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Parameter Learning (5 Points)

Exercise 1 (loss minimizing parameter learning, 2 Points). Calculate the expected loss
E(x,y)∼d(y|x) [∆H(y, f(x))] of the Hamming loss:

∆H(y,y′) =
1

|V|
∑
i∈V

[[yi 6= y′i]],

where d(y|x) denotes the true data distribution and f : X → Y is a prediction function.

Solution.

Ey∼d(y|x) [∆H(y, f(x))] =
∑
y∈Y

d(y|x)∆H(y, f(x)) ≈
∑
y∈Y

p(y|x,w)∆H(y, f(x))

=
∑
y∈Y

p(y|x,w)
1

|V|
∑
i∈V

[[yi 6= f(xi)]]

=
∑
y∈Y

p(y|x,w)
1

|V|

(∑
i∈V

1− [[yi = f(xi)]]

)

=
∑
y∈Y

p(y|x,w)−
∑
y∈Y

p(y|x,w)
1

|V|

(∑
i∈V

[[yi = f(xi)]]

)

= 1− 1

|V|
∑
i∈V

p
(
yi = f(xi)|x,w

)
.

Exercise 2 (parameter learning 3 Points). Compute the sub-differential at a point x ∈ Rn

∂f(x) = {w ∈ Rn | f(x) + 〈w,y − x〉 ≤ f(y), ∀y ∈ Rn},

of the following convex functions f : Rn → R:

a) f(x) = 〈c,x〉, where c ∈ Rn is a constant

b) f(x) = ‖x‖2 =

√√√√ n∑
i=1

x2i

c) f(x) = ‖x‖1 =
n∑

i=1

|xi|
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Solution.

a) By definition of ∂f(x):

〈c,x〉+ 〈w,y − x〉 ≤ 〈c,y〉, ∀y ∈ Rn

⇔ 〈c−w,x− y〉 ≤ 0, ∀y ∈ Rn

⇔ w = c.

Hence ∂f(x) = {c}. Note that if f(x) is differentiable at x ∈ Rn we have that
∂f(x) = {∇f(x)}.

b) If x = 0:

〈w,y〉 − ‖y‖2 ≤ 0, ∀y ∈ Rn

〈w,y〉 − ‖y‖2 ≤ ‖w‖2 ‖y‖2 − ‖y‖2 = (‖w‖2 − 1) ‖y‖2 ≤ 0.

Hence ∂f(0) = {w ∈ Rn | ‖w‖2 ≤ 1}.
For x 6= 0, f(x) is differentiable, hence:

∂f(x) =

{
x

‖x‖2

}
.

c) Before we calculate the subgradient of the `1-norm, lets first notice that the subgra-
dient of the maximum of convex subdifferetiable functions, i.e.,

f(x) = max
i=1,2,...,n

fi(x) ,

is the convex hull of all fi(x) that the maximum at x. For example, consider the
absolution function f(x) = |x|. This function can be written as f(x) = max(x,−x).
For the later max representation, at x = 0, both f(x) = x, and f(x) = −x are
maximum. The subgraident at x = 0 is the convex hull of subgradient of the two
functions, hence [−1, 1]. Now we can construct the `1-norm as a maximum of 2n

linear functions,
‖x‖1 = max

{
sTx | si ∈ {−1, 1}

}
.

The function sTx is differentiable and has a unique subgradient, where

gi =


1 xi > 0

−1 xi < 0

1 or − 1 xi = 0

The subgradient of `1-norm is the convex hull of all the subgradients, therefore,

∂f(x) =
{
g | ‖g‖∞ ≤ 1 ,gTx = ‖x‖1

}
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Programming (12 Points)

Exercise 3 (Probabilistic and loss minimizing parameter learning, 12 Points). In Exercise
11, we have considered the problem of binary image segmentation and have solved it
by performing probabilistic inference via Gibbs sampling. In particular, we have de-
veloped a cow detector for the images in Figure 1.For this sake, we have defined the
following energy function for y ∈ {0, 1}V such that 0 and 1 denote the background and
the foreground, respectively:

E(y) =
∑
i∈V

Ei(yi) + w
∑

(i,j)∈E

Eij(yi, yj) ,

where w ∈ R+ is a parameter, and V stands for the set of pixels and E includes all pairs
of 4-neighboring pixels. In Exercise 11, we chose the parameter w arbitrarily. In this
exercise, we are going to learn the optimal w by applying both probabilistic parameter
learning and loss minimizing parameter learning.

Again, the unary energy functions Ei is provided in *.yml files. Each image has
its own data file, specified by the same filename. In each data file, you can read out
a H ×W array of float numbers. The H and W are the image height and width, and
each float value pi corresponds to the probability of that the given pixel belongs to the
foreground. We provide the cow_detector.cpp to demonstrate how to load a data file
and read out the corresponding probability values. The unary energy functions Ei for
all i ∈ V are then defined as,

Ei(yi = 0) = − log(1− pi)
Ei(yi = 1) = − log(pi) .

The pairwise energy is defined as the contrast-sensitive Potts-model for all (i, j) ∈ E ,

Eij(yi, yj ;xi, xj) = exp(−λ‖xi − xj‖2)Jyi 6= yjK .

where λ = 0.5.
To learn the parameters, we provide 42 images (under sub-folder rgb-training).

You should use all of them in training. Once you learned the parameters, you can use
the learned w to test on images in Figure 1 (see sub-folder rgb-test). Do not use any
images from the test set during training.

Use your previous implementations to get MAP inference by applying graph cuts
(see Exercise 6) and to get probabilistic inference by applying Gibbs sampling al-
gorithm (see Exercise 11). Implement both probabilistic parameter learning and loss
minimizing parameter learning to estimate the optimal value for parameter w. Compare
the optimal w you have learned.
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Figure 1: The test images for binary image segmentation to detect cows.
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