Weekly Exercise 9

Dr. Csaba Domokos and Lingni Ma
Technische Universität München, Computer Vision Group
June 14, 2016 (submission deadline: June 21, 2016)

Probabilistic Inference

(8 Points)
Exercise 1 (Inference on chains, 2 Points). Consider the following factor graph, which is a chain:

The joint distribution can be written in the form

$$
p(\mathbf{y})=\frac{1}{Z} F_{1}\left(y_{1}, y_{2}\right) F_{2}\left(y_{2}, y_{3}\right) \cdot \ldots \cdot F_{n-1}\left(y_{n-1}, y_{n}\right)
$$

where $Z=\sum_{\mathbf{y}} \prod_{i=1}^{n-1} F_{i}\left(y_{i}, y_{i+1}\right)$ denotes the partition function. Show that the marginal distribution $p\left(y_{i}\right)$ decomposes into the product of two factors:

$$
p\left(y_{i}\right)=\frac{1}{Z} r_{F_{i} \rightarrow y_{i}}\left(y_{i}\right) r_{F_{i+1} \rightarrow y_{i}}\left(y_{i}\right) .
$$

Exercise 2 (Sum-product and max-sum, 6 Points). Consider the following factor graph,

The factors are defined through the following:

$$
\begin{align*}
& F_{x}\left(y_{i}, y_{j}\right)=\exp \left(-\left(\left|y_{i}-y_{j}\right|+\left(c_{x}-y_{i}\right)^{2}\right)\right), x \in\{1,2,3\}, \\
& c_{1}=0, c_{2}=1, c_{3}=1, c_{4}=2 \tag{1}\\
& F_{4}\left(y_{4}\right)=\exp \left(-\left(c_{4}-y_{4}\right)^{2}\right)
\end{align*}
$$

Assume y_{4} as the root node and $\mathbf{y} \in\{0,1,2\}^{4}$.
a) Perform the sum-product algorithm in order to achieve probabilistic inference of the model expressed by the graph above. Show the intermediate steps in details.
b) Perform the max-sum algorithm to achieve MAP inference of the model expressed by the graph above. Show the intermediate steps in details.

