Convex Optimization for Computer Vision
Lecture: M. Möller and T. Möllenhoff
Exercises: E. Laude
Summer Semester 2016

Computer Vision Group Institut für Informatik
Technische Universität München

Weekly Exercises 6

Room 01.09.014
Friday, 3.6.2016, 09:00-11:00
Submission deadline: Wednesday, 1.6.2016, 14:00, Room: 02.09.023

Theory: Line Search

Exercise 1 (6 Points). In the lecture, we have seen that for $E: \mathbb{R}^{n} \rightarrow \mathbb{R} \cup\{\infty\}$

$$
E(u)=G(u)+F(u),
$$

with closed, proper, convex $G: \mathbb{R}^{n} \rightarrow \mathbb{R} \cup\{\infty\}$ and L-smooth $F: \mathbb{R}^{n} \rightarrow \mathbb{R}$ the proximal gradient algorithm given by the iteration

$$
u^{k+1}=\operatorname{prox}_{\tau G}\left(u^{k}-\tau \nabla F\left(u^{k}\right)\right),
$$

converges with rate $\mathcal{O}(1 / k)$, i.e.

$$
E\left(u^{k}\right)-E\left(u^{*}\right) \in \mathcal{O}(1 / k)
$$

In this exercise, we select τ_{k} using a line search (In practice this is helpful if L is not known): The line search works as follows: Start at some initial $\tau:=\hat{\tau}>0$ and iteratively compute $\tau:=\beta \tau$ for $0<\beta<1$ until the following inequality, that we have seen in the lecture holds:

$$
F\left(u-\tau \varphi_{\tau}(u)\right) \leq F(u)-\tau\left\langle\nabla F(u), \varphi_{\tau}(u)\right\rangle+\frac{\tau}{2}\left\|\varphi_{\tau}(u)\right\|^{2} .
$$

Prove that proximal gradient with line search converges with rate $\mathcal{O}(1 / k)$.
Hint: Show that the step size τ selected by the line search satisfies

$$
\tau \geq \tau_{\min }=\min \{\hat{\tau}, \beta / L\}
$$

Solution. To formalize the line search algorithm, we can state that

$$
\begin{aligned}
\tau^{k} & =\beta^{j_{k}} \hat{\tau} \quad \text { for } j_{k}=\min _{j}\left\{j \in \mathbb{B} \mid H\left(u^{k}, \beta^{j} \hat{\tau}\right) \leq 0\right\} \\
H(u, \tau) & :=F\left(u-\tau \phi_{\tau}(u)\right)-F(u)+\tau\left\langle\nabla F(u), \phi_{\tau}(u)\right\rangle-\frac{\tau}{2}\left\|\phi_{\tau}(u)\right\|^{2}
\end{aligned}
$$

Part 1: Show that $\tau^{k} \geq \tau_{\text {min }}=\min \left(\hat{\tau}, \frac{\beta}{L}\right)$ for all k.

- Let $\hat{\tau} \leq \frac{1}{L}$. It has been shown in the lecture, that $H(u, \tau) \leq 0$ hold for all u if $\tau \leq \frac{1}{L}$. Thus, $j_{k}=0$ for all k, and $\tau_{k}=\hat{\tau}$, which means $\tau_{k} \geq \hat{\tau}$.
- Now let $\hat{\tau}>\frac{1}{L}$. Assume there exists a $k \geq 1$ with $\tau_{k}<\frac{\beta}{L}$. Then

$$
\frac{\beta^{j_{k}}}{\hat{\tau}}<\frac{\beta}{L},
$$

which means

$$
\beta^{j_{k}-1} \hat{\tau}<\frac{1}{L} .
$$

Again, according to the lecture we must have $H\left(u^{k}, \beta^{j_{k}-1} \hat{\tau}\right) \leq 0$, which contradicts the definition of j as the smallest natural number for which the previous inequality holds.

Part 2: Show that $E\left(u^{N}\right)-E\left(u^{*}\right) \in \mathcal{O}(1 / k)$:
It was shown in the lecture that $H\left(u^{k}, \tau^{k}\right) \leq 0$ implies

$$
E\left(u^{k+1}\right)=E\left(u^{k}-\tau^{k} \phi_{\tau^{k}}(u)\right) \leq E(w)+\left\langle\phi_{\tau^{k}}\left(u^{k}\right), u^{k}-w\right\rangle-\frac{\tau^{k}}{2}\left\|\phi_{\tau^{k}}\left(u^{k}\right)\right\|^{2}
$$

for arbitrary elements w.
By inserting $w=u^{k}$, one quickly sees that the energy is monotonically decreasing.
By inserting a minimizer u^{*} of the energy E, i.e. $w=u^{*}$, and completing the square similar to the lecture, we find

$$
E\left(u^{k+1}\right)-E\left(u^{*}\right) \leq \frac{1}{2 \tau^{k}}\left(\left\|u^{k}-u^{*}\right\|^{2}-\left\|u^{k+1}-u^{*}\right\|^{2}\right) .
$$

We sum the above inequality from $k=0$ to $k=N-1$ and obtain

$$
\begin{aligned}
N\left(E(N)-E\left(u^{*}\right)\right) & \leq \sum_{k=0}^{N-1}\left(E\left(u^{k+1}\right)-E\left(u^{*}\right)\right) \\
& \leq \sum_{k=0}^{N-1} \frac{1}{2 \tau^{k}}\left(\left\|u^{k}-u^{*}\right\|^{2}-\left\|u^{k+1}-u^{*}\right\|^{2}\right) \\
& \leq \frac{1}{2 \tau_{\min }} \sum_{k=0}^{N-1}\left(\left\|u^{k}-u^{*}\right\|^{2}-\left\|u^{k+1}-u^{*}\right\|^{2}\right) \\
& =\frac{1}{2 \tau_{\min }}\left(\left\|u^{0}-u^{*}\right\|^{2}-\left\|u^{N}-u^{*}\right\|^{2}\right) \\
& \leq \frac{1}{2 \tau_{\min }}\left\|u^{0}-u^{*}\right\|^{2},
\end{aligned}
$$

where we used the monotonicity of the energy in the first inequality. After dividing by N we see that the energy is approaching the minimum with a rate of at least $1 / N$.

Programming: TV Deblurring

Exercise 2 (12 Points). Given a blurry and noisy input image f, reconstruct a sharper image u^{*} by solving the following optimization problem

$$
\begin{equation*}
u^{*}=\arg \min _{u} \frac{1}{2}\|k * u-f\|^{2}+\alpha\|D u\|_{2,1} \tag{1}
\end{equation*}
$$

with proximal gradient descent (for the definition of the convolution $k * u$, see the lecture slides). To do so, perform the following steps:

- First construct a convolution kernel k of your choice, for example by using the MATLAB command fspecial.
- Then build a sparse matrix representing the convolution with an image u. You can use any boundary condition, and feel free to use convmtx2.
- Given the image flowers.png, construct a blurred and noisy version by applying your sparse matrix to it and add some Gaussian noise using randn.
- Restore the original image by solving (1) using proximal gradient descent. Solve the inner TV denoising problem using projected gradient descent on the dual problem.
- Experiment with different amounts of inner projected gradient descent iterations (use 15 as a starting point) and use the solution of the previous outer iteration to warm-start the algorithm.

