### Weekly Exercise 12

Dr. Csaba Domokos and Lingni Ma Technische Universität München, Computer Vision Group July 05, 2016 (submission deadline: July 12, 2016)

# **Parameter Learning**

**Exercise 1** (loss minimizing parameter learning, 2 Points). Calculate the expected loss  $\mathbb{E}_{(\mathbf{x},\mathbf{y})\sim d(\mathbf{y}|\mathbf{x})} \left[\Delta_H(\mathbf{y}, f(\mathbf{x}))\right]$  of the Hamming loss:

$$\Delta_H(\mathbf{y}, \mathbf{y}') = \frac{1}{|\mathcal{V}|} \sum_{i \in \mathcal{V}} \llbracket \mathbf{y}_i \neq \mathbf{y}'_i \rrbracket,$$

where  $d(\mathbf{y}|\mathbf{x})$  denotes the true data distribution and  $f : \mathcal{X} \to \mathcal{Y}$  is a prediction function.

**Exercise 2** (parameter learning 3 Points). Compute the *sub-differential* at a point  $\mathbf{x} \in \mathbb{R}^n$ 

$$\partial f(\mathbf{x}) = \{\mathbf{w} \in \mathbb{R}^n \mid f(\mathbf{x}) + \langle \mathbf{w}, \mathbf{y} - \mathbf{x} \rangle \le f(\mathbf{y}), \forall \mathbf{y} \in \mathbb{R}^n\},\$$

of the following convex functions  $f : \mathbb{R}^n \to \mathbb{R}$ :

a)  $f(\mathbf{x}) = \langle \mathbf{c}, \mathbf{x} \rangle$ , where  $\mathbf{c} \in \mathbb{R}^n$  is a constant

b) 
$$f(\mathbf{x}) = \|\mathbf{x}\|_2 = \sqrt{\sum_{i=1}^n x_i^2}$$

c) 
$$f(\mathbf{x}) = \|\mathbf{x}\|_1 = \sum_{i=1}^n |x_i|$$

# Programming

Exercise 3 (Probabilistic and loss minimizing parameter learning, 12 Points). In Exercise 11, we have considered the problem of binary image segmentation and have solved it by performing probabilistic inference via Gibbs sampling. In particular, we have developed a cow detector for the images in Figure 1. For this sake, we have defined the following energy function for  $\mathbf{y} \in \{0, 1\}^{\mathcal{V}}$  such that 0 and 1 denote the background and the foreground, respectively:

$$E(\mathbf{y}) = \sum_{i \in \mathcal{V}} E_i(y_i) + w \sum_{(i,j) \in \mathcal{E}} E_{ij}(y_i, y_j) ,$$

where  $w \in \mathbb{R}^+$  is a parameter, and  $\mathcal{V}$  stands for the set of pixels and  $\mathcal{E}$  includes all pairs of 4-neighboring pixels. In Exercise 11, we chose the parameter w arbitrarily. In this

#### 1

### (12 Points)

## (5 Points)

exercise, we are going to learn the optimal *w* by applying both *probabilistic parameter learning* and *loss minimizing parameter learning*.

Again, the unary energy functions  $E_i$  is provided in \*.yml files. Each image has its own data file, specified by the same filename. In each data file, you can read out a  $H \times W$  array of float numbers. The H and W are the image height and width, and each float value  $p_i$  corresponds to the probability of that the given pixel belongs to the foreground. We provide the cow\_detector.cpp to demonstrate how to load a data file and read out the corresponding probability values. The unary energy functions  $E_i$  for all  $i \in V$  are then defined as,

$$E_i(y_i = 0) = -\log(1 - p_i)$$
  
 $E_i(y_i = 1) = -\log(p_i)$ .

The pairwise energy is defined as the *contrast-sensitive Potts-model* for all  $(i, j) \in \mathcal{E}$ ,

$$E_{ij}(y_i, y_j; x_i, x_j) = \exp(-\lambda ||x_i - x_j||^2) [\![y_i \neq y_j]\!]$$
.

where  $\lambda = 0.5$ .

To learn the parameters, we provide 42 images (under sub-folder rgb-training). You should use all of them in training. Once you learned the parameters, you can use the learned w to test on images in Figure 1 (see sub-folder rgb-test). Do not use any images from the test set during training.

Use your previous implementations to get MAP inference by applying graph cuts (see Exercise 6) and to get probabilistic inference by applying Gibbs sampling algorithm (see Exercise 11). Implement **both** *probabilistic parameter learning* and *loss minimizing parameter learning* to estimate the optimal value for parameter w. Compare the optimal w you have learned.



Figure 1: The test images for binary image segmentation to detect cows.