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The EM algorithm for mixtures of Gaussians (2 points)

Exercise 1 (M step for Σ, 2 points). Assuming n data samples {xn}Nn=1, consider the
log-likelihood function of a mixture of Gaussian model with K components

L(θ) =
N∑

n=1

K∑
k=1

γk(xn)
(
lnπk + lnN (xn | µk,Σk)

)
.

Show that the optimal choice with respect to the covariance matrices Σk for all
k = 1, . . . ,K is given as

argmaxΣk
L(θ) =

∑N
n=1 γk(xn)(xn − µk)(xn − µk)

T∑N
m=1 γk(xm)

.

(Hint: for a symmetric X ∈ Rn×n matrix and vector a,b ∈ Rn,

∂

∂X
aTX−1b = −X−TabTX−T ,

and for a non-singular matrix Y ∈ Rn×n,

∂

∂Y
|Y| = |Y|Y−1 .

Graphical models (3 points)

Exercise 2 (Bayesian network, 1 point). Provide the factorization of p(y1, y2, y3, y4, y5)

according to the following directed graphical model:

Y1

Y3

Y2

Y4 Y5
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Exercise 3 (Proof of the Hammesley-Clifford theorem Σ, 2 points). Assume an undi-
rected graphical model G = (V, E) satisfying the local Markov property. Consider two
non-connected nodes a, b ∈ V , i.e. (a, b) /∈ E , and a subset of nodes w ⊂ V such that
a, b /∈ w. Show that

q(ya | yw)
∆
= p(ya | yw,y

∗
V\(w∪{a})) = q(ya | yb,yw) ,

where p(yz,y
∗
z̄) is a joint probability.

Programming (6 points)

Exercise 4 (Gaussian Mixture Model Estimation, 6 points). Train two Gaussian mix-
ture models to model the foreground and background probabilities of the pixels based
on their intensity. Apply the trained trained model to the input image and segment
the foreground and background. The testing image is shown in Figure 1 (a) (you can
download the images from supp_04.zip). The specific requirement is as follows.

(a) (b) (c)

Figure 1: (a) test image. (b) bounding box for fourground training. (c) foregound
segmentation based the trained model pF (I).

1. Write a program to take in argument (x1, y1, x2, y2), which specify the bounding
box of the foreground as shown in in Figure 1 (b). Model the foregreound prob-
ability pF (I), I ∈ R3 using all pixels inside the bounding box, where pF (I) is a
GMM model with 5 Gaussian components and I is the RGB values of the pixel.

2. Based on the same bounding box, model the background probability pB(I), I ∈
R3 using all pixels outside the bounding box, where pB(I) is a GMM model with
5 Gaussian components.

3. Segment the input image into foreground and background use the two distribu-
tions you obtained, respectively. Compare the results.

Hints: the bounding box should mostly contain the banana. You can initialize the
GMM with random Gaussian kernels. Note that the covariance matrix should not be
singular, during any time of GMM training. If the covariance matrix does become
singular, you can restart the estimation from a different initialization all over again.
Alternatively, can you think of way to better initialize the GMM?
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