Weekly Exercise 8

Dr. Csaba Domokos and Lingni Ma

Technische Universität München, Computer Vision Group
June 07, 2016 (submission deadline: June 14, 2016)

Branch and Bound

Exercise 1 (Lower bound, 2 Points). For a finite set Ω, consider the following segmentation energy function $E: \mathbb{B}^{n} \rightarrow \mathbb{R}$:

$$
\begin{equation*}
E(\mathbf{y})=\min _{\omega \in \Omega} C(\omega)+\sum_{i=1}^{n} f_{i}(\omega) y_{i}+\sum_{i=1}^{n} b_{i}(\omega)\left(1-y_{i}\right)+\sum_{i=1}^{n} \sum_{j \in \mathcal{N}(i)} w_{i j}(\omega)\left|y_{i}-y_{j}\right|, \tag{1}
\end{equation*}
$$

with $C: \Omega \rightarrow \mathbb{R}, f_{i}: \Omega \rightarrow \mathbb{R}, b_{i}: \Omega \rightarrow \mathbb{R}, w_{i j}: \Omega \rightarrow \mathbb{R}$. Prove the following lower bound:

$$
\begin{align*}
E(\mathbf{y}) \geq & \left(\min _{\omega \in \Omega} C(\omega)\right)+\sum_{i=1}^{n}\left(\min _{\omega \in \Omega} f_{i}(\omega)\right) y_{i}+\sum_{i=1}^{n}\left(\min _{\omega \in \Omega} b_{i}(\omega)\right)\left(1-y_{i}\right) \\
& +\sum_{i=1}^{n} \sum_{j \in \mathcal{N}(i)}\left(\min _{\omega \in \Omega} w_{i j}(\omega)\right)\left|y_{i}-y_{j}\right|=: \ell(\mathbf{y}, \Omega) . \tag{2}
\end{align*}
$$

Remark: This shows that $E^{*}=\min _{\mathbf{y}} E(\mathbf{y}) \geq \min _{\mathbf{y}} \ell(\mathbf{y}, \Omega)=L(\Omega)$ and $L(\Omega)$ is a lower bound for the global optimum. Note that the lower bound $L(\Omega)$ fulfills three important properties which make it applicable for branch and bound optimization methods:

1. Monotonicity: $\Omega_{1} \subset \Omega_{2} \Rightarrow L\left(\Omega_{1}\right) \geq L\left(\Omega_{2}\right)$.
2. Computability: Evaluating $L(\Omega)$ for some given Ω corresponds to minimizing a submodular quadratic pseudo-Boolean function.
3. Tightness: For $|\Omega|=1$, i.e. $\Omega=\{\omega\}$ we have $L(\{\omega\})=\min _{\mathbf{y}} E(\mathbf{y})$.

Solution. One can prove the inequality from the mathematical deduction,

$$
\begin{align*}
& E(\mathbf{y})= \min _{\omega \in \Omega} C(\omega)+\sum_{i=1}^{n} f_{i}(\omega) y_{i}+\sum_{i=1}^{n} b_{i}(\omega)\left(1-y_{i}\right)+\sum_{i=1}^{n} \sum_{j \in \mathcal{N}(i)} w_{i j}(\omega)\left|y_{i}-y_{j}\right| \\
& \geq \min _{\omega \in \Omega} C(\omega)+\min _{\omega \in \Omega} \sum_{i=1}^{n} f_{i}(\omega) y_{i}+\min _{\omega \in \Omega} \sum_{i=1}^{n} b_{i}(\omega)\left(1-y_{i}\right) \\
&+\min _{\omega \in \Omega} \sum_{i=1}^{n} \sum_{j \in \mathcal{N}(i)} w_{i j}(\omega)\left|y_{i}-y_{j}\right| \\
&=\min _{\omega \in \Omega} C(\omega)+\sum_{i=1}^{n} \min _{\omega \in \Omega} f_{i}(\omega) y_{i}+\sum_{i=1}^{n} \min _{\omega \in \Omega} b_{i}(\omega)\left(1-y_{i}\right) \\
&+\sum_{i=1}^{n} \sum_{j \in \mathcal{N}(i)} \min _{\omega \in \Omega} w_{i j}(\omega)\left|y_{i}-y_{j}\right| \\
&=\left(\min _{\omega \in \Omega} C(\omega)\right)+\sum_{i=1}^{n}\left(\min _{\omega \in \Omega} f_{i}(\omega)\right) y_{i}+\sum_{i=1}^{n}\left(\min _{\omega \in \Omega} b_{i}(\omega)\right)\left(1-y_{i}\right) \\
&+\sum_{i=1}^{n} \sum_{j \in \mathcal{N}(i)}\left(\min _{\omega \in \Omega} w_{i j}(\omega)\right)\left|y_{i}-y_{j}\right|=: \ell(\mathbf{y}, \Omega) . \tag{3}
\end{align*}
$$

Or, since $y_{i}, 1-y_{i}$ and $\left|y_{i}-y_{j}\right|$ are all positive for $\mathbf{y} \in \mathbb{B}^{n}$ and we have by definition from the minimum,

$$
\begin{equation*}
C\left(\omega^{\prime}\right) \geq \min _{\omega \in \Omega} C(\omega), \forall \omega^{\prime} \in \Omega, \tag{4}
\end{equation*}
$$

the inequality holds.

Programming

(7 points)
Exercise 2 (Branch-and-Mincut ${ }^{1}$, 7 Points). In this exercise we apply the branch and bound method from the lecture to find a global minimizer of a discrete version of the celebrated Chan-Vese ${ }^{2}$ segmentation energy function:

$$
\begin{align*}
E\left(\mathbf{y},\left\{c_{f}, c_{b}\right\}\right) & =\mu \sum_{i=1}^{n} \sum_{j \in \mathcal{N}(i)}\left|y_{i}-y_{j}\right| \tag{5}\\
& +\sum_{i=1}^{n}\left(\nu+\lambda_{1}\left(I_{i}-c_{f}\right)^{2}\right) y_{i}+\sum_{i=1}^{n} \lambda_{2}\left(I_{i}-c_{b}\right)^{2}\left(1-y_{i}\right) .
\end{align*}
$$

Here I denotes a gray-scale input image with n pixels, i.e. at every pixel $1 \leq i \leq n$ we have $I_{i} \in[0,255]$. The variable $\omega=\left(c_{f}, c_{b}\right) \in \Omega=[0,255]^{2}$ denotes the mean intensity of foreground respectively the background of the segmentation $x \in \mathbb{B}^{n}$.

[^0]Compute a global minimizer of (5) using the branch and bound best-first tree search. The search space Ω is the rectangle $[0,255]^{2}$. In your implementation, you can keep a sorted queue of rectangles Ω_{i}, and every iteration remove the rectangle with the smallest lower bound and split it into two smaller rectangles along the longest edge. As a lower bound on (5) use the bound (2) dervied in the theoretical exercise. You can use chanvese_global.cpp as a starting point.

Figure 1: The figure shows the input image and a global minimizer of (5) for parameters $\lambda_{1}=\lambda_{2}=0.0001, \mu=1, \nu=0.1$. The optimal foreground and background colors were found as $c_{f}^{*}=81$ and $c_{b}^{*}=167$.

[^0]: ${ }^{1}$ V. Lempitsky, A. Blake, C. Rother, Image Segmentation by Branch-and-Mincut, ECCV 2008
 ${ }^{2}$ T. Chan, L. Vese: Active contours without edges. Trans. Image Process., 10(2), 2001.

