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Theory: Line Search (6 Points)
Exercise 1 (6 Points). In the lecture, we have seen that for £ : R” — R U {co}
E(u) = G(u) + F(u),

with closed, proper, convex G : R" — R U {oo} and L-smooth F' : R" — R the
proximal gradient algorithm given by the iteration

uF Tt = prox_,(u* — 7V F(u)),
converges with rate O(1/k), i.e.
EW*) — E(u*) € O(1/k).

In this exercise, we select 75, using a line search (In practice this is helpful if L is
not known): The line search works as follows: Start at some initial 7 := 7 > 0 and
iteratively compute 7 := g7 for 0 < § < 1 until the following inequality, that we
have seen in the lecture holds:

Fu—7p-(u)) < Fu) = 7(VF(u), pr(u)) + % ler(w)]*

Prove that proximal gradient with line search converges with rate O(1/k).
Hint: Show that the step size 7 selected by the line search satisfies

T > Tmin = min{7, /L}.
Solution. To formalize the line search algorithm, we can state that
™ =it for jj = mjin{j cB | H* p'7) <0}
H(u, 7) :=F(u—71¢-(u)) — F(u) + 7(VF(u), ¢-(u)) - %II@(U)H2
Part 1: Show that 7% > 7,,;, = min(7, %) for all k.

o Let 7 < % It has been shown in the lecture, that H(u,7) < 0 hold for all u if
T < % Thus, jr = 0 for all k£, and 7, = 7, which means 7, > 7.
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e Now let 7 > % Assume there exists a k > 1 with 7, < % Then
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which means ]
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Again, according to the lecture we must have H (u*, 3%~1#) < 0, which contra-
dicts the definition of j as the smallest natural number for which the previous

inequality holds.

Part 2: Show that E(u") — E(u*) € O(1/k):
It was shown in the lecture that H(u*, 7%) < 0 implies

Tk

EW"™™) = E(* — "¢, (u)) < B(w) + (¢ (u¥), u” — w) — 5”9257'“ (u")]?

for arbitrary elements w.
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By inserting w = u”, one quickly sees that the energy is monotonically decreasing.

By inserting a minimizer u* of the energy F, i.e. w = u*, and completing the
square similar to the lecture, we find
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where we used the monotonicity of the energy in the first inequality. After dividing
by N we see that the energy is approaching the minimum with a rate of at least
1/N.



Programming: TV Deblurring (12 Points)

Exercise 2 (12 Points). Given a blurry and noisy input image f, reconstruct a
sharper image u* by solving the following optimization problem

1
u* = arg min §||k:>|<u—f||2+04||Du||2,1 (1)

with proximal gradient descent (for the definition of the convolution & * u, see the
lecture slides). To do so, perform the following steps:

First construct a convolution kernel k of your choice, for example by using the
MATLAB command fspecial.

Then build a sparse matrix representing the convolution with an image u. You
can use any boundary condition, and feel free to use convmtx2.

Given the image flowers.png, construct a blurred and noisy version by ap-
plying your sparse matrix to it and add some Gaussian noise using randn.

Restore the original image by solving using proximal gradient descent.
Solve the inner TV denoising problem using projected gradient descent on the
dual problem.

Experiment with different amounts of inner projected gradient descent itera-
tions (use 15 as a starting point) and use the solution of the previous outer
iteration to warm-start the algorithm.



