Weekly Exercise 3

Dr. Csaba Domokos and Lingni Ma
Technische Universität München, Computer Vision Group
April 19, 2016 (submission deadline: April 26, 2016)

Probability distributions

Exercise 1 (Image measure, 2 points). Let $X:(\Omega, \mathcal{A}) \rightarrow\left(\Omega^{\prime}, \mathcal{A}^{\prime}\right)$ be a random variable and let P be a probability measure over (Ω, \mathcal{A}). Show that the image measure P_{X} is a probability measure over \mathcal{A}^{\prime}.

Solution. We need to check the following properties:

$$
\begin{gathered}
P_{X}(\emptyset)=P\left(X^{-1}(\emptyset)\right)=1-P\left(\overline{X^{-1}(\emptyset)}\right)=1-P\left(X^{-1}(\bar{\emptyset})\right)=1-P\left(X^{-1}\left(\Omega^{\prime}\right)\right)=1-1=0 . \\
P_{X}\left(\bigcup_{i \in \mathbb{N}} A_{i}^{\prime}\right)=P\left(X^{-1}\left(\bigcup_{i \in \mathbb{N}} A_{i}^{\prime}\right)\right)=P\left(\bigcup_{i \in \mathbb{N}} X^{-1}\left(A_{i}^{\prime}\right)\right)=\sum_{i \in \mathbb{N}} P\left(X^{-1}\left(A_{i}^{\prime}\right)\right)=\sum_{i \in \mathbb{N}} P_{X}\left(A_{i}^{\prime}\right) . \\
P_{X}\left(\Omega^{\prime}\right)=P\left(X^{-1}\left(\Omega^{\prime}\right)\right)=P(\Omega)=1 .
\end{gathered}
$$

Exercise 2 (Random variable and expectation, 2 points). In order to express his gratitude, Siegfried invites Eduard to a pub for a couple of beers. There, they start playing a friendly game of darts. The dart board is a perfect disk of radius 10 cm . If a dart falls within 1 cm of the center, 100 points are scored. If the dart hits the board between 1 and 3 cm from the center, 50 points are scored, if it is at a distance of 3 to 5 cm 25 points are scored and if it is further away than 5 cm 10 points are scored. As Siegfried and Eduard are both quite experienced dart players, they hit the dart board every time.
a) Define a random variable X corresponding to the score of throws.
b) What is the expected value of the scores?

Solution. a) The probability space (Ω, \mathcal{A}, P) is given by

$$
\begin{aligned}
& \Omega=\left\{(x, y) \in \mathbb{R}^{2} \mid \sqrt{x^{2}+y^{2}} \leq 10\right\} \\
& \mathcal{A}=\left\{A \subset \Omega \mid \int_{\Omega} \chi_{A}(x) \mathrm{d} x \text { exists. }\right\}
\end{aligned}
$$

and $P: \mathcal{A} \rightarrow[0,1]$, where

$$
P(A)=\frac{\int_{\Omega} \chi_{A}(x) \mathrm{d} x}{100 \pi}
$$

The random variable corresponding to the score of throws is defined as $X: \Omega \rightarrow$ $\{10,25,50,100\}$, where

$$
X(x)= \begin{cases}100, & \text { if } 0 \leq\|x\|_{2} \leq 1 \\ 50, & \text { if } 1 \leq\|x\|_{2} \leq 3 \\ 25, & \text { if } 3 \leq\|x\|_{2} \leq 5 \\ 10, & \text { if } 5 \leq\|x\|_{2} \leq 10\end{cases}
$$

b) The expected value of the scores is calculated as follows:

$$
\begin{aligned}
\mathbb{E}[X] & =10 \cdot P(X=10)+25 \cdot P(X=25)+50 \cdot P(X=50)+100 \cdot P(X=100) \\
& =10 \frac{75}{100}+25 \frac{16}{100}+50 \frac{8}{100}+100 \frac{1}{100}=16.5 .
\end{aligned}
$$

Exercise 3 (Random variable and expectation, 2 points). Let X be a discrete random variable with the possible values of 1,2 and 3 , where the corresponding probabilities are given as

$$
P(X=1)=\frac{1}{3}, \quad P(X=2)=\frac{1}{2}, \quad P(X=3)=\frac{1}{6} .
$$

a) Define and draw the cumulative distribution function F_{X}.
b) What is the expected value of X ?

Solution. a) The cumulative distribution function $F_{X}: \mathbb{R} \rightarrow \mathbb{R}$ is defined as

$$
F_{X}(x)= \begin{cases}0 & \text { if } x<1 \\ \frac{1}{3} & \text { if } 1 \leq x<2 \\ \frac{5}{6} & \text { if } 2 \leq x<3 \\ 1 & \text { if } 3 \leq x\end{cases}
$$

b) The expected value is calculated as

$$
\mathbb{E}[X]=1 \frac{1}{3}+2 \frac{1}{2}+3 \frac{1}{6}=\frac{11}{6} .
$$

Exercise 4 (Probability distribution, 1 point). We throw two "fair" dice. Let us define a random variable X as the sum of the numbers showing on the dice. Define and draw the cumulative distribution function F_{X}.

Solution. The cumulative distribution function F_{X} is defined as

$$
F_{X}(x)= \begin{cases}0 & \text { if } x<2 \\ \frac{1}{36} & \text { if } 2 \leq x<3 \\ \frac{1}{12} & \text { if } 3 \leq x<4 \\ \frac{1}{6} & \text { if } 4 \leq x<5 \\ \frac{5}{18} & \text { if } 5 \leq x<6 \\ \frac{5}{12} & \text { if } 6 \leq x<7 \\ \frac{7}{12} & \text { if } 7 \leq x<8 \\ \frac{13}{18} & \text { if } 8 \leq x<9 \\ \frac{5}{6} & \text { if } 9 \leq x<10 \\ \frac{11}{12} & \text { if } 10 \leq x<11 \\ \frac{35}{36} & \text { if } 11 \leq x \\ 1 & \text { if } 12 \leq x\end{cases}
$$

The graph of F_{X} looks as

Exercise 5 (Univariate Gaussian distribution, 2 points). Show that the expected value of the univariate Gaussian distribution

$$
\mathcal{N}\left(x \mid \mu, \sigma^{2}\right)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left(-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right),
$$

is given by $\mathbb{E}[x]=\mu$.

Solution. In order to show that $\mathbb{E}[x]=\mu$, we also need for the following two results:

$$
\begin{aligned}
{\left[\int_{-\infty}^{\infty} \exp \left(\frac{-t^{2}}{2 \sigma^{2}}\right) \mathrm{d} t\right]^{2} } & =\int_{-\infty}^{\infty} \exp \left(\frac{-x^{2}}{2 \sigma^{2}}\right) \mathrm{d} x \int_{-\infty}^{\infty} \exp \left(\frac{-y^{2}}{2 \sigma^{2}}\right) \mathrm{d} y \\
& =\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \exp \left(\frac{-\left(x^{2}+y^{2}\right)}{2 \sigma^{2}}\right) \mathrm{d} x \mathrm{~d} y \\
& =\int_{0}^{2 \pi} \int_{0}^{\infty} r \exp \left(\frac{-r^{2}}{2 \sigma^{2}}\right) \mathrm{d} r \mathrm{~d} \theta \\
& =2 \pi \int_{0}^{\infty} r \exp \left(\frac{-r^{2}}{2 \sigma^{2}}\right) \mathrm{d} r \\
& =2 \pi \sigma^{2} \int_{-\infty}^{0} \exp (s) \mathrm{d} s \quad\left(s=-\frac{r^{2}}{2 \sigma^{2}} \Rightarrow \mathrm{~d} r=-\sigma^{2} \mathrm{~d} s,\right) \\
& =2 \pi \sigma^{2}
\end{aligned}
$$

and $\int_{-\infty}^{\infty} t \exp \left(-\frac{t^{2}}{2 \sigma^{2}}\right) \mathrm{d} t=0$ (the integral of an odd function between symmetric integrate interval is zero).

By making use of the calculations above, one can get

$$
\begin{aligned}
& \frac{1}{\sqrt{2 \pi \sigma^{2}}} \int_{-\infty}^{\infty} x \exp \left(-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right) \mathrm{d} x \\
& =\frac{1}{\sqrt{2 \pi \sigma^{2}}} \int_{-\infty}^{\infty}(t+\mu) \exp \left(-\frac{t^{2}}{2 \sigma^{2}}\right) \mathrm{d} t \\
& =\frac{1}{\sqrt{2 \pi \sigma^{2}}}\left(\mu \int_{-\infty}^{\infty} \exp \left(-\frac{t^{2}}{2 \sigma^{2}}\right) \mathrm{d} t+\int_{-\infty}^{\infty} t \exp \left(-\frac{t^{2}}{2 \sigma^{2}}\right) \mathrm{d} t\right) \\
& =\frac{1}{\sqrt{2 \pi \sigma^{2}}}(\mu \sqrt{2 \pi} \sigma+0)=\mu .
\end{aligned}
$$

Exercise 6 (Density function, 1 point). Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a function defined as follows

$$
f(x)= \begin{cases}x, & \text { if } 0<x<1 \\ 2-x, & \text { if } 1<x<2 \\ 0, & \text { otherwise }\end{cases}
$$

Is it possible that f is a density function?
Solution. $f(x)$ is obviously non-negative. We need to check whether $\int_{-\infty}^{\infty} f(x) \mathrm{d} x=1$ holds.

$$
\begin{aligned}
\int_{-\infty}^{\infty} f(x) \mathrm{d} x & =\int_{-\infty}^{0} 0 \mathrm{~d} x+\int_{0}^{1} x \mathrm{~d} x+\int_{1}^{2} 2-x \mathrm{~d} x+\int_{2}^{\infty} 0 \mathrm{~d} x \\
& =\left[\frac{x^{2}}{2}\right]_{0}^{1}+2(2-1)-\left[\frac{x^{2}}{2}\right]_{1}^{2} \\
& =\frac{1}{2}+2-\frac{3}{2}=1
\end{aligned}
$$

Therefore the answer is positive that is $f(x)$ can be a density function.

