, \quad 1 \leq i \leq n, \\
C_{i}:=\left\{u \in \mathbb{R}^{729}: u_{j}=1, j \in \mathcal{B}\right\}, \quad n+1 \leq i \leq n+m,
\end{gathered}
$$

and \mathcal{B} is the set of indexes corresponding to the known numbers and

$$
C_{n+m+1}:=\left\{u \in \mathbb{R}^{729}: u_{j} \in[0,1], \forall 1 \leq j \leq 729\right\} .
$$

For a more precise definition of the constraint sets see lecture.
Solve the programming assignment in the spirit of exercise 3 using the following two partitions of the indexes $\{1,2, \ldots, n+m+1\}$:

1. $\mathcal{I}_{1}:=\{n+m+1\}$ and
2. $\mathcal{I}_{2}:=\{n+1, n+2, \ldots, n+m+1\}$,
and plot the resulting energy decays.
Hint: Show that for the linear constraint sets $C_{i}, 1 \leq i \leq n$ the distance $d\left(z, C_{i}\right)$ of a point z to the set C_{i} is equal to $\left|\left\langle a_{i}, z\right\rangle-1\right|$.
