Weekly Exercise 5

Dr. Csaba Domokos and Lingni Ma
Technische Universität München, Computer Vision Group
May 03, 2016 (submission deadline: May 24, 2016)

Graphical models

(2 points)

Exercise 1 (Factor graph, 2 points). Let G be a factor graph given by a Markov random field consisting of N^{2} binary variables, representing the pixels of a $N \times N$ image. For each pixel there is a unary potential, and there are pairwise potentials according to the 8 -connected neighbourhood.
a) Draw the factor graph for $N=3$.
b) How many factors (of each type) are there, depending on N ?

Minimum cut and maximum flow

Exercise 2 (Flow, 3 points). Show that the following two definitions are equivalent.
a) Let $(\mathcal{V}, \mathcal{E}, c, s, t)$ be a flow network with non-negative edge weights. A function $f: \mathcal{V} \times \mathcal{V} \rightarrow \mathbb{R}$ is called a flow if it satisfies the following properties:
i) Capacity constraint: $f(i, j) \leq c(i, j)$ for all $i, j \in \mathcal{V}$.
ii) Skew-symmetry: $f(i, j)=-f(j, i)$ for all $i, j \in \mathcal{V}$.
iii) Flow conservation: $\sum_{j \in \mathcal{V}} f(i, j)=0$ for all $i \in \mathcal{V} \backslash\{s, t\}$.
b) Let $(\mathcal{V}, \mathcal{E}, c, s, t)$ be a flow network with non-negative edge weights. A function $f: \mathcal{E} \rightarrow \mathbb{R}^{+}$is called a flow if it satisfies the following two properties:
i) $f(i, j) \leq c(i, j)$ for all $(i, j) \in \mathcal{E}$.
ii) For all $i \in \mathcal{V} \backslash\{s, t\}$

$$
\sum_{(i, j) \in \mathcal{E}} f(i, j)=\sum_{(j, i) \in \mathcal{E}} f(i, j) .
$$

Exercise 3 (Flow, 3 points). Let $G=(\mathcal{V}, \mathcal{E}, c, s, t)$ be a flow network, and let f be a flow in G. Show that the following equalities hold:
a) For all $X \subseteq \mathcal{V}$, we have $f(X, X)=0$.
b) For all $X, Y \subseteq \mathcal{V}$, we have $f(X, Y)=-f(Y, X)$.
c) For all $X, Y, Z \subseteq \mathcal{V}$ with $X \cap Y=\varnothing$, we have the sums

$$
f(X \cup Y, Z)=f(X, Z)+f(Y, Z) \quad \text { and } \quad f(Z, X \cup Y)=f(Z, X)+f(Z, Y)
$$

Exercise 4 (Edmonds-Karp algorithm, 4 points). Solve the maximum flow problem corresponding to the flow network in Figure 1 by applying the Edmonds-Karp algorithm. Find the minimum $s-t$ cut as well. Draw the residual network and the flow graph for each iteration.

Figure 1: A flow network.

