Convex Optimization for Computer Vision Lecture: M. Möller and T. Möllenhoff Exercises: E. Laude Summer Semester 2016 Computer Vision Group Institut für Informatik Technische Universität München

Weekly Exercises 4

Room 01.09.014 Friday, 13.5.2016, 09:00-11:00 Submission deadline: Wednesday, 11.5.2016, 14:00, Room: 02.09.023

Theory: Projected gradient descent (8+8 Points)

Exercise 1 (4 Points). Let $A \in \mathbb{R}^{n \times n}$ be orthonormal, meaning that $A^{\top}A = AA^{\top} = I$. Let the convex set C be given as

$$C := \{ u \in \mathbb{R}^n : ||Au||_{\infty} \le 1 \}.$$

Compute a formula for the projection onto C given as

$$\Pi_C(v) := \operatorname{argmin}_{u \in \mathbb{R}^n} \frac{1}{2} \|u - v\|_2^2, \quad \text{s.t. } u \in C.$$

Hint: Show that the ℓ_2 -norm of a vector is invariant under a multiplication with an orthonormal matrix A, meaning that $||u||_2 = ||Au||_2$.

Solution. We begin proving the hint:

$$||Ax||_2^2 = \langle Ax, Ax \rangle = \langle A^\top Ax, x \rangle = \langle x, x \rangle = ||x||_2^2.$$

The idea is to rewrite the projection onto the set C in terms of the projection $\Pi_{\tilde{C}}$ onto the unit ball of the ℓ_{∞} -norm $\tilde{C} := \{x \in \mathbb{R}^n : ||x||_{\infty} \leq 1\}$. With the substitution

$$w := Au \iff u = A^\top w$$

and using the hint we obtain:

$$\Pi_{C}(v) = \operatorname{argmin}_{\|Au\|_{\infty} \leq 1} \frac{1}{2} \|v - u\|^{2}$$

$$= A^{\top} \operatorname{argmin}_{\|w\|_{\infty} \leq 1} \frac{1}{2} \|v - A^{\top}w\|^{2}$$

$$= A^{\top} \operatorname{argmin}_{\|w\|_{\infty} \leq 1} \frac{1}{2} \|A(v - A^{\top}w)\|^{2}$$

$$= A^{\top} \operatorname{argmin}_{\|w\|_{\infty} \leq 1} \frac{1}{2} \|Av - AA^{\top}w\|^{2}$$

$$= A^{\top} \operatorname{argmin}_{\|w\|_{\infty} \leq 1} \frac{1}{2} \|Av - w\|^{2}$$

$$= A^{\top} \Pi_{\tilde{C}}(Av).$$

Exercise 2 (8 Points). Let $f : \mathbb{R}^n \to \mathbb{R}$ be coercive, differentiable and let ∇f be locally Lipschitz continuous i.e. for each $x \in \mathbb{R}^n$ there exists $\epsilon > 0$ and a constant $L_{\epsilon} > 0$, such that ∇f is L_{ϵ} -Lipschitz on $B_{\epsilon}(x)$.

- 1. Give an example of a function $f : \mathbb{R}^n \to \mathbb{R}$ that meets the above assumptions, but for which ∇f is not Lipschitz continuous. (With a proof).
- Let f be an arbitrary function meeting the above assumptions. Show that for any α ≥ min_x f(x) there exists a constant L_α such that f is L_α-smooth on the sublevel set S_α := {x : f(x) ≤ α}. Hint: You can use the topological definition of compactness: Any subset X ⊂ ℝⁿ is called compact (closed and bounded in the Euclidean case that we consider) if each of its open covers has a finite subcover (see https://en.wikipedia.org/wiki/Compact_space). One possible open cover of X is the union of all ε-balls with any ε: ⋃_{x∈X} B_ε(x).
- 3. Show that $x^+ := x \tau \nabla f(x) \in S_\alpha$ if $\tau < \frac{1}{L_\alpha}$ and $x \in S_\alpha$.
- 4. Conclude that for each initialization x_0 , there exists a τ_{x_0} such that gradient descent with the constant step size τ_{x_0} converges.
- **Solution.** 1. A possible choice is the function $f(x) := x^4$. The first and second order derivatives of f are the given as

$$f'(x) = 4x^3, \quad f''(x) = 12x^2.$$

Then for any $x \in \mathbb{R}$ and any $\epsilon > 0$ we have

$$\sup_{y \in B_{\epsilon}(x)} 12x^2 = 12(|x| + \epsilon)^2 =: L_{\epsilon}.$$

Thus $f''(y) \leq L_{\epsilon}$ for $y \in B_{\epsilon}(x)$ which means that f is L_{ϵ} -smooth on $B_{\epsilon}(x)$.

2. S_{α} is non-empty since $\alpha \geq \min_{x} f(x)$. Moreover, $S_{\alpha} = f^{-1}((-\infty, \alpha])$ is closed since it is the preimage of the closed set $(-\infty, \alpha]$ under the continuous function f. A characterization of continuity of a function $f: X \to Y$ is that preimages of open sets are open under f. Using this characterization one can show that the same holds for closed sets: If $D \subseteq Y$ is closed we have that $Y \setminus D$ is open and since f continuous

$$f^{-1}(Y \setminus D) = X \setminus f^{-1}(D)$$

is open. And therefore $X \setminus (X \setminus f^{-1}(D)) = f^{-1}(D)$ is closed. Since f is coercive S_{α} is bounded. Otherwise there would exist a sequence $\{x_n\}_{n \in \mathbb{N}} \subset S_{\alpha}$ with $||x_n|| \to \infty$ for $n \to \infty$ and then, since f coercive and continuous, $f(x_n) \to \infty$ for $n \to \infty$. So overall S_{α} is compact and therefore the closure of the convex hull $cl(conv(S_{\alpha}))$ of S_{α} is compact too. Now, for any $x, y \in S_{\alpha}$ consider the closed line $M := [x, y] := conv(\{x, y\}) \subset cl(conv(S_{\alpha}))$. Now $M \subset \bigcup_{x \in M} B_{\epsilon_x}(x)$ (where ϵ_x is chosen s.t. ∇f locally Lipschitz on $B_{\epsilon_x}(x)$ with constant L_{ϵ_x}) has a finite subcover

$$M \subset \bigcup_{i=1}^{N} B_{\epsilon_{x_i}}(x_i).$$

We can now construct a finite sequence $\{y_i\}_{i=1}^{N+1}\subset M$ with points along the line with

$$x = y_1 \in B_{\epsilon_{x_1}}(x_1), \quad y = y_{N+1} \in B_{\epsilon_{x_N}}(x_N)$$

$$y_i \in B_{\epsilon_{x_{i-1}}}(x_{i-1}) \cap B_{\epsilon_{x_i}}(x_i), \quad 2 \le i \le N.$$

Then we have for $L_{\alpha} := \max_{1 \leq i \leq N} L_{\epsilon_{x_i}}$

$$\begin{aligned} \|\nabla f(x) - \nabla f(y)\|_{2} &= \left\| \sum_{i=1}^{N} \nabla f(y_{i}) - \nabla f(y_{i+1}) \right\|_{2} \\ &\leq \sum_{i=1}^{N} \underbrace{\|\nabla f(y_{i}) - \nabla f(y_{i+1})\|_{2}}_{y_{i}, y_{i+1} \in B_{\epsilon_{x_{i}}}(x_{i})} \\ &\leq \sum_{i=1}^{N} L_{\epsilon_{x_{i}}} \|y_{i} - y_{i+1}\|_{2} \\ &\leq \sum_{i=1}^{N} L_{\alpha} \|y_{i} - y_{i+1}\|_{2} \\ &= L_{\alpha} \sum_{i=1}^{N} \|y_{i} - y_{i+1}\|_{2} \\ &= L_{\alpha} \|x - y\|_{2} \end{aligned}$$

Thus ∇f is L_{α} -Lipschitz on S_{α} .

3. We need to show that

$$f(x) \ge f(x - t\nabla f(x)),$$

for $x \in S_{\alpha}$. We define

$$g(t) := -f(x) + f(x - t\nabla f(x))$$

Then, since f is differentiable we obtain

$$g'(t) = -\langle \nabla f(x), \nabla f(x - t\nabla f(x)) \rangle$$

Suppose $\nabla f(x) \neq 0$, otherwise the assertion would be trivially satisfied. Then $g'(0) = -\|\nabla f(x)\|^2 < 0$ which means (due to the continuity of f) there exists t > 0, such that $g'(\tau) < 0$ and (due to Taylor's theorem) $g(\tau) < 0$ for all $\tau \in (0, t]$. Suppose there exists a $\tau' \in (t, 1/L_{\alpha}]$ so that $g(\tau') > 0$. From the

intermediate value theorem it follows that there exists a point $\tau'' \in (\tau, \tau')$ with $g(\tau'') = 0$ and from the mean value theorem of f it follows that there exists a $\xi \in (\tau, \tau'')$ with $g'(\xi) > 0$ and $g(\xi) < 0$. As $g(\xi) = f(x) + f(x - \xi \nabla f(x)) < 0$ we have that $x - \xi \nabla f(x) \in S_{\alpha}$. Then we get (since ∇f is L_{α} -Lipschitz)

$$g'(\xi) = -\langle \nabla f(x), \nabla f(x) - (\nabla f(x) - \nabla f(x - \xi \nabla f(x))) \rangle$$

= $-\|\nabla f(x)\|_{2}^{2} + \langle \nabla f(x), \nabla f(x) - \nabla f(x - \xi \nabla f(x)) \rangle$
 $\leq -\|\nabla f(x)\|_{2}^{2} + \|\nabla f(x)\|_{2}\|\nabla f(x) - \nabla f(x - \xi \nabla f(x))\|_{2}$
 $\leq -\|\nabla f(x)\|_{2}^{2} + \|\nabla f(x)\|_{2}L_{\alpha}\|x - x + \xi \nabla f(x)\|_{2}$
= $-\|\nabla f(x)\|_{2}^{2} + \|\nabla f(x)\|_{2}L_{\alpha}\xi\|\nabla f(x)\|_{2}$
= $(L_{\alpha}\xi - 1)\|\nabla f(x)\|_{2}^{2} < 0$

This contradicts the assumption and therefore

$$g(t) \le 0$$
, for all $t \in \left[0, \frac{1}{L_{\alpha}}\right]$.

4. Set $\alpha := f(x_0)$ and

$$\tau_{x_0} \in \left(0, \frac{1}{L_{\alpha}}\right].$$

Then, for $x_k \in S_\alpha$ we have

$$x_{k+1} := x_k - \tau_{x_0} \nabla f(x_k) \in S_\alpha$$

and using the result from the previous exercise $\{f(x_k)\}_{k\in\mathbb{N}}$ is monotone decreasing and bounded since S_{α} compact and f and continuous. Together this yields that $\{f(x_k)\}_{k\in\mathbb{N}}$ converges.

Exercise 3 (4 Points). Let C_i , $1 \le i \le n$ be a family of closed convex sets such that

$$\bigcap_{1 \le i \le n} C_i \ne \emptyset.$$

Show that the problem of finding an element u^* in the intersection

$$u^* \in \bigcap_{1 \le i \le n} C_i$$

can be formulated as the following optimization problem:

$$u^* \in \arg\min_{u \in \bigcap_{i \in \mathcal{I}} C_i} \sum_{\substack{j \notin \mathcal{I} \\ 1 \leq j \leq n}} d^2(u, C_j),$$

where $\mathcal{I} \subseteq \{1, 2, ..., n\}$ can be arbitrary (including the empty set) and d(z, X) is the distance of a point z to the closed convex set X defined as

$$d(z, X) := \min_{x \in X} \|x - z\|_2.$$

Solution. Since all C_i are closed and convex, $d(u, C_i)$ is well defined. Since $d^2(u, C_j) \ge 0$ and $d^2(u, C_j) = 0 \iff u \in C_j$,

$$u \in \bigcap_{\substack{j \notin \mathcal{I} \\ 1 \leq j \leq n}} C_j \iff \sum_{\substack{j \notin \mathcal{I} \\ 1 \leq j \leq n}} d^2(u, C_j) = 0.$$

This yields that

$$0 = \sum_{\substack{j \notin \mathcal{I} \\ 1 \le j \le n}} d^2(u^*, C_j) + \iota_{\bigcap_{i \in \mathcal{I}} C_i}(u^*)$$

iff $u^* \in \bigcap_{1 \le i \le n} C_i$. Since $\bigcap_{1 \le i \le n} C_i$ non-empty

$$\operatorname{argmin}_{u \in \bigcap_{i \in \mathcal{I}} C_i} \sum_{\substack{j \notin \mathcal{I} \\ 1 \leq j \leq n}} d^2(u, C_j) \subset \bigcap_{1 \leq i \leq n} C_i.$$

Programming: SUDOKU

(12 Points)

Exercise 4 (12 Points). Solve the SUDOKUs given in the files exampleSudoku1.mat and exampleSudoku2.mat with projected gradient descent. For that you need to find a point

$$u^* \in \bigcap_{1 \le i \le n+m+1} C_i$$

where the convex sets in the intersection are given as

$$C_i := \{ u \in \mathbb{R}^{729} : \langle a_i, u \rangle = 1 \}, \quad 1 \le i \le n,$$
$$C_i := \{ u \in \mathbb{R}^{729} : u_j = 1, \ j \in \mathcal{B} \}, \quad n+1 \le i \le n+m,$$

and \mathcal{B} is the set of indexes corresponding to the known numbers and

$$C_{n+m+1} := \{ u \in \mathbb{R}^{729} : u_j \in [0,1], \, \forall \, 1 \le j \le 729 \}.$$

For a more precise definition of the constraint sets see lecture.

Solve the programming assignment in the spirit of exercise 3 using the following two partitions of the indexes $\{1, 2, \ldots, n + m + 1\}$:

- 1. $\mathcal{I}_1 := \{n + m + 1\}$ and
- 2. $\mathcal{I}_2 := \{n+1, n+2, \dots, n+m+1\},\$

and plot the resulting energy decays.

Hint: Show that for the linear constraint sets C_i , $1 \le i \le n$ the distance $d(z, C_i)$ of a point z to the set C_i is equal to $|\langle a_i, z \rangle - 1|$.