(8 Points)

PROBABILISTIC GRAPHICAL MODELS IN COMPUTER VISION

Weekly Exercise 11

Dr. Csaba Domokos and Lingni Ma Technische Universität München, Computer Vision Group June 28, 2016 (submission deadline: July 05, 2016)

Parameter Learning

Exercise 1 (2 Points). Let $\mathcal{D} = \{(\mathbf{x}_1, \mathbf{y}_1), (\mathbf{x}_2, \mathbf{y}_2), \dots, (\mathbf{x}_N, \mathbf{y}_N)\}$ be a given set of identically and independently distributed (*i.i.d.*) observations. By assuming that \mathbf{w} is a random vector with prior distribution $p(\mathbf{w})$, show that the following *posterior distribution* $p(\mathbf{w}|\mathcal{D})$ can be written as:

$$p(\mathbf{w}|\mathcal{D}) = p(\mathbf{w}) \prod_{n=1}^{N} \frac{p(\mathbf{y}_n | \mathbf{x}_n, \mathbf{w})}{p(\mathbf{y}_n | \mathbf{x}_n)}$$

Exercise 2 (6 Points). Consider the *negative regularized conditional log-likelihood*:

$$\mathcal{L}(\mathbf{w}) = \lambda \|\mathbf{w}\|^2 + \sum_{n=1}^{N} \langle \mathbf{w}, \varphi(\mathbf{x}^n, \mathbf{y}^n) \rangle + \sum_{n=1}^{N} \log Z(\mathbf{x}^n, \mathbf{w})$$

It has been shown in the lecture that the gradient of $\mathcal{L}(\mathbf{w})$ w.r.t. *w* is given as

N

$$\nabla_{\mathbf{w}} \mathcal{L}(\mathbf{w}) = 2\lambda \mathbf{w} + \sum_{n=1}^{N} \left[\varphi(\mathbf{x}^n, \mathbf{y}^n) - \mathbb{E}_{\mathbf{y} \sim p(\mathbf{y}|\mathbf{x}^n)} [\varphi(\mathbf{x}^n, \mathbf{y})] \right] .$$

Show that the Hessian of $\mathcal{L}(\mathbf{w})$ is given as

$$\begin{aligned} H_{\mathbf{w}}\mathcal{L}(\mathbf{w}) &= 2\lambda \mathbf{I} + \sum_{n=1} \mathbb{E}_{\mathbf{y} \sim p(\mathbf{y}|\mathbf{x}^n)} [\varphi(\mathbf{x}^n, \mathbf{y})\varphi(\mathbf{x}^n, \mathbf{y})^\mathsf{T}] - \\ & \mathbb{E}_{\mathbf{y} \sim p(\mathbf{y}|\mathbf{x}^n)} [\varphi(\mathbf{x}^n, \mathbf{y})] \mathbb{E}_{\mathbf{y} \sim p(\mathbf{y}|\mathbf{x}^n)} [\varphi(\mathbf{x}^n, \mathbf{y})]^\mathsf{T}, \end{aligned}$$

and argue that it is positive definite for $\lambda > 0$.

Programming

Exercise 3 (**Gibbs sampling**, 8 Points). Let us consider the problem of binary image segmentation and let us solve it by performing *probabilistic inference* via Gibbs sampling. In this particular exercise, we are going to design a *cow-detector* for the images in Figure ??, which should label a pixel as foreground if it belongs to a cow, and background otherwise.

SS 2016

(8 Points)

We define the following energy function for $\mathbf{y} \in \{0,1\}^{\mathcal{V}}$ such that 0 denotes the background and 1 denotes the foreground:

$$E(\mathbf{y}) = \sum_{i \in \mathcal{V}} E_i(y_i) + w \sum_{(i,j) \in \mathcal{E}} E_{ij}(y_i, y_j) ,$$

where $w \in \mathbb{R}^+$ is a parameter, and \mathcal{V} stands for the set of pixels and \mathcal{E} includes all pairs of 4-neighboring pixels.

To define the unary energy functions E_i , use the provided *.yml files. Each test image has its own data file, specified by the same filename. In each data file, you can read out a $H \times W$ array of float numbers. The H and W are the image height and width, and each float value p_i corresponds to the probability of that the given pixel belongs to the foreground. We provide the cow_detector.cpp to demonstrate how to load a data file and read out the corresponding probability values. The unary energy functions E_i for all $i \in \mathcal{V}$ are then defined as,

$$E_i(y_i = 0) = -\log(1 - p_i)$$

 $E_i(y_i = 1) = -\log(p_i)$.

The pairwise energy is defined as the *contrast-sensitive Potts-model* for all $(i, j) \in \mathcal{E}$,

$$E_{ij}(y_i, y_j; x_i, x_j) = \exp(-\lambda ||x_i - x_j||^2) [\![y_i \neq y_j]\!]$$
.

where $\lambda = 0.5$.

Implement the Gibbs sampling algorithm to achieve *probabilistic inference* and calculate the *binary segmentation* as well. Choose different values for w and compare your results. Give the range of w that generate the best segmentation performance.

Figure 1: The test images for binary image segmentation to detect cows.