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Inquiries for Bachelor and Master projects are always welcome!

We currently work on the following research topics:

3D reconstruction Optical flow Shape analysis Robot vision RGB-D vision

Image segmentation Convex relaxation Visual SLAM Scene flow Deep learning

Please complete the form: https://vision.in.tum.de/application

1. Introduction

Administration Overview Probability theory Conditional Probability

Agenda for today’s lecture ˚
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1. Administration
2. Overview of the course
3. Introduction to Probability theory

■ Basic definitions
■ Conditional probability, Bayes’ rule
■ Independence, conditional independence

Administration
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The course: IN2329 ˚
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The course Probabilistic Graphical Models in Computer Vision will be
organized as follows:

■ Lectures: on Tuesdays at 10.00–12.00 in Room 00.13.036
■ Tutorials: on Tuesdays at 14.00–16.00 in Room 02.05.014

The tutorials combines theoretical and programming assignments:

■ Assignment distribution: Tuesday 11.00–11.15 in Room 00.13.036
■ Theoretical assignment due: Tuesday 11.00–11.15 in Room 00.13.036
■ Assignment presentation: Tuesday 14.00–16.00 in Room 02.05.014

Lecturer Teaching assistant (TA)

Dr. Csaba Domokos (csaba.domokos@in.tum.de) Lingni Ma (lingni@in.tum.de)

Feel free to contact us!

April ˚
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April 2016
Monday Tuesday Wednesday Thursday Friday Saturday Sunday

1 2 3

4 5 6 7 8 9 10

11 12 13 14 15 16 17

18 19 20 21 22 23 24

25 26 27 28 29 30

12
Lecture 1

19
Lecture 2

26
Lecture 3

Tutorial 1

Tutorial 2

Tutorial 3

May ˚
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May 2016
Monday Tuesday Wednesday Thursday Friday Saturday Sunday

2 3 4 5 6 7 8

9 10 11 12 13 14 15

16 17 18 19 20 21 22

23 24 25 26 27 28 29

30 31

3
Lecture 4

10
Lecture 5

24
Lecture 6

31
Lecture 7

Tutorial 4

Tutorial 5

Tutorial 6

Tutorial 7



June ˚
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June 2016
Monday Tuesday Wednesday Thursday Friday Saturday Sunday

1 2 3 4 5

6 7 8 9 10 11 12

13 14 15 16 17 18 19

20 21 22 23 24 25 26

27 28 29 30

7
Lecture 8

14
Lecture 9

21
Lecture 10

28
Lecture 11

Tutorial 8

Tutorial 9

Tutorial 10

Tutorial 11

July ˚
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July 2016
Monday Tuesday Wednesday Thursday Friday Saturday Sunday

1 2 3

4 5 6 7 8 9 10

11 12 13 14 15 16 17

18 19 20 21 22 23 24

Week of the exam
25 26 27 28 29 30 31

5
Lecture 12

12
Lecture 13

Tutorial 12

Tutorial 13

Exam ˚
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■ The exam will be oral.
■ According to our schedule, the exam will be held in the last week of July,

25th–29th.
■ Students need to be registered prior to the exam: May, 16th–June, 30th

via TUM online.

Participation at the tutorial:

■ Not mandatory, but highly recommended:
Theoretical assignments will help to understand the topics of the lecture.
Programming assignments will help to apply the theory to practical Computer
vision problems.

■ Bonus: Active students who solve 60% of the assignments earn a bonus.
If someone receives a mark between 1.3 and 4.0 in the final exam, the mark
will be improved by 0.3 and 0.4, respectively.
Note that marks of 1.0 and 5.0 cannot be improved!

Bonus ˚
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To achieve the bonus, the following requirements have to be fulfilled:

Theory

■ 60% of all theoretical assignments have to be solved.
(Note that submissions happen only on Tuesdays at 11.00–11.15)

■ The theoretical exercises have to be presented in front of the class.
(The TA randomly selects a student who presents an exercise.)

Programming

■ 60% of all programming assignments have to be presented during the tutorial.
■ The programming exercises should be explained to the TA.

To promote team work, please form groups of two or three students in order to
solve and submit the assignments.

Recommended literature & prerequisites ˚
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■ D. Koller, N. Friedman. Probabilistic Graphical Models: Principles and Techniques, MIT
Press, 2009.

■ S. Nowozin, C. H. Lampert. Structured Learning and Prediction in Computer Vision,
Foundations and Trends in Computer Graphics and Vision, 2011.

■ A. Blake, P. Kohli, C. Rother. Markov Random Fields for Vision and Image Processing, MIT
Press, 2011.

In addition, we will mention recent conference and journal papers.

Prerequisites: the course is intended for Master students.

■ Basic Mathematics: multivariate analysis and linear algebra.
■ Basic Computer Science: dynamic programming and basic data structures.

Course Page ˚
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On the internal site of the course page you could access to extra course
material:
https://vision.in.tum.de/teaching/ss2016/lecture_graphical_models/material

Password: PGMCV:SS16

Course materials:

■ Slides for each lecture (available prior to the lecture)
■ Assignment sheets (available after the lecture)
■ Solution sheets (available after the tutorial)

The course page will also be used for extra announcements.

Overview
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Overview of the course ˚
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Binary image segmentation ˚
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The goal is to give a binary label yi P B △“ t0, 1u for each pixel i, where 0 and 1
mean the background (a.k.a. ground) and the foreground (a.k.a. figure),
respectively.

Input image Figure–ground segmentation

Semantic image segmentation ˚
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The goal is to give a label yi P L “ t1, 2, . . . , cu for each pixel i according to its
semantic meanings.

Exemplar semantic segmentations

Stereo matching ˚
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Cleft
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2

Given two images (i.e. left and right), an observed 2D point p1 on the left image,
which corresponds to a 3D point P that is situated on a line in R3. This line will
be observed as a line on the right image.
P can be determined based on p1 and p2. We assume that the pixels p1 and p2,
corresponding to P , have similar intensities.

Stereo matching ˚
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The goal is to reconstruct 3D points according to corresponding pixels. Usually we
assume rectified images (i.e. the directions of the cameras are parallel), which
means that the corresponding pixels are situated in horizontal lines.

Left view Right view

Ground truth (depth map) Result (depth map)

Object detection ˚

Administration Overview Probability theory Conditional Probability

IN2329 - Probabilistic Graphical Models in Computer Vision 1. Introduction – 21 / 42

We address the problem of binary image segmentation, where we also assume
non-local parameters that are known a priori. For example, one can assume prior
knowledge about the shape of the foreground.

Exemplar binary segmentation of cars assuming shape prior

You may realize that we will mainly deal with labelling problems.

Human–pose estimation ˚
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The goal is to recognize an articulated object (i.e. human body) with different
connecting parts (e.g., head, torso, left arm, right arm, left leg, right leg).

Input image Human pose estimation

An object is composed of a number of rigid parts, where each part is modeled as a
rectangle. The connections encode generic relationships such as “close to”, “to
the left of”.

Probability theory

Administration Overview Probability theory Conditional Probability

Reasoning under uncertainty ˚
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We often want to understand a system when we have imperfect or incomplete
information due to, for example, noisy measurement.
There are two main reasons why we might reason under uncertainty:

■ Laziness: modeling every detail of a complex system is costly.
■ Ignorance: we may not completely understand.

Probability P pAq refers to a degree of confidence that an event A with uncertain
nature will occur.

It is common to assume that 0 ď P pAq ď 1:

■ If P pAq “ 1, we are certain that A occurs,
■ while P pAq “ 0 asserts that A will not occur.



Experiment, sample space, event
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An experiment is a (random) process that can be infinitely
many times repeated and has a well-defined set of possible
outcomes. In case of repeated experiments the individual
repetitions are also called trials.

Example: throwing two “fair dice” (i.e. we assume equally
likely chance of landing on any face) with six faces.

The sample space, denoted by Ω, is the set of possible outcomes.

Example: Ω “ tpi, jq : 1 ď i, j ď 6u.

A set of outcomes A Ď Ω is called an event. An atomic event is an event that
contains a single outcome ω P Ω.

Example: A “ tpi, jq : i ` j “ 11u, i.e. the sum of the numbers showing on the
top is equal to eleven.

Basic notations
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Let A and B be two events from an sample space Ω. We will use the following
notations:

A does not occur: Ā “ ΩzA
Ω

ĀA

either A or B occur: A Y B

Ω

A B

both A and B occur: A X B

Ω

A B

A occurs and B does not: AzB
Ω

A B

■ The H is called the impossible event; and
■ Ω is the sure event.

Discrete probability space
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A probability space represents our uncertainty regarding an experiment.

A triple pΩ,A, P q is called a discrete probability space, if

■ Ω is not empty and countable (i.e. DS Ď N such that |Ω| “ |S|),
■ A is the power set PpΩq (i.e. the set of all subsets of Ω), and
■ P : A Ñ R is a function, called a probability measure, with the following

properties:

1. P pAq ě 0 for all A P A
2. P pΩq “ 1
3. σ-additivity holds: if An P A, n “ 1, 2, . . . and Ai X Aj “ H for i ‰ j,

then

P p
8ď

n“1

Anq “
8ÿ

n“1

P pAnq .

The conditions 1-3. are called Kolmogorov’s axioms.

Example: throwing two “fair dice” ˚
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For this case a discrete probability space pΩ,A, P q is given by

■ Sample space: Ω “ tpi, jq : 1 ď i, j ď 6u.
■ A “ PpΩq “ ttp1, 1qu, . . . , tp1, 1q, p1, 2qu, . . . , tp1, 1q, p1, 2q, p1, 3qu, . . . u.
■ The probability measure

P pAq “ |A|
36

“ k

36
,

where k is the number of atomic events in A.

Example: Let A denote the event that “the sum of the numbers showing on
the top is equal to eleven”, that is

A “ tpi, jq : i ` j “ 11u “ tp5, 6q, p6, 5qu .

Hence

P pAq “ P ptp5, 6q, p6, 5quq “ 2

36
.

σ-algebra, measure, measure space ˚
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Assume an arbitrary set Ω and A Ď PpΩq. The set A is a σ-algebra over Ω if the
following conditions are satisfied:

1. H P A,
2. A P A ñ Ā P A (i.e. it is closed under complementation),
3. Ai P A pi P Nq ñ Ť8

i“0Ai P A (i.e. it is closed under countable union).

It is a consequence of this definition that Ω P A is also satisfied. (See exercise.)

Assume an arbitrary set Ω and a σ-algebra A over Ω. A function P : A Ñ r0,8s
is called a measure if the following conditions are satisfied:

1. P pHq “ 0,
2. P is σ-additive.

Let A be a σ-algebra over Ω and P : A Ñ r0,8s is a measure. pΩ,Aq is said to
be a measurable space and the triple pΩ,A, P q is called a measure space.

Probability space ˚
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A probability space is a triple pΩ,A, P q, where pΩ,Aq is a measurable space, and
P is a measure such that P pΩq “ 1, called a probability measure.

To summarize:
A triple pΩ,A, P q is called probability space, if

■ the sample space Ω is not empty,
■ A is a σ-algebra over Ω, and
■ P : A Ñ R is a function with the following properties:

1. P pAq ě 0 for all A P A
2. P pΩq “ 1
3. σ-additive: if An P A, n “ 1, 2, . . .

and Ai X Aj “ H for i ‰ j, then

P p
8ď

n“1

Anq “
8ÿ

n“1

P pAnq .

Ω

B
A

0 1P pAq ` P pBq “ P pA Y Bq

Example: throwing a dart ˚
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Suppose a dart is thrown at a round board modeled as a unit
circle. The sample space contains the location of the dart if
it lands in the board only. Hence it is given by

Ω “ tpx, yq P R2 : x2 ` y2 ď 1u .

We denote the area of an the event A Ď Ω by µpAq, which is defined as the
Riemann-integral of the characteristic function of A

µpAq :“
ż

Ω
χApxqdx , where χApxq “

#
1, if x P A

0, if x R A .

The σ-algebra A over Ω is defined as follows

A “ tA Ď Ω : µpAq existsu .

The probability measure P : Ω Ñ r0, 1s is given by P pAq “ µpAq
π .

Some simple consequences of the axioms
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The following rules are frequently used in applications:

■ P pAq “ 1 ´ P pΩzAq.

Proof. Note that A and ΩzA are disjoint.
1 “ P pΩq “ P pA Y pΩzAqq “ P pAq ` P pΩzAq.

■ P pHq “ 0.

Proof. P pHq “ 1 ´ P pΩzHq “ 1 ´ P pΩq “ 1 ´ 1 “ 0.

■ If A Ď B, then P pAq ď P pBq.
■ P pA Y Bq “ P pAq ` P pBq ´ P pA X Bq.
■ P pA Y Bq ď P pAq ` P pBq.
■ P pAzBq “ P pAq ´ P pA X Bq.
■ . . .



Conditional Probability
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Conditional probability
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Conditional probability allows us to reason with partial information.
If P pBq ą 0, the conditional probability of A given B is defined as

P pA | Bq △“ P pA X Bq
P pBq .

This is the probability that A occurs,
given we have observed B, i.e. we
know the experiment’s actual outcome
will be in B.

Ω

A B

0 1P pA X Bq{P pBq “ P pA | Bq

Note that the axioms and rules of probability theory are fulfilled for the conditional
probability. (e.g., P pA | Bq “ 1 ´ P pĀ | Bq).

Example ˚
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Consider two producing machines creating identical product in a factory. Assume
we are given the following table with probabilities

Machine I Machine II

The product is good 0.56 0.41 0.97
The product is waste 0.01 0.02 0.03

0.57 0.43 1

Question: What is the probability of a product was created by Machine I, when it
is good?

Let A denote the event that “the product was created by Machine I” and let B
denote the event that “the product is good”.

P pA | Bq “ P pA X Bq
P pBq “ 0.56

0.97
« 0.58 .

The chain rule
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Starting with the definition of conditional probability P pB | Aq and multiplying by
P(A) we get the product rule:

P pA X Bq “ P pAqP pB | Aq .
The chain rule is given by

P pXn
i“1Aiq “ P pA1qP pA2 | A1qP pA3 | A1 X A2q ¨ ¨ ¨P pAn | Xn´1

i“1 Aiq . (1)

Proof. By induction. For n “ 2 we get the product rule. Let n P N be given and
suppose Eq. (1) is true for k ď n. Then

P pXn`1
i“1 Aiq “ P pAn`1 X pXn

i“1Aiqq “ P pAn`1 | Xn
i“1AiqP pXn

i“1Aiq .

The chain rule will become important later when we discuss conditional
independence.

Bayes’ rule
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By making use of the product rule we can get

P pA | Bq “ P pA X Bq
P pBq “ P pB | AqP pAq

P pBq .

P pA | Bq is often called the posteriori probability, and P pB | Aq is called the
likelihood, and P pAq is called the prior probability.

A more general version of Bayes’ rule, when we have a background event C (see
Exercise):

P pA | B X Cq “ P pB | A X CqP pA | Cq
P pB | Cq .

Example: What is the probability that a product is good, if it was created by
Machine I? We are given P pA | Bq “ 0.58, P pAq “ 0.57 and P pBq “ 0.97.

P pB | Aq “ P pA | BqP pBq
P pAq “ 0.58 ¨ 0.97

0.57
« 0.98 .

Independence
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Two events A and B are independent, denoted by A K B, if

P pA | Bq “ P pAq
or, equivalently, iff

P pA X Bq “ P pAqP pBq .

If A and B are independent, learning that B happened does not make A more or
less likely to occur.

Example: Suppose we roll a die. Let us consider the events A denoting “the die
outcome is even” and B denoting “the die outcome is either 1 or 2”.

If the die is fair, then P pAq “ 1
2 and P pBq “ 1

3 . Moreover A X B means the event
that the outcome is two, so P pA X Bq “ 1

6 .

P pA X Bq “ 1

6
“ 1

2
¨ 1
3

“ P pAqP pBq ñ A and B are independent.

Conditional independence
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Let A, B and C be events. A and B are conditionally independent given C,
denoted by A KK B | C, iff

P pA | Cq “ P pA | B X Cq ,
or, equivalently, iff

P pA X B | Cq “ P pA | CqP pB | Cq .
A and B are conditionally independent given C means that once we learned C,
learning B gives us no additional information about A.

Examples:

■ The operation of a car’s starter motor is conditionally independent its radio
given the status of the battery.

■ Symptoms are conditionally independent given the disease.

Summary ˚
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■ A probability space is a triple pΩ,A, P q, where pΩ,Aq is a measurable space,
and P is a measure such that P pΩq “ 1. If Ω is countable, then pΩ,A, P q is
called discrete probability space.

■ Let P pBq ą 0, then the conditional probability of A given B is defined as

P pA | Bq △“ P pA X Bq
P pBq .

■ If A and B are independent (A K B), learning that B happened does not
make A more or less likely to occur.

■ A and B are conditionally independent given C, denoted by A KK B | C,
means that once we learned C, learning B gives us no additional information
about A.

In the next lecture we will learn about

■ Random variables
■ Probability distributions
■ The Expectation-maximization algorithm



Literature ˚
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1. Marek Capiński and Ekkerhard Kopp. Measure, Integral and Probability.
Springer, 1998

2. Daphne Koller and Nir Friedman. Probabilistic Graphical Models: Principles
and Techniques. MIT Press, 2009

A brain teaser ˚
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Suppose you are on a game show and you are given the choice of three doors:
Behind one door is a car; behind the others, goats.

You pick a door, say No. 1, and the host, who knows what is behind the doors,
opens another door, say No. 3, which has a goat.

He then says to you, ”Do you want to pick door No. 2?”

Question: Is it to your advantage to switch your choice?


