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Theory: Line Search (6 Points)
Exercise 1 (6 Points). In the lecture, we have seen that for E : Rn → R ∪ {∞}

E(u) = G(u) + F (u),

with closed, proper, convex G : Rn → R ∪ {∞} and L-smooth F : Rn → R the
proximal gradient algorithm given by the iteration

uk+1 = proxτG(u
k − τ∇F (uk)),

converges with rate O(1/k), i.e.

E(uk)− E(u∗) ∈ O(1/k).

In this exercise, we select τk using a line search (In practice this is helpful if L is
not known): The line search works as follows: Start at some initial τ := τ̂ > 0 and
iteratively compute τ := βτ for 0 < β < 1 until the following inequality, that we
have seen in the lecture holds:

F (u− τϕτ (u)) ≤ F (u)− τ〈∇F (u), ϕτ (u)〉+
τ

2
‖ϕτ (u)‖2 .

Prove that proximal gradient with line search converges with rate O(1/k).
Hint: Show that the step size τ selected by the line search satisfies

τ ≥ τmin = min{τ̂ , β/L}.

Solution. To formalize the line search algorithm, we can state that

τ k =βjk τ̂ for jk = min
j
{j ∈ B | H(uk, βj τ̂) ≤ 0}

H(u, τ) :=F (u− τφτ (u))− F (u) + τ〈∇F (u), φτ (u)〉 −
τ

2
‖φτ (u)‖2

Part 1: Show that τ k ≥ τmin = min(τ̂ , β
L
) for all k.

• Let τ̂ ≤ 1
L
. It has been shown in the lecture, that H(u, τ) ≤ 0 hold for all u if

τ ≤ 1
L
. Thus, jk = 0 for all k, and τk = τ̂ , which means τk ≥ τ̂ .
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• Now let τ̂ > 1
L
. Assume there exists a k ≥ 1 with τk < β

L
. Then

βjk

τ̂
<
β

L
,

which means
βjk−1τ̂ <

1

L
.

Again, according to the lecture we must have H(uk, βjk−1τ̂) ≤ 0, which contra-
dicts the definition of j as the smallest natural number for which the previous
inequality holds.

Part 2: Show that E(uN)− E(u∗) ∈ O(1/k):
It was shown in the lecture that H(uk, τ k) ≤ 0 implies

E(uk+1) = E(uk − τ kφτk(u)) ≤ E(w) + 〈φτk(uk), uk − w〉 −
τ k

2
‖φτk(uk)‖2

for arbitrary elements w.

By inserting w = uk, one quickly sees that the energy is monotonically decreasing.

By inserting a minimizer u∗ of the energy E, i.e. w = u∗, and completing the
square similar to the lecture, we find

E(uk+1)− E(u∗) ≤ 1

2τ k
(
‖uk − u∗‖2 − ‖uk+1 − u∗‖2

)
.

We sum the above inequality from k = 0 to k = N − 1 and obtain

N(E(N)− E(u∗)) ≤
N−1∑
k=0

(E(uk+1)− E(u∗))

≤
N−1∑
k=0

1

2τ k
(
‖uk − u∗‖2 − ‖uk+1 − u∗‖2

)
≤ 1

2τmin

N−1∑
k=0

(
‖uk − u∗‖2 − ‖uk+1 − u∗‖2

)
=

1

2τmin

(
‖u0 − u∗‖2 − ‖uN − u∗‖2

)
≤ 1

2τmin
‖u0 − u∗‖2,

where we used the monotonicity of the energy in the first inequality. After dividing
by N we see that the energy is approaching the minimum with a rate of at least
1/N .
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Programming: TV Deblurring (12 Points)
Exercise 2 (12 Points). Given a blurry and noisy input image f , reconstruct a
sharper image u∗ by solving the following optimization problem

u∗ = argmin
u

1

2
‖k ∗ u− f‖2 + α‖Du‖2,1 (1)

with proximal gradient descent (for the definition of the convolution k ∗ u, see the
lecture slides). To do so, perform the following steps:

• First construct a convolution kernel k of your choice, for example by using the
MATLAB command fspecial.

• Then build a sparse matrix representing the convolution with an image u. You
can use any boundary condition, and feel free to use convmtx2.

• Given the image flowers.png, construct a blurred and noisy version by ap-
plying your sparse matrix to it and add some Gaussian noise using randn.

• Restore the original image by solving (1) using proximal gradient descent.
Solve the inner TV denoising problem using projected gradient descent on the
dual problem.

• Experiment with different amounts of inner projected gradient descent itera-
tions (use 15 as a starting point) and use the solution of the previous outer
iteration to warm-start the algorithm.
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