Probabilistic Graphical Models in Computer Vision (IN2329)

Csaba Domokos

Summer Semester 2015/2016

Uf,t Announcement: Computer Vision Group Administration Overview Probability theory Conditional Probability

Inquiries for Bachelor and Master projects are always welcome!
We currently work on the following research topics:

Please complete the form: https://vision.in.tum.de/application
IN2329 - Probabilistic Graphical Models in Computer Vision

1. Introduction -2 / 42

2. Introduction

Overview of the course

- Basic definitions
- Conditional probability, Bayes' rule
- Independence, conditional independence

The course Probabilistic Graphical Models in Computer Vision will be organized as follows:

■ Lectures: on Tuesdays at 10.00-12.00 in Room 00.13.036

- Tutorials: on Tuesdays at $14.00-16.00$ in Room 02.05.014

The tutorials combines theoretical and programming assignments:
■ Assignment distribution: Tuesday 11.00-11.15 in Room 00.13.036
■ Theoretical assignment due: Tuesday 11.00-11.15 in Room 00.13.036
■ Assignment presentation: Tuesday 14.00-16.00 in Room 02.05.014

Dr. Csaba Domokos (csaba.domokos@in.tum.de) Lingni Ma (lingni@in.tum.de)
Feel free to contact us!
IN2329 - Probabilistic Graphical Models in Computer Vision

"ifit	Administration 0		Overview	Probability theory	theory	Conditional	Probability
	June 2016						
	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday	Sunday
			1	2	3	4	5
	6	7 Lecture 8 Tutorial 8	8	9	10	11	12
	13	$\begin{array}{\|l\|} \hline 14 \\ \text { Lecture } 9 \\ \text { Tutorial } 9 \end{array}$	15	16	17	18	19
	20	21 Lecture 10 Tutorial 10	22	23	24	25	26
	27	$\left\lvert\, \begin{aligned} & 28 \\ & \text { Lecture } 11 \\ & \text { Tutorial } 11 \end{aligned}\right.$	29	30			

- The exam will be oral.
- According to our schedule, the exam will be held in the last week of July, 25th-29th.
■ Students need to be registered prior to the exam: May, 16th-June, 30th via TUM online.

Participation at the tutorial:
■ Not mandatory, but highly recommended:
Theoretical assignments will help to understand the topics of the lecture. Programming assignments will help to apply the theory to practical Computer vision problems.
■ Bonus: Active students who solve 60% of the assignments earn a bonus. If someone receives a mark between 1.3 and 4.0 in the final exam, the mark will be improved by 0.3 and 0.4 , respectively
Note that marks of 1.0 and 5.0 cannot be improved!

IN2329 - Probabilistic Graphical Models in Computer Vision

1. Introduction - 11 / 42

- D. Koller, N. Friedman. Probabilistic Graphical Models: Principles and Techniques, MIT Press, 2009.
- S. Nowozin, C. H. Lampert. Structured Learning and Prediction in Computer Vision Foundations and Trends in Computer Graphics and Vision, 2011.
- A. Blake, P. Kohli, C. Rother. Markov Random Fields for Vision and Image Processing, MIT Press, 2011.

In addition, we will mention recent conference and journal papers.
Prerequisites: the course is intended for Master students.

- Basic Mathematics: multivariate analysis and linear algebra.
- Basic Computer Science: dynamic programming and basic data structures.

To achieve the bonus, the following requirements have to be fulfilled:
Theory

- 60\% of all theoretical assignments have to be solved. (Note that submissions happen only on Tuesdays at 11.00-11.15)
■ The theoretical exercises have to be presented in front of the class. (The TA randomly selects a student who presents an exercise.)
Programming
- $\mathbf{6 0 \%}$ of all programming assignments have to be presented during the tutorial.
- The programming exercises should be explained to the TA.

To promote team work, please form groups of two or three students in order to solve and submit the assignments.

IN2329 - Probabilistic Graphical Models in Computer Vision

1. Introduction - 12 / 42

On the internal site of the course page you could access to extra course material:
https://vision.in.tum.de/teaching/ss2016/lecture_graphical_models/material
Password: PGMCV:SS16
Course materials:

- Slides for each lecture (available prior to the lecture)
- Assignment sheets (available after the lecture)
- Solution sheets (available after the tutorial)

The course page will also be used for extra announcements.

IN2329 - Probabilistic Graphical Models in Computer Vision

Tito

The goal is to give a binary label $y_{i} \in \mathbb{B} \triangleq\{0,1\}$ for each pixel i, where 0 and 1 mean the background (a.k.a. ground) and the foreground (a.k.a. figure), respectively.

Input image

Figure-ground segmentation

Wh Semantic image segmentation * Administration Overview Probability theory Conditional Probability
The goal is to give a label $y_{i} \in \mathcal{L}=\{1,2, \ldots, c\}$ for each pixel i according to its semantic meanings.

Exemplar semantic segmentations

IN2329 - Probabilistic Graphical Models in Computer Vision

1. Introduction - 18 / 42

The goal is to reconstruct 3D points according to corresponding pixels. Usually we assume rectified images (i.e. the directions of the cameras are parallel), which means that the corresponding pixels are situated in horizontal lines.

Left view

Ground truth (depth map)

IN2329 - Probabilistic Graphical Models in Computer Vision

The goal is to recognize an articulated object (i.e. human body) with different connecting parts (e.g., head, torso, left arm, right arm, left leg, right leg).

Input image

Human pose estimation

An object is composed of a number of rigid parts, where each part is modeled as a rectangle. The connections encode generic relationships such as "close to", "to the left of"

IN2329 - Probabilistic Graphical Models in Computer Vision

We often want to understand a system when we have imperfect or incomplete information due to, for example, noisy measurement.
There are two main reasons why we might reason under uncertainty:

- Laziness: modeling every detail of a complex system is costly.
- Ignorance: we may not completely understand.

Probability $P(A)$ refers to a degree of confidence that an event A with uncertain nature will occur.
It is common to assume that $0 \leqslant P(A) \leqslant 1$:

- If $P(A)=1$, we are certain that A occurs,
- while $P(A)=0$ asserts that A will not occur.

An experiment is a (random) process that can be infinitely many times repeated and has a well-defined set of possible outcomes. In case of repeated experiments the individual repetitions are also called trials.
Example: throwing two "fair dice" (i.e. we assume equally likely chance of landing on any face) with six faces.

The sample space, denoted by Ω, is the set of possible outcomes.
Example: $\Omega=\{(i, j): 1 \leqslant i, j \leqslant 6\}$.
A set of outcomes $A \subseteq \Omega$ is called an event. An atomic event is an event that contains a single outcome $\omega \in \Omega$.
Example: $A=\{(i, j): i+j=11\}$, i.e. the sum of the numbers showing on the top is equal to eleven.

A probability space represents our uncertainty regarding an experiment.
A triple (Ω, \mathcal{A}, P) is called a discrete probability space, if
■ Ω is not empty and countable (i.e. $\exists \mathcal{S} \subseteq \mathbb{N}$ such that $|\Omega|=|\mathcal{S}|$),

- \mathcal{A} is the power set $\mathcal{P}(\Omega)$ (i.e. the set of all subsets of Ω), and
- $P: \mathcal{A} \rightarrow \mathbb{R}$ is a function, called a probability measure, with the following properties:

1. $\quad P(A) \geqslant 0$ for all $A \in \mathcal{A}$
2. $P(\Omega)=1$
3. σ-additivity holds: if $A_{n} \in \mathcal{A}, n=1,2, \ldots$ and $A_{i} \cap A_{j}=\varnothing$ for $i \neq j$, then

$$
P\left(\bigcup_{n=1}^{\infty} A_{n}\right)=\sum_{n=1}^{\infty} P\left(A_{n}\right) .
$$

The conditions 1-3. are called Kolmogorov's axioms.

Thit σ-algebra, measure, measure space *

Assume an arbitrary set Ω and $\mathcal{A} \subseteq \mathcal{P}(\Omega)$. The set \mathcal{A} is a σ-algebra over Ω if the following conditions are satisfied:

1. $\varnothing \in \mathcal{A}$,
2. $A \in \mathcal{A} \Rightarrow \bar{A} \in \mathcal{A}$ (i.e. it is closed under complementation),
3. $\quad A_{i} \in \mathcal{A}(i \in \mathbb{N}) \Rightarrow \bigcup_{i=0}^{\infty} A_{i} \in \mathcal{A}$ (i.e. it is closed under countable union).

It is a consequence of this definition that $\Omega \in \mathcal{A}$ is also satisfied. (See exercise.)
Assume an arbitrary set Ω and a σ-algebra \mathcal{A} over Ω. A function $P: \mathcal{A} \rightarrow[0, \infty]$ is called a measure if the following conditions are satisfied:

1. $P(\varnothing)=0$,
2. P is σ-additive.

Let \mathcal{A} be a σ-algebra over Ω and $P: \mathcal{A} \rightarrow[0, \infty]$ is a measure. (Ω, \mathcal{A}) is said to be a measurable space and the triple (Ω, \mathcal{A}, P) is called a measure space.

IN2320 - Probabilistic Graphical Models in Computer Vision

Suppose a dart is thrown at a round board modeled as a unit circle. The sample space contains the location of the dart if it lands in the board only. Hence it is given by

$$
\Omega=\left\{(x, y) \in \mathbb{R}^{2}: x^{2}+y^{2} \leqslant 1\right\}
$$

We denote the area of an the event $A \subseteq \Omega$ by $\mu(A)$, which is defined as the Riemann-integral of the characteristic function of A

$$
\mu(A):=\int_{\Omega} \chi_{A}(x) \mathrm{d} x, \quad \text { where } \quad \chi_{A}(x)= \begin{cases}1, & \text { if } x \in A \\ 0, & \text { if } x \notin A\end{cases}
$$

The σ-algebra \mathcal{A} over Ω is defined as follows

$$
\mathcal{A}=\{A \subseteq \Omega: \mu(A) \text { exists }\}
$$

The probability measure $P: \Omega \rightarrow[0,1]$ is given by $P(A)=\frac{\mu(A)}{\pi}$.

both A and B occur: $A \cap B$

- The \varnothing is called the impossible event; and
- Ω is the sure event.

IN2329 - Probabilistic Graphical Models in Computer Vision

1. Introduction - 26 / 42

For this case a discrete probability space (Ω, \mathcal{A}, P) is given by
■ Sample space: $\Omega=\{(i, j): 1 \leqslant i, j \leqslant 6\}$.
■ $\mathcal{A}=\mathcal{P}(\Omega)=\{\{(1,1)\}, \ldots,\{(1,1),(1,2)\}, \ldots,\{(1,1),(1,2),(1,3)\}, \ldots\}$.

- The probability measure

$$
P(A)=\frac{|A|}{36}=\frac{k}{36},
$$

where k is the number of atomic events in A.
Example: Let A denote the event that "the sum of the numbers showing on the top is equal to eleven", that is

$$
A=\{(i, j): i+j=11\}=\{(5,6),(6,5)\}
$$

Hence

$$
P(A)=P(\{(5,6),(6,5)\})=\frac{2}{36} .
$$

IN2329 - Probabilistic Graphical Models in Computer Vision

A probability space is a triple (Ω, \mathcal{A}, P), where (Ω, \mathcal{A}) is a measurable space, and P is a measure such that $P(\Omega)=1$, called a probability measure.
To summarize:
A triple (Ω, \mathcal{A}, P) is called probability space, if

- the sample space Ω is not empty,
- \mathcal{A} is a σ-algebra over Ω, and
- $P: \mathcal{A} \rightarrow \mathbb{R}$ is a function with the following properties: 1. $P(A) \geqslant 0$ for all $A \in \mathcal{A}$

2. $P(\Omega)=1$
3. σ-additive: if $A_{n} \in \mathcal{A}, n=1,2, \ldots$
and $A_{i} \cap A_{j}=\varnothing$ for $i \neq j$, then

$$
P\left(\bigcup_{n=1}^{\infty} A_{n}\right)=\sum_{n=1}^{\infty} P\left(A_{n}\right)
$$

IN2329 - Probabiistic Graphical Models in Computer Vision

Some simple consequences of the axioms

Administration Overview Probability theory Conditional Probability
The following rules are frequently used in applications:

- $P(A)=1-P(\Omega \backslash A)$.

Proof. Note that A and $\Omega \backslash A$ are disjoint.
$1=P(\Omega)=P(A \cup(\Omega \backslash A))=P(A)+P(\Omega \backslash A)$.

- $P(\varnothing)=0$.

Proof. $\quad P(\varnothing)=1-P(\Omega \backslash \varnothing)=1-P(\Omega)=1-1=0$.

- If $A \subseteq B$, then $P(A) \leqslant P(B)$.
- $P(A \cup B)=P(A)+P(B)-P(A \cap B)$.
- $P(A \cup B) \leqslant P(A)+P(B)$.
- $P(A \backslash B)=P(A)-P(A \cap B)$.

Consider two producing machines creating identical product in a factory. Assume we are given the following table with probabilities

	Machine I	Machine II	
The product is good	0.56	0.41	0.97
The product is waste	0.01	0.02	0.03
	0.57	0.43	1

Question: What is the probability of a product was created by Machine I, when it is good?
Let A denote the event that "the product was created by Machine l" and let B denote the event that "the product is good".

$$
P(A \mid B)=\frac{P(A \cap B)}{P(B)}=\frac{0.56}{0.97} \approx 0.58 .
$$

IN2320 - Probabilistic Graphical Modeds in Computer Vision

By making use of the product rule we can get

$$
P(A \mid B)=\frac{P(A \cap B)}{P(B)}=\frac{P(B \mid A) P(A)}{P(B)} .
$$

$P(A \mid B)$ is often called the posteriori probability, and $P(B \mid A)$ is called the likelihood, and $P(A)$ is called the prior probability.
A more general version of Bayes' rule, when we have a background event C (see Exercise):

$$
P(A \mid B \cap C)=\frac{P(B \mid A \cap C) P(A \mid C)}{P(B \mid C)} .
$$

Example: What is the probability that a product is good, if it was created by $\overline{\text { Machine } I ? ~ W e ~ a r e ~ g i v e n ~} P(A \mid B)=0.58, P(A)=0.57$ and $P(B)=0.97$.

$$
P(B \mid A)=\frac{P(A \mid B) P(B)}{P(A)}=\frac{0.58 \cdot 0.97}{0.57} \approx 0.98 .
$$

Let A, B and C be events. A and B are conditionally independent given C, denoted by $A \Perp B \mid C$, iff

$$
P(A \mid C)=P(A \mid B \cap C)
$$

or, equivalently, iff

$$
P(A \cap B \mid C)=P(A \mid C) P(B \mid C)
$$

A and B are conditionally independent given C means that once we learned C, learning B gives us no additional information about A.

Examples:

■ The operation of a car's starter motor is conditionally independent its radio given the status of the battery.

- Symptoms are conditionally independent given the disease.

Conditional probability allows us to reason with partial information
If $P(B)>0$, the conditional probability of A given B is defined as

$$
P(A \mid B) \triangleq \frac{P(A \cap B)}{P(B)} .
$$

This is the probability that A occurs, given we have observed B, i.e. we know the experiment's actual outcome will be in B.

Note that the axioms and rules of probability theory are fulfilled for the conditional probability. (e.g., $P(A \mid B)=1-P(\bar{A} \mid B)$).

IN2329 - Probabilistic Graphical Models in Computer Vision

Starting with the definition of conditional probability $P(B \mid A)$ and multiplying by $\mathrm{P}(\mathrm{A})$ we get the product rule:

$$
P(A \cap B)=P(A) P(B \mid A)
$$

The chain rule is given by

$$
\begin{equation*}
P\left(\cap_{i=1}^{n} A_{i}\right)=P\left(A_{1}\right) P\left(A_{2} \mid A_{1}\right) P\left(A_{3} \mid A_{1} \cap A_{2}\right) \cdots P\left(A_{n} \mid \cap_{i=1}^{n-1} A_{i}\right) . \tag{1}
\end{equation*}
$$

Proof. By induction. For $n=2$ we get the product rule. Let $n \in \mathbb{N}$ be given and suppose Eq. (1) is true for $k \leqslant n$. Then

$$
P\left(\cap_{i=1}^{n+1} A_{i}\right)=P\left(A_{n+1} \cap\left(\cap_{i=1}^{n} A_{i}\right)\right)=P\left(A_{n+1} \mid \cap_{i=1}^{n} A_{i}\right) P\left(\cap_{i=1}^{n} A_{i}\right) .
$$

The chain rule will become important later when we discuss conditional independence.

IN2329 - Probabilistic Graphical Models in Computer Vision

Two events A and B are independent, denoted by $A \perp B$, if

$$
P(A \mid B)=P(A)
$$

or, equivalently, iff

$$
P(A \cap B)=P(A) P(B)
$$

If A and B are independent, learning that B happened does not make A more or less likely to occur.
Example: Suppose we roll a die. Let us consider the events A denoting "the die

If the die is fair, then $P(A)=\frac{1}{2}$ and $P(B)=\frac{1}{3}$. Moreover $A \cap B$ means the event that the outcome is two, so $P(A \cap B)=\frac{1}{6}$.

$$
P(A \cap B)=\frac{1}{6}=\frac{1}{2} \cdot \frac{1}{3}=P(A) P(B) \quad \Rightarrow \quad A \text { and } B \text { are independent. }
$$

IN2329 - Probabilistic Graphical Models in Computer Vision

■ A probability space is a triple (Ω, \mathcal{A}, P), where (Ω, \mathcal{A}) is a measurable space, and P is a measure such that $P(\Omega)=1$. If Ω is countable, then (Ω, \mathcal{A}, P) is called discrete probability space.

- Let $P(B)>0$, then the conditional probability of A given B is defined as

$$
P(A \mid B) \triangleq \frac{P(A \cap B)}{P(B)}
$$

- If A and B are independent $(A \perp B)$, learning that B happened does not make A more or less likely to occur.
■ A and B are conditionally independent given C, denoted by $A \Perp B \mid C$, means that once we learned C, learning B gives us no additional information about A.
In the next lecture we will learn about
- Random variables
- Probability distributions
- The Expectation-maximization algorithm

1. Marek Capiński and Ekkerhard Kopp. Measure, Integral and Probability. Springer, 1998
2. Daphne Koller and Nir Friedman. Probabilistic Graphical Models: Principles and Techniques. MIT Press, 2009

A brain teaser

Suppose you are on a game show and you are given the choice of three doors: Behind one door is a car; behind the others, goats.

You pick a door, say No. 1, and the host, who knows what is behind the doors, opens another door, say No. 3, which has a goat.

He then says to you, "Do you want to pick door No. 2?"
Question: Is it to your advantage to switch your choice?

