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Metrics (3 points)

Exercise 1 (Metric, semi-metric, 3 points). Show that the followings hold:

1. The truncated absolute distance, defined as d : R× R→ R+

d(x, y) = min(K, |x− y|), for some K ∈ R+ ,

is a metric.

2. The truncated quadratic function, defined as d : R× R→ R+

d(x, y) = min(K, |x− y|2), for some K ∈ R+ ,

is a semi-metric.

3. The weighted Potts-model, defined as d : N× N→ R+

d(`1, `2) = wJ`1 6= `2K, for some w ∈ R+ ,

is a metric.

Solution.

1. Let d(x, y) = min(K, |x− y|), the following holds,

d(x, x) = min(K, |x− x|) = min(K, 0) = 0, ∀K ∈ R+ (1a)

d(x, y) = min(K, |x− y|) = min(K, |y − x|) = d(y, x) (1b)

first, we have min(K, |x− y|) + min(K, |y − z|) ≥ min(K, |x− y|+ |y − z|)
if y ≤ x ≤ z, |x− y|+ |y − z| = 2|x− y|+ |z − x| ≥ |x− z|
if x ≤ y ≤ z, |x− y|+ |y − z| = |x− z|
if x ≤ z ≤ y, |x− y|+ |y − z| = 2|y − z|+ |z − x| ≥ |x− z|
in all cases |x− y|+ |y − z| ≥ |x− z|
therefore, min(K, |x− y|+ |y − z|) ≥ min(K, |x− z|)
therefore, min(K, |x− y|) + min(K, |y − z|) ≥ min(K, |x− z|) (1c)
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2. Let d = (x, y) = min(K, |x− y|2) ,K ∈ R+, the following holds,

d(x, x) = min(K, |x− x|2) = min(K, 0) = 0 (2a)

d(x, y) = min(K, |x− y|2) = min(K, |y − x|2) = d(y, x) (2b)

Therefore, d(x, y) is a semi-metric.

3. Let d(`1, `2) = wJ`1 6= `2K, the following holds,

d(`1, `1) = 0 (3a)

d(`1, `2) = wJ`1 6= `2K = wJ`2 6= `1K = d(`2, `1) (3b)

a) if `1 = `2 = `3 ⇒ d(`1, `2) + d(`2, `3) = 0 = d(`1, `3)

b) if otherwise ⇒ d(`1, `2) + d(`2, `3) ≥ w and d(`1, `3) ≤ w
in both cases, d(`1, `2) + d(`2, `3) ≥ d(`1, `3) (3c)

Therefore, d(`1, `2) is a metric.

Programming (10 points)

Exercise 2 (Binary image segmentation with maxflow, 5 points). Solve the binary
image segmentation problem for figure 1 by applying the maximum flow algorithm.
For binary segmentation, we define yi ∈ {0, 1}, where 0 denotes the background and 1
denotes the foreground. Let us consider the following energy function,

E(y,x) =
∑
i∈V

Ei(yi;xi) + w
∑
i,j∈E

Eij(yi, yj ;xi, xj) , (4)

where w ∈ R+ is a parameter, and V stand for the set of pixels and E includes 4-
neighboring pixels.

Use the GMM models you have trained in Exercise 4 to define the unary energy
functions for all i ∈ V :

Ei(yi = 0) = − log(pB(xi))

Ei(yi = 1) = − log(pF (xi)) .

Use the contrast-sensitive Potts-model to define the pairwise energy functions for
all (i, j) ∈ E :

Eij(yi, yj ;xi, xj) = exp(−λ‖xi − xj‖2)Jyi 6= yjK , (5)

where xi is the intensity vector for pixel i, and you may choose λ = 0.5.
To solve the maximum flow problem, you can use the provided maxflow package

maxflow-v3.04.src.zip.

• Choose a set of different values for w, and report what you observe.
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Figure 1: The test image for binary image segmentation.

• How are the segmentation results compared to the results you obtained in Exer-
cise 4?

Exercise 3 (multi-class image segmentation with α-expansion, 5 points). Consider
the energy function

E(y,x) =
∑
i∈V

Ei(yi;xi) + w
∑
i,j∈E

Eij(yi, yj ;xi, xj) , (6)

for the multi-class labeling problem, i.e. y ∈ LV , where L stands for the label set.
Implement the α-expansion algorithm to solve the image segmentation for the images
shown in figure 2.

The test images come from a subset of the MSRC image understanding dataset,
which contains 21 classes, i.e. L = {1, 2, . . . , 21}.

To define the unary energy functions Ei, use the provided *.c_unary files. Each
test image has its own unary file, specified by the same filename. In each unary file,
you can read out a K × H ×W array of float numbers. The H and W are the image
height and width, andK = 21 is the number of possible classes. This array contains the
21-class probability distribution for each pixel. We provide the multilabel_demo.cpp
to demonstrate how to load the unary file and read out the corresponding probability
values. The unary energy functions Ei for all i ∈ V are then defined as

Ei(yi = l) = − log(pl) .

The pairwise energy is again defined by the contrast sensitive Potts-model (see
Equation (5)).

• Choose different w for Equation (6) and compare the segmentation results.

• The meaning of the classes are specified in the 21class.txt file. Use it to check
if your results make sense.
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Figure 2: The target images for multi-class image segmentation.
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