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Theory: Projected gradient descent  (8+8 Points)

Exercise 1 (4 Points). Let A € R™" be orthonormal, meaning that ATA = AAT =
I. Let the convex set C' be given as

C:={ueR": |JAul|, < 1}.

Compute a formula for the projection onto C' given as

1
—|lu -3, st ueC.

Il (v) := argmin, cgn 5

Hint: Show that the />-norm of a vector is invariant under a multiplication with an
orthonormal matrix A, meaning that ||ul|s = ||Aul|s.

Solution. We begin proving the hint:
|Az||3 = (Az, Az) = (AT Az, 2) = (z,2) = ||]3.

The idea is to rewrite the projection onto the set C' in terms of the projection Il
onto the unit ball of the {o-norm C' := {x € R" : ||z]|o < 1}. With the substitution

wi=Au <= u=A"w

and using the hint we obtain:

e (v) = argming 4, <1 5”” — ul?
=A' argmin, < %HU — ATw]|?
= AT argmin, o A — ATw)|?
— AT argminuwumgl %HAU — AATsz
= AT argmin,, < ! | Av — wl|?

2
= AT a(Av).



Exercise 2 (8 Points). Let f : R" — R be coercive, differentiable and let V f be
locally Lipschitz continuous i.e. for each x € R™ there exists € > 0 and a constant
L. > 0, such that Vf is L.-Lipschitz on B.(x).

1. Give an example of a function f : R™ — R that meets the above assumptions,
but for which V f is not Lipschitz continuous. (With a proof).

2. Let f be an arbitrary function meeting the above assumptions. Show that for

any « > min, f(z) there exists a constant L, such that f is L,-smooth on the
sublevel set S, = {z : f(x) < a}.
Hint: You can use the topological definition of compactness: Any subset
X C R" is called compact (closed and bounded in the Euclidean case that
we consider) if each of its open covers has a finite subcover (see https:
//en.wikipedia.org/wiki/Compact_space). One possible open cover of X
is the union of all e-balls with any e: |, Be(x).

3. Show that at :=x — 7V f(z) € S, if T < L—la and z € S,.

4. Conclude that for each initialization x(, there exists a 7,, such that gradient
descent with the constant step size 7,, converges.

Solution. 1. A possible choice is the function f(z) := z*. The first and second
order derivatives of f are the given as

Fla) = 4%, f'(x) = 1242
Then for any € R and any € > 0 we have

sup 1222 = 12(|z| + €)* =: L.
yEBe(z)

Thus f"(y) < L for y € B.(z) which means that f is L.-smooth on B(z).

2. S, is non-empty since o > min, f(z). Moreover, S, = f~*((—00,a]) is closed
since it is the preimage of the closed set (—oo, o] under the continuous function
f. A characterization of continuity of a function f : X — Y is that preimages
of open sets are open under f. Using this characterization one can show that
the same holds for closed sets: If D C Y is closed we have that Y \ D is open
and since f continuous

fYA\D) =X\ (D)

is open. And therefore X \ (X \ f~Y(D)) = f~'(D) is closed. Since f is
coercive S, is bounded. Otherwise there would exist a sequence {z,}nen C
Se with ||z,]| — oo for n — oo and then, since f coercive and continuous,
f(z,) = oo for n — oco. So overall S, is compact and therefore the closure
of the convex hull cl(conv(S,)) of S, is compact too. Now, for any =,y € S,
consider the closed line M := [z,y] := conv({z,y}) C cl(conv(S,)). Now
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M C U,en Be, (z) (where €, is chosen s.t. Vf locally Lipschitz on B, (x)
with constant L. ) has a finite subcover

N
M c | JB.,, (x:).
=1

MW © M with points along the

We can now construct a finite sequence {y;};]
line with

r =1y € B, (11), y=ynu € B, (2n)
Y; c .Bgmi_1 (Ii—l) N Bexi (ZL‘Z), 2 S 7 S N.

Then we have for L, := maxj<;<n L,
—_ 1

1976 = VIl = |3 9100) = 970

2

N
< Z\”vﬂy’) - Vf(yi-i-l)H%

NV
YisYi+1€Bey, (%4)

Yi — yi+1“2

N

<Y L,
1;1

< Z Lollyi — yitall2
i=1

N
= L, Z lvi = Yisall
=1

= Lallz — yll2
Thus Vf is L,-Lipschitz on S,,.

. We need to show that
f(z) = flz =tV f(z)),
for x € S,. We define
g(t) = —f(z) + f(z = tV f(z))

Then, since f is differentiable we obtain

g(t) == (Vf(x), Vi(x -tV [(z)))

Suppose V f(z) # 0, otherwise the assertion would be trivially satisfied. Then
g (0) = —||Vf(2)||> < 0 which means (due to the continuity of f) there exists
t > 0, such that ¢’(7) < 0 and (due to Taylor’s theorem) g(7) < 0 for all

€ (0,t]. Suppose there exists a 7 € (¢,1/L,] so that g(7') > 0. From the

3



intermediate value theorem it follows that there exists a point 7”7 € (7,7’) with
g(7") = 0 and from the mean value theorem of f it follows that there exists a

§ € (r,7") with ¢'(§) > 0 and g(§) < 0. As g(§) = f(z) + f(z —EV f(2)) <0
we have that x — {V f(z) € S,. Then we get (since V f is L,-Lipschitz)

9(&) = =(V[(2), VI(x) = (Vf(z) = Vf(z = £V f(2)))
= —IVf@)l; +(Vf(2),Vf(z) - Vf(z -V f(z))
< =V @)z + V@)V f(2) = Vf(z = V()2
< -IVI@)z + IVF@)ll2Lallz — 2+ EV f ()]

—||Vf(fv)||2 H V@)l Lokl V S (2)]2

)

(La€ = DIIVf(@)llz <0

This contradicts the assumption and therefore

1
g(t) <0, forall t € [ ,L—}

4. Set o := f(xy) and

Then, for x; € S, we have
Tpyl = Tgp — TxOVf(xk) S Sa,

and using the result from the previous exercise {f(z1)}ren is monotone de-
creasing and bounded since S, compact and f and continuous. Together this
yields that {f(zx)}ren converges.

Exercise 3 (4 Points). Let C;, 1 < i < n be a family of closed convex sets such

that
() Ci#0.

1<i<n
Show that the problem of finding an element u* in the intersection
u* e ﬂ C;
1<i<n

can be formulated as the following optimization problem:

u* € arg min E d*(u, Cy),
ueﬂzEI
1<]<n

where Z C {1,2,...,n} can be arbitrary (including the empty set) and d(z, X) is
the distance of a point z to the closed convex set X defined as

d(z, X) := min |z — z||2-



Solution. Since all C; are closed and convex, d(u, C;) is well defined. Since d*(u, C;) >
0 and d*(u,Cj) =0 < u € C},

we [ C = > &ucC;) =0
eI iz
1Zj<n 155%n

This yields that
0= Z d2(u*, CJ) + Lﬂiezci(u*)
Jj¢L
1<j<n
iff u* € (<4<, Ci Since [, Ci non-empty
argmin,en, ¢, Z d*(u,C;) C ﬂ C;.

J¢T 1<i<n
1<ji<n

Programming: SUDOKU (12 Points)

Exercise 4 (12 Points). Solve the SUDOKUs given in the files exampleSudokul.mat
and exampleSudoku2.mat with projected gradient descent. For that you need to find

a point
ut € ﬂ C;
1<i<n+m+1

where the convex sets in the intersection are given as
Cii={u e R™ : (a;,u) =1}, 1<i<n,
Cii={ueR®:uy;j=1,j€B}, n+1<i<n+m,
and B is the set of indexes corresponding to the known numbers and
Crima1 = {u € R™ :y; €0,1], V1 < j < 729}

For a more precise definition of the constraint sets see lecture.
Solve the programming assignment in the spirit of exercise 3 using the following two
partitions of the indexes {1,2,....,n+m+ 1}:

1. 7y :={n+m+ 1} and
2. Ly ={n+1,n+2,...,n+m+ 1},

and plot the resulting energy decays.
Hint: Show that for the linear constraint sets C;, 1 <4 < n the distance d(z, C;) of
a point z to the set C; is equal to |(a;, z) — 1].



