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Theory: Projected gradient descent (8+8 Points)
Exercise 1 (4 Points). Let A ∈ Rn×n be orthonormal, meaning that A>A = AA> =
I. Let the convex set C be given as

C := {u ∈ Rn : ‖Au‖∞ ≤ 1} .

Compute a formula for the projection onto C given as

ΠC(v) := argminu∈Rn
1

2
‖u− v‖22, s.t. u ∈ C.

Hint: Show that the `2-norm of a vector is invariant under a multiplication with an
orthonormal matrix A, meaning that ‖u‖2 = ‖Au‖2.

Solution. We begin proving the hint:

‖Ax‖22 = 〈Ax,Ax〉 = 〈A>Ax, x〉 = 〈x, x〉 = ‖x‖22.

The idea is to rewrite the projection onto the set C in terms of the projection ΠC̃

onto the unit ball of the `∞-norm C̃ := {x ∈ Rn : ‖x‖∞ ≤ 1}. With the substitution

w := Au ⇐⇒ u = A>w

and using the hint we obtain:

ΠC(v) = argmin‖Au‖∞≤1
1

2
‖v − u‖2

= A> argmin‖w‖∞≤1
1

2
‖v − A>w‖2

= A> argmin‖w‖∞≤1
1

2
‖A(v − A>w)‖2

= A> argmin‖w‖∞≤1
1

2
‖Av − AA>w‖2

= A> argmin‖w‖∞≤1
1

2
‖Av − w‖2

= A>ΠC̃(Av).
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Exercise 2 (8 Points). Let f : Rn → R be coercive, differentiable and let ∇f be
locally Lipschitz continuous i.e. for each x ∈ Rn there exists ε > 0 and a constant
Lε > 0, such that ∇f is Lε-Lipschitz on Bε(x).

1. Give an example of a function f : Rn → R that meets the above assumptions,
but for which ∇f is not Lipschitz continuous. (With a proof).

2. Let f be an arbitrary function meeting the above assumptions. Show that for
any α ≥ minx f(x) there exists a constant Lα such that f is Lα-smooth on the
sublevel set Sα := {x : f(x) ≤ α}.
Hint: You can use the topological definition of compactness: Any subset
X ⊂ Rn is called compact (closed and bounded in the Euclidean case that
we consider) if each of its open covers has a finite subcover (see https:
//en.wikipedia.org/wiki/Compact_space). One possible open cover of X
is the union of all ε-balls with any ε:

⋃
x∈X Bε(x).

3. Show that x+ := x− τ∇f(x) ∈ Sα if τ < 1
Lα

and x ∈ Sα.

4. Conclude that for each initialization x0, there exists a τx0 such that gradient
descent with the constant step size τx0 converges.

Solution. 1. A possible choice is the function f(x) := x4. The first and second
order derivatives of f are the given as

f ′(x) = 4x3, f ′′(x) = 12x2.

Then for any x ∈ R and any ε > 0 we have

sup
y∈Bε(x)

12x2 = 12(|x|+ ε)2 =: Lε.

Thus f ′′(y) ≤ Lε for y ∈ Bε(x) which means that f is Lε-smooth on Bε(x).

2. Sα is non-empty since α ≥ minx f(x). Moreover, Sα = f−1((−∞, α]) is closed
since it is the preimage of the closed set (−∞, α] under the continuous function
f . A characterization of continuity of a function f : X → Y is that preimages
of open sets are open under f . Using this characterization one can show that
the same holds for closed sets: If D ⊆ Y is closed we have that Y \D is open
and since f continuous

f−1(Y \D) = X \ f−1(D)

is open. And therefore X \ (X \ f−1(D)) = f−1(D) is closed. Since f is
coercive Sα is bounded. Otherwise there would exist a sequence {xn}n∈N ⊂
Sα with ‖xn‖ → ∞ for n → ∞ and then, since f coercive and continuous,
f(xn) → ∞ for n → ∞. So overall Sα is compact and therefore the closure
of the convex hull cl(conv(Sα)) of Sα is compact too. Now, for any x, y ∈ Sα
consider the closed line M := [x, y] := conv({x, y}) ⊂ cl(conv(Sα)). Now
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M ⊂
⋃
x∈M Bεx(x) (where εx is chosen s.t. ∇f locally Lipschitz on Bεx(x)

with constant Lεx) has a finite subcover

M ⊂
N⋃
i=1

Bεxi
(xi).

We can now construct a finite sequence {yi}N+1
i=1 ⊂ M with points along the

line with

x = y1 ∈ Bεx1
(x1), y = yN+1 ∈ BεxN

(xN)

yi ∈ Bεxi−1
(xi−1) ∩Bεxi

(xi), 2 ≤ i ≤ N.

Then we have for Lα := max1≤i≤N Lεxi

‖∇f(x)−∇f(y)‖2 =

∥∥∥∥∥
N∑
i=1

∇f(yi)−∇f(yi+1)

∥∥∥∥∥
2

≤
N∑
i=1

‖∇f(yi)−∇f(yi+1)‖2︸ ︷︷ ︸
yi,yi+1∈Bεxi (xi)

≤
N∑
i=1

Lεxi‖yi − yi+1‖2

≤
N∑
i=1

Lα‖yi − yi+1‖2

= Lα

N∑
i=1

‖yi − yi+1‖2

= Lα‖x− y‖2

Thus ∇f is Lα-Lipschitz on Sα.

3. We need to show that
f(x) ≥ f(x− t∇f(x)),

for x ∈ Sα. We define

g(t) := −f(x) + f(x− t∇f(x))

Then, since f is differentiable we obtain

g′(t) = −〈∇f(x),∇f(x− t∇f(x))〉

Suppose ∇f(x) 6= 0, otherwise the assertion would be trivially satisfied. Then
g′(0) = −‖∇f(x)‖2 < 0 which means (due to the continuity of f) there exists
t > 0, such that g′(τ) < 0 and (due to Taylor’s theorem) g(τ) < 0 for all
τ ∈ (0, t]. Suppose there exists a τ ′ ∈ (t, 1/Lα] so that g(τ ′) > 0. From the
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intermediate value theorem it follows that there exists a point τ ′′ ∈ (τ, τ ′) with
g(τ ′′) = 0 and from the mean value theorem of f it follows that there exists a
ξ ∈ (τ, τ ′′) with g′(ξ) > 0 and g(ξ) < 0. As g(ξ) = f(x) + f(x− ξ∇f(x)) < 0
we have that x− ξ∇f(x) ∈ Sα. Then we get (since ∇f is Lα-Lipschitz)

g′(ξ) = −〈∇f(x),∇f(x)− (∇f(x)−∇f(x− ξ∇f(x))〉
= −‖∇f(x)‖22 + 〈∇f(x),∇f(x)−∇f(x− ξ∇f(x)〉
≤ −‖∇f(x)‖22 + ‖∇f(x)‖2‖∇f(x)−∇f(x− ξ∇f(x))‖2
≤ −‖∇f(x)‖22 + ‖∇f(x)‖2Lα‖x− x+ ξ∇f(x)‖2
= −‖∇f(x)‖22 + ‖∇f(x)‖2Lαξ‖∇f(x)‖2
= (Lαξ − 1)‖∇f(x)‖22 < 0

This contradicts the assumption and therefore

g(t) ≤ 0, for all t ∈
[
0,

1

Lα

]
.

4. Set α := f(x0) and

τx0 ∈
(

0,
1

Lα

]
.

Then, for xk ∈ Sα we have

xk+1 := xk − τx0∇f(xk) ∈ Sα,

and using the result from the previous exercise {f(xk)}k∈N is monotone de-
creasing and bounded since Sα compact and f and continuous. Together this
yields that {f(xk)}k∈N converges.

Exercise 3 (4 Points). Let Ci, 1 ≤ i ≤ n be a family of closed convex sets such
that ⋂

1≤i≤n

Ci 6= ∅.

Show that the problem of finding an element u∗ in the intersection

u∗ ∈
⋂

1≤i≤n

Ci

can be formulated as the following optimization problem:

u∗ ∈ arg min
u∈

⋂
i∈I Ci

∑
j /∈I

1≤j≤n

d2(u,Cj),

where I ⊆ {1, 2, . . . , n} can be arbitrary (including the empty set) and d(z,X) is
the distance of a point z to the closed convex set X defined as

d(z,X) := min
x∈X
‖x− z‖2.
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Solution. Since all Ci are closed and convex, d(u,Ci) is well defined. Since d2(u,Cj) ≥
0 and d2(u,Cj) = 0 ⇐⇒ u ∈ Cj,

u ∈
⋂
j /∈I

1≤j≤n

Cj ⇐⇒
∑
j /∈I

1≤j≤n

d2(u,Cj) = 0.

This yields that
0 =

∑
j /∈I

1≤j≤n

d2(u∗, Cj) + ι⋂
i∈I Ci

(u∗)

iff u∗ ∈
⋂

1≤i≤nCi. Since
⋂

1≤i≤nCi non-empty

argminu∈⋂i∈I Ci
∑
j /∈I

1≤j≤n

d2(u,Cj) ⊂
⋂

1≤i≤n

Ci.

Programming: SUDOKU (12 Points)
Exercise 4 (12 Points). Solve the SUDOKUs given in the files exampleSudoku1.mat
and exampleSudoku2.mat with projected gradient descent. For that you need to find
a point

u∗ ∈
⋂

1≤i≤n+m+1

Ci

where the convex sets in the intersection are given as

Ci := {u ∈ R729 : 〈ai, u〉 = 1}, 1 ≤ i ≤ n,

Ci := {u ∈ R729 : uj = 1, j ∈ B}, n+ 1 ≤ i ≤ n+m,

and B is the set of indexes corresponding to the known numbers and

Cn+m+1 := {u ∈ R729 : uj ∈ [0, 1], ∀ 1 ≤ j ≤ 729}.

For a more precise definition of the constraint sets see lecture.
Solve the programming assignment in the spirit of exercise 3 using the following two
partitions of the indexes {1, 2, . . . , n+m+ 1}:

1. I1 := {n+m+ 1} and

2. I2 := {n+ 1, n+ 2, . . . , n+m+ 1},

and plot the resulting energy decays.
Hint: Show that for the linear constraint sets Ci, 1 ≤ i ≤ n the distance d(z, Ci) of
a point z to the set Ci is equal to |〈ai, z〉 − 1|.
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