Csaba Domokos

Summer Semester 2015/2016

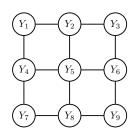
2. Expectation-maximization algorithm

William.

Agenda for today's lecture *

In the previous lecture we learnt about

- Probability space
- Conditional probability
- Independence, conditional independence



Today we are going to learn about

- Random variables (Y_1, \ldots, Y_9)
- Probability distributions
 - Joint distribution $(p(y_1, \ldots, y_9))$
 - Marginal distribution $(p(y_1))$
 - Conditional distribution $(p(y \mid x))$
 - Expectation
- Expectation-maximization algorithm

Example: throwing two "fair" dice *

We have the sample space $\Omega = \{(i, j) : 1 \leq i, j \leq 6\}$ and the (uniform) probability measure $P(\{(i,j)\}) = \frac{1}{36}$, where $(\Omega, \mathcal{P}(\Omega), P)$ forms a probability space.

In many cases it would be more natural to consider attributes of the outcomes. A random variable is a way of reporting an attribute of the outcome.

Le us consider the sum of the numbers showing on the dice, defined by define the mapping $X: \Omega \to \Omega'$, X(i,j) = i + j, where $\Omega' = \{2, 3, \dots, 12\}$.

It can be seen that this mapping leads a probability space $(\Omega',\mathcal{P}(\Omega'),P')$, such that $P':\mathcal{P}(\Omega') \to [0,1]$ is defined as

$$P'(A') = P(\{(i,j) : X(i,j) \in A'\}) .$$

Example: $P'(\{11\}) = P(\{(5,6),(6,5)\}) = \frac{2}{36}$.

Random variable

Let (Ω, \mathcal{A}) and (Ω', \mathcal{A}') measurable spaces. A mapping $X : (\Omega, \mathcal{A}) \to (\Omega', \mathcal{A}')$ is called measurable mapping, if

$$X^{-1}(A') = \{ \omega \in \Omega : X(\omega) \in A' \} \in \mathcal{A} .$$

A measurable mapping $X:(\Omega,\mathcal{A})\to(\mathbb{R},\mathcal{A}')$ is called random variable.

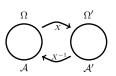
Let $X:(\Omega,\mathcal{A})\to (\Omega'\subseteq\mathbb{R},\mathcal{A}')$ be a random variable and P a measure over \mathcal{A} . Then

$$P'(A') := P_X(A') \stackrel{\Delta}{=} P(X^{-1}(A'))$$

defines a measure over A'.

 P_X is called the **image measure** of P by X.

Specially, if P is a probability measure then P_X is a probability measure over A'. (See Exercise.)

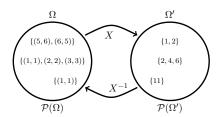


Random variables

Preimage mapping

Let $X: \Omega \to \Omega'$ be an arbitrary mapping. The preimage mapping $X^{-1}: \mathcal{P}(\Omega') \to \mathcal{P}(\Omega)$ is defined as

$$X^{-1}(A') = \{ \omega \in \Omega : X(\omega) \in A' \} .$$



THE P

Example: throwing two "fair" dice *

Probability distributions

We are given two sample spaces $\Omega = \{(i,j): 1 \leq i,j \leq 6\}$ and $\Omega' = \{2,3,\ldots,12\}$. We assume the *(uniform)* probability measure P over $(\Omega, \mathcal{P}(\Omega))$. Define a mapping $X: (\Omega, \mathcal{P}(\Omega)) \to (\Omega', \mathcal{P}(\Omega'))$, where X(i, j) = i + j.

Question: Is X a random variable?

$$X^{-1}(A') = \{ \omega \in \Omega : X(\omega) \in A' \} \in \mathcal{P}(\Omega)$$

is satisfied, since for any $\omega' \in \Omega'$ one can find an $\omega \in \Omega$ such that $X(\omega) = \omega'$. Therefore X is measurable, thus it is a random variable. Moreover, $\overset{\circ}{P}$ is a probability measure, hence the image measure

$$P_X(A') \stackrel{\Delta}{=} P(X^{-1}(A'))$$

is a probability measure on $(\Omega', \mathcal{P}(\Omega'))$.

$$\frac{\textit{Example}:}{P(\{(1,1),(1,3),(2,2),(3,1),(1,4),(2,3),(3,2),(4,1)\}) = \frac{8}{36} = \frac{2}{9}.$$

Probability distributions

Probability distribution

Note that a random variable is a measurable mapping from a probability space to measure space. It is neither a variable nor random.

Let $X:(\Omega,\mathcal{A},P)\to (\Omega'\subseteq\mathbb{R},\mathcal{A}')$ be a random variable. Then the image measure P_X of P by X is called **probability distribution**.

We use the notation P(x) for P(X = x), where

$$P(x) := P(X = x) \stackrel{\Delta}{=} P(\{\omega \in \Omega : X(\omega) = x\}) \;.$$

Similarly, $P(X < x) \stackrel{\Delta}{=} P(\{\omega \in \Omega : X(\omega) < x\}).$

Let $X:(\Omega,\mathcal{A},P)\to (\Omega'\subseteq\mathbb{R},\mathcal{A}')$ be a random variable. Then $F_X:\mathbb{R}\to\mathbb{R}$

$$F_X(x) \stackrel{\Delta}{=} P(X < x) , \quad x \in \mathbb{R}$$

is called cumulative distribution function (cdf.) of X.

Each probability measure is uniquely defined by its distribution function.

Ultir o

Density function

Let $F_X : \mathbb{R} \to \mathbb{R}$ be the cumulative distribution function of a random variable X. A measurable function $f_X(x)$ is called a density function of X, if

$$F_X(x) = \int_{-\infty}^x f_X(t) dt$$
, $x \in \mathbb{R}$.

A measurable function we mean to be a function with improper Riemann-integral.

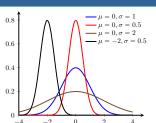
A random variable $X:(\Omega,\mathcal{A})\to(\Omega',\mathcal{A}')$ is said to be discrete random variable if Ω' is countable

The Normal (Gaussian) distribution *

A *continuous* random variable $X : \mathbb{R} \to \mathbb{R}$ with density function

$$f_X(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$$

is said the have Normal distribution (or Gaussian distribution with parameters $\mu \in \mathbb{R}$ and $\sigma \in \mathbb{R}_+$.



Standard normal distribution: $\mu = 0$ and $\sigma = 1$.

Marginal distributions

Probability distributions

Suppose a probability space (Ω, \mathcal{A}, P) . Let $X : (\Omega, \mathcal{A}) \to (\Omega', \mathcal{A}')$ and $Y:(\Omega,\mathcal{A})\to (\Omega'',\mathcal{A}'')$ be discrete random variables, where x_1,x_2,\ldots denote the values of X and y_1, y_2, \ldots denote the values of Y.

The distributions defined by the probabilities

$$p_i \stackrel{\Delta}{=} P(X=x_i) \quad \text{and} \quad q_j \stackrel{\Delta}{=} P(Y=y_j)$$

are called the marginal distributions of X and of Y, respectively.

Let us consider the $\it marginal \ distribution \ of \ X$. Then

$$p_i = P(X = x_i) = \sum_j P(X = x_i, Y = y_j) = \sum_j p_{ij}$$
.

Similarly, the $\it marginal\ distribution\ of\ Y$ is given by

$$q_j = P(Y = y_j) = \sum_i P(X = x_i, Y = y_j) = \sum_i p_{ij}$$
.

Continuous random variable

A random variable $X:(\Omega,\mathcal{A},P)\to (\mathbb{R},\mathcal{A}')$ is called **continuous random** variable, if it has a density function $f_X(x)$. Then the followings are held:

- $f_{X}(x)$ is non-negative,
- $2. \quad \int_{-\infty}^{\infty} f_X(x) dx = 1,$
- 3. $P(a \leq X < b) \stackrel{\Delta}{=} F_X(a \leq X < b) = \int_a^b f_X(x) dx$.

Proof.

THE P

- 1. F_X is non-negative and monotonously increasing, thus $f_X(x) \geqslant 0$.
- $\int_{-\infty}^{\infty} f_X(x) dx = F_X(\infty) F_X(-\infty) = 1 0 = 1.$
- $F_X(a \leqslant X < b) = F_X(b) F_X(a) = \int_{-\infty}^b f_X(x) \mathrm{d}x \int_{-\infty}^a f_X(x) \mathrm{d}x = \int_{-\infty}^b f_X(x) \mathrm{d}x.$

Title.

Joint distribution

Probability distributions

Suppose a probability space (Ω, \mathcal{A}, P) . Let $X : (\Omega, \mathcal{A}) \to (\Omega', \mathcal{A}')$ and $Y:(\Omega,\mathcal{A})\to (\Omega'',\mathcal{A}'')$ be discrete random variables, where x_1,x_2,\ldots denote the values of X and y_1, y_2, \ldots denote the values of Y.

We introduce the notation

$$p_{ij} \stackrel{\Delta}{=} P(X = x_i, Y = y_j) \quad i, j = 1, 2, \dots$$

for the probability of the events

$$\{X=x_i,Y=y_j\}:=\{\omega\in\Omega:X(\omega)=x_i\text{ and }Y(\omega)=y_j\}\;.$$

These probabilities p_{ij} form a distribution, called the **joint distribution** of X and

Therefore,

Ultima.

$$\sum_{i} \sum_{j} p_{ij} = 1 .$$

Probability distributions

Example: marginal distribution *

Consider two producing machines creating identical product in a factory. Assume we are given the following table with probabilities

	Machine I	Machine II	
The product is good	0.56	0.41	0.97
The product is waste	0.01	0.02	0.03
-	0.57	0.43	1

The marginal distributions of discrete random variables corresponding to the values of {good, waste} and {I, II} are shown in the last column and last row, respectively.

$$\sum_{i} p_{i} = \sum_{i} P(X = x_{i}) = \sum_{i} \sum_{j} P(X = x_{i}, Y = y_{i}) = \sum_{i} \sum_{j} p_{ij} = 1.$$

Suppose a probability space (Ω, \mathcal{A}, P) . Let $X : (\Omega, \mathcal{A}) \to (\Omega' \subseteq \mathbb{R}, \mathcal{A}')$ and $Y:(\Omega,\mathcal{A})\to (\Omega''\subseteq\mathbb{R},\mathcal{A}'')$ be random variables. The **joint cumulative distribution function** of X and Y, denoted by $F_{XY}: \mathbb{R}^2 \to \mathbb{R}$, is defined as

$$F_{XY}(x,y) \stackrel{\Delta}{=} P(X < x, Y < y) , \quad x, y \in \mathbb{R} .$$

If both X and Y are continuous random variables, then the joint density function

$$F_{XY}(x,y) = \int_{-\infty}^{x} \int_{-\infty}^{y} f_{XY}(u,v) du dv.$$

The joint density function $f_{XY}(x,y)$ also satisfies the following property:

$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{XY}(u,v) \mathrm{d}u \mathrm{d}v = 1 \; .$$

Ultita.

Conditional distribution

Suppose a probability space (Ω, \mathcal{A}, P) . Let X and Y be discrete random variables, where x_1, x_2, \ldots denote the values of X and y_1, y_2, \ldots denote the values of Y.

The $\operatorname{conditional}$ distribution of X given Y is defined by

$$P(X = x_i \mid Y = y_j) = \frac{P(X = x_i, Y = y_j)}{P(Y = y_j)} = \frac{p_{ij}}{\sum_k p_{kj}} = \frac{p_{ij}}{q_j}.$$

Therefore, $\sum_{i} P(X = x_i \mid Y = y_j) = \sum_{i} \frac{p_{ij}}{\sum_{k} p_{kj}} = 1$ is also held.

The conditional cumulative distribution function is defined as

$$\begin{split} F_{X|Y}(x \mid y) & \stackrel{\Delta}{=} \lim_{h \to 0} P(X < x \mid y \leqslant Y < y + h) \\ & = \lim_{h \to 0} \frac{P(X < x, y \leqslant Y < y + h)}{P(y \leqslant Y < y + h)} \end{split}$$

Vite.

Expectation

Expectation

Let X be a (continuous) random variable with density function $f_X(x)$. The expectation of X is defined as

$$\mathbb{E}[X] = \int_{-\infty}^{\infty} x \cdot f_X(x) \mathrm{d}x ,$$

assuming that this integral is absolutely convergent (that is the value of the integral $\int_{-\infty}^{\infty} |x \cdot f_X(x)| dx = \int_{-\infty}^{\infty} |x| \cdot f_X(x) dx$ is finite).

Suppose a random variable X with density function $f_X(x)$. The expected value of a function $g(x): \mathbb{R} \to \mathbb{R}$ is defined as

$$\mathbb{E}[g(X)] = \int_{-\infty}^{\infty} g(x) \cdot f_X(x) dx ,$$

assuming that this integral is absolutely convergent.

Marginal densities

Suppose a probability space (Ω, \mathcal{A}, P) . Let $X : (\Omega, \mathcal{A}) \to (\Omega', \mathcal{A}')$ and $Y:(\Omega,\mathcal{A}) \to (\Omega'',\mathcal{A}'')$ be random variables with joint cumulative distribution function $F_{XY}: \mathbb{R}^2 \to \mathbb{R}$. The marginal cumulative distribution functions of X and Y are given by

$$\begin{split} F_X(x):=&F_{XY}(x,\infty)=\lim_{y\to\infty}F_{XY}(x,y)\;,\quad\text{and}\\ F_Y(y):=&F_{XY}(\infty,y)=\lim_{x\to\infty}F_{XY}(x,y)\;. \end{split}$$

If both X and Y are continuous random variables with the joint density function $f_{XY}(x,y)$, then the marginal density functions $f_X, f_Y : \mathbb{R} \to \mathbb{R}$ are defined as

$$f_X(x) = \int_{-\infty}^{\infty} f_{XY}(x,y) \mathrm{d}y \quad \text{and} \quad f_Y(y) = \int_{-\infty}^{\infty} f_{XY}(x,y) \mathrm{d}x \;.$$

Conditional density

White

Suppose a probability space (Ω, \mathcal{A}, P) . Let X and Y be random variables with joint density function $f_{XY}(x,y)$. If the marginal density function $f_{Y}(y) \neq 0$, then the conditional density function of X given Y is defined as

$$f_{X|Y}(x \mid y) = \frac{f_{XY}(x,y)}{f_Y(y)}.$$

Expectation

The expectation of a random variable is intuitively the long-run average value of repetitions of the experiment it represents.

Let X be a discrete random variable taking values x_1, x_2, \ldots with probabilities p_1, p_2, \ldots , respectively. The expectation (or expected value) of X is defined as

$$\mathbb{E}[X] = \sum_{i=1}^{\infty} x_i p_i ,$$

assuming that this series is absolutely convergent (that is $\sum_{i=1}^{\infty} |x_i| p_i$ is convergent)

Example: throwing two "fair" dice and the value of X is is the sum the numbers

n the dice.
$$\mathbb{E}[X] = 2\frac{1}{36} + 3\frac{2}{36} + 4\frac{3}{36} + 5\frac{4}{36} + 6\frac{5}{36} + 7\frac{6}{36} + 8\frac{5}{36} + 9\frac{4}{36} + 10\frac{3}{36} + 11\frac{2}{36} + 12\frac{1}{36} = 7$$

Liber.

Conditional expectation

Probability distributions

A random vector $\mathbf{X} = (X_1, \dots, X_n)$ is a vector whose components are random variables. If all X_i are discrete, then ${f X}$ is called a discrete random vector. Let (X,Y) be a discrete random vector. The conditional expectation of X given the event $\{Y = y\}$ is defined as

$$\mathbb{E}[X \mid Y = y] = \sum_{i=1}^{\infty} x_i P(X = x_i \mid Y = y) ,$$

assuming that this series is absolutely convergent.

Let (X,Y) be a (continuous) random vector with conditional density function $f_{X|Y}(x \mid y)$. The conditional expectation of X given the event $\{Y = y\}$ is defined as

$$\mathbb{E}[X \mid Y = y] = \int_{-\infty}^{\infty} x \cdot f_{X|Y}(x \mid Y = y) dx,$$

assuming that this integral is absolutely convergent.

Suppose a (continuous) random vector (X,Y) with conditional density function $f_{X\mid Y}(x\mid y)$. The conditional expectation of a function $g(x):\mathbb{R}\to\mathbb{R}$ given the event $\{Y = y\}$ is defined as

$$\mathbb{E}[g(X) \mid Y = y] = \int_{-\infty}^{\infty} g(x) \cdot f_{X|Y}(x \mid Y = y) dx,$$

assuming that this integral is absolutely convergent.

A random variable $X:(\Omega,\mathcal{A},P)\to (\Omega'\subseteq\mathbb{R},\mathcal{A}',P_X)$ is a measurable mapping from a probability space to a measure space

Summary

- The image measure P_X of P by X is called **probability distribution**. The function $F_X : \mathbb{R} \to \mathbb{R}$, $F_X(x) = P(x < X)$ is called **cumulative** distribution function of X.
- A measurable function $f_X(x)$ is called **density function** of X, if

$$F_X(x) = \int_{-\infty}^x f_X(t) dt .$$

- Probability distributions and densities
 - Joint distribution: $p_{XY}(x, y)$
 - Marginal distribution: $p_X(x)$
 - Conditional distribution: $p_{X|Y}(x \mid y)$
- The expected value is intuitively the long-run average value of repetitions of the experiment.

THE .

Probability distributions

The Expectation-maximization algorithm

Latent variables

Suppose we are given a set of i.i.d. (i.e. independent and identically distributed) data samples $\{\mathbf{x}_1,\ldots,\mathbf{x}_N\}$ represented by a matrix $\mathbf{X} \in \mathbb{R}^{N \times D}$. The samples are drawn from a model (e.g., mixture of Gaussians) given by its parameters $\overset{\cdot}{ heta}$. There are mainly two applications of the EM algorithm:

- The data has missing values due to limitations of the observation.
- The likelihood function can be simplified by assuming missing values.

Latent variables gathering the missing values are represented by a matrix ${f Z}$. We generally want to maximize the posterior probability

$$\boldsymbol{\theta^*} \in \operatorname*{argmax}_{\boldsymbol{\theta}} p(\boldsymbol{\theta} \mid \mathbf{X}) = \operatorname*{argmax}_{\boldsymbol{\theta}} \sum_{\mathbf{Z}} p(\boldsymbol{\theta}, \mathbf{Z} \mid \mathbf{X}) \; .$$

Alternatively, one can maximize the log-likelihood

$$\mathcal{L}(\boldsymbol{\theta}; \mathbf{X}) = \ln p(\mathbf{X} \mid \boldsymbol{\theta}) = \ln \sum_{\mathbf{Z}} p(\mathbf{X}, \mathbf{Z} \mid \boldsymbol{\theta}) \; .$$

Jensen's inequality *

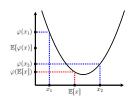
Reminder. A function $f: \mathbb{R}^n \to \mathbb{R}$ is **convex**, if $\forall a, b \in \mathbb{R}^n$, $\forall t \in [0, 1]$

$$f(ta + (1-t)b) \le tf(a) + (1-t)f(b)$$

holds. A function f is said to be **concave** if -f is convex.

Assume a random vector ${\bf X}$ and a convex function φ , then

$$\varphi\left(\mathbb{E}[\mathbf{X}]\right) \leqslant \mathbb{E}\left[\varphi(\mathbf{X})\right]$$
.



Title .

Proof of Jensen's inequality *

For a discrete random variable X taking values x_1, x_2, \ldots with probabilities p_1, p_2, \ldots , one can obtain

$$\varphi(\mathbb{E}[X]) = \varphi\left(\sum_{i=1}^{\infty} x_i p_i\right) \stackrel{\Delta}{=} L\left(\sum_{i=1}^{\infty} x_i p_i\right) = a\left(\sum_{i=1}^{\infty} x_i p_i\right) + b ,$$

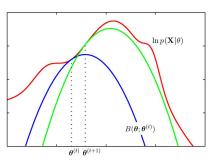
where $L: \mathbb{R} \leftarrow \mathbb{R}$, L(x) = ax + b is an affine function corresponding to the tangent line of φ at $\mathbb{E}[X]$.

$$= \sum_{i=1}^{\infty} p_i(ax_i + b) - \sum_{i=1}^{\infty} p_i b + b = \sum_{i=1}^{\infty} p_i(ax_i + b) = \sum_{i=1}^{\infty} p_i L(x_i)$$

$$\leq \sum_{i=1}^{\infty} p_i \varphi(x_i) = \mathbb{E}[\varphi(X)].$$

The overview of the EM algorithm

The idea: start with a guess $\theta^{(t)}$ for the parameters, calculate an easily computed lower bound $B(\pmb{\theta};\pmb{\theta}^{(t)})$ that touches the function $\ln p(\mathbf{X}\mid\pmb{\theta})$, and maximize that bound instead. This procedure generally converges to a **local maximizer** $\hat{\theta}$.



Lower bound maximization *

Probability distributions

First we derive the lower bound $B(\theta; \theta^{(t)})$.

$$\ln p(\mathbf{X} \mid \boldsymbol{\theta}) = \ln \sum_{\mathbf{Z}} p(\mathbf{X}, \mathbf{Z} \mid \boldsymbol{\theta}) = \ln \sum_{\mathbf{Z}} q^{(t)}(\mathbf{Z}) \underbrace{\frac{p(\mathbf{X}, \mathbf{Z} \mid \boldsymbol{\theta})}{q^{(t)}(\mathbf{Z})}}_{g(\mathbf{Z})}$$

where $q^{(t)}(\mathbf{Z})$ is an arbitrary probability distribution of the latent variables \mathbf{Z} .

$$\begin{split} &= \ln \mathbb{E} \underbrace{\left[\frac{p(\mathbf{X}, \mathbf{Z} \mid \boldsymbol{\theta})}{q^{(t)}(\mathbf{Z})} \right]}_{g(\mathbf{Z})} \geqslant \mathbb{E} \left[\ln \frac{p(\mathbf{X}, \mathbf{Z} \mid \boldsymbol{\theta})}{q^{(t)}\mathbf{Z}} \right] \\ &= \sum_{\mathbf{Z}} q^{(t)}(\mathbf{Z}) \ln \frac{p(\mathbf{X}, \mathbf{Z} \mid \boldsymbol{\theta})}{q^{(t)}(\mathbf{Z})} \stackrel{\Delta}{=} B(\boldsymbol{\theta}; \boldsymbol{\theta}^{(t)}) \; . \end{split}$$

Suppose two functions $f, g: \mathbb{R}^D \to \mathbb{R}$ having continuous first partial derivatives. We consider the following optimization problem

$$\label{eq:force_force} \max f(\mathbf{x})$$
 subject to $g(\mathbf{x}) = 0$.

It is convenient to study the Lagrangian function, defined as

$$L(\mathbf{x}, \lambda) \stackrel{\Delta}{=} f(\mathbf{x}) + \lambda g(\mathbf{x}) ,$$

where $\lambda \neq 0$ is called a Lagrange multiplier.

Geometric interpretation of a Lagrange

The constraint $g(\mathbf{x}) = 0$ forms a D-1 dimensional surface in \mathbb{R}^D . Suppose \mathbf{x} and a nearby point $\mathbf{x} + \boldsymbol{\varepsilon}$ lying on the surface $g(\mathbf{x}) = 0$. Based on the Taylor expansion of garound x we get

$$g(\mathbf{x} + \boldsymbol{\varepsilon}) \approx g(\mathbf{x}) + \boldsymbol{\varepsilon}^T \nabla g(\mathbf{x}) \quad \Rightarrow \quad \boldsymbol{\varepsilon}^T \nabla g(\mathbf{x}) \approx 0 \; .$$

In the limit $\|\varepsilon\| \to 0$, we have $\varepsilon^T \nabla g(\mathbf{x}) = 0$, which means that $\nabla g(\mathbf{x})$ is normal to the constraint surface, since ε is parallel to the surface.

At an optimal \mathbf{x}_A lying on the constraint surface, $\nabla f(\mathbf{x}_A)$ must be orthogonal to the surface, otherwise we could increase the value of f by moving along the constraint surface. Therefore, there exist a Lagrange multiplier λ such that

$$\nabla f + \lambda \nabla g = 0$$

which can be equivalently written as $\nabla_x L = 0$. Note that $\frac{\partial}{\partial \lambda} L = 0$ leads to the constraint $g(\mathbf{x}) = 0$.

Finding an optimal bound *

We want to find the *best* lower bound, defined as the bound $B({m{ heta}};{m{ heta}}^{(t)})$ that touches the objective function $\ln p(\mathbf{X} \mid \boldsymbol{\theta})$ at $\boldsymbol{\theta}^{(t)}.$

The optimal bound at the current guess $\boldsymbol{\theta}^{(t)}$ can be found by maximizing

$$B(\boldsymbol{\theta}^{(t)}; \boldsymbol{\theta}^{(t)}) = \sum_{\mathbf{Z}} q^{(t)}(\mathbf{Z}) \ln \frac{p(\mathbf{X}, \mathbf{Z} \mid \boldsymbol{\theta}^{(t)})}{q^{(t)}(\mathbf{Z})}$$

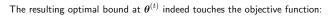
with respect to the distribution $q^{(t)}(\mathbf{Z})$.

Introducing a Lagrange multiplier λ to enforce $\sum_{\mathbf{Z}} q^{(t)}(\mathbf{Z}) = 1$, the objective

$$h(q^{(t)}) = \sum_{\mathbf{Z}} q^{(t)}(\mathbf{Z}) \ln p(\mathbf{X}, \mathbf{Z} \mid \boldsymbol{\theta}^{(t)}) - \sum_{\mathbf{Z}} q^{(t)}(\mathbf{Z}) \ln q^{(t)}(\mathbf{Z}) + \lambda \left(\sum_{\mathbf{Z}} q^{(t)}(\mathbf{Z}) - 1 \right).$$

Finding an optimal bound *

Title.



$$B(\boldsymbol{\theta}^{(t)}; \boldsymbol{\theta}^{(t)}) = \sum_{\mathbf{Z}} q^{(t)}(\mathbf{Z}) \ln \frac{p(\mathbf{X}, \mathbf{Z} \mid \boldsymbol{\theta}^{(t)})}{q^{(t)}(\mathbf{Z})}$$

By substituting Eq. (2), we get

$$= \sum_{\mathbf{Z}} p(\mathbf{Z} \mid \mathbf{X}, \boldsymbol{\theta}^{(t)}) \ln \frac{p(\mathbf{X}, \mathbf{Z} \mid \boldsymbol{\theta}^{(t)})}{p(\mathbf{Z} \mid \mathbf{X}, \boldsymbol{\theta}^{(t)})}$$

$$= \ln p(\mathbf{X} \mid \boldsymbol{\theta}^{(t)}) \sum_{\mathbf{Z}} p(\mathbf{Z} \mid \mathbf{X}, \boldsymbol{\theta}^{(t)})$$

$$= \ln p(\mathbf{X} \mid \boldsymbol{\theta}^{(t)}).$$

The EM algorithm

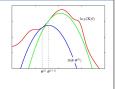
- 1: Choose an initial setting for the parameters $oldsymbol{ heta}^{(0)}$
- 2: $t \rightarrow 0$
- 3: repeat
- **E step**. Evaluate $q^{(t-1)}(\mathbf{Z}) \stackrel{\Delta}{=} p(\mathbf{Z} \mid \mathbf{X}, \boldsymbol{\theta}^{(t-1)})$
 - **M step**. Evaluate $\theta^{(t)}$ given by

$$\boldsymbol{\theta}^{(t)} = \underset{\boldsymbol{\theta}}{\operatorname{argmax}} Q(\boldsymbol{\theta}, \boldsymbol{\theta}^{(t-1)}),$$

where
$$Q(\boldsymbol{\theta}, \boldsymbol{\theta}^{(t-1)}) \stackrel{\Delta}{=} \mathbb{E}[\ln p(\mathbf{X}, \mathbf{Z} \mid \boldsymbol{\theta}) \mid \mathbf{X}, \boldsymbol{\theta}^{(t-1)}]$$

= $\sum_{\mathbf{Z}} p(\mathbf{Z} \mid \mathbf{X}, \boldsymbol{\theta}^{(t-1)}) \ln p(\mathbf{X}, \mathbf{Z} \mid \boldsymbol{\theta})$

7: **until** convergence of either the parameters $oldsymbol{ heta}$ or the log likelihood $\mathcal{L}(\boldsymbol{\theta}; \mathbf{X})$



THE .

Finding an optimal bound *

$$h(q^{(t)}) = \sum_{\mathbf{Z}} q^{(t)}(\mathbf{Z}) \ln p(\mathbf{X}, \mathbf{Z} \mid \boldsymbol{\theta}^{(t)}) - \sum_{\mathbf{Z}} q^{(t)}(\mathbf{Z}) \ln q^{(t)}(\mathbf{Z}) + \lambda \left(\sum_{\mathbf{Z}} q^{(t)}(\mathbf{Z}) - 1 \right).$$

Setting the derivative of h w.r.t. $q^{(t)}(\mathbf{Z})$ to 0, we obtain $\hat{\theta}$

$$\frac{\partial}{\partial q^{(t)}(\mathbf{Z})} h = \ln p(\mathbf{X}, \mathbf{Z} \mid \boldsymbol{\theta}^{(t)}) - \ln q^{(t)}(\mathbf{Z}) - 1 - \lambda = 0.$$

$$p(\mathbf{X}, \mathbf{Z} \mid \boldsymbol{\theta}^{(t)}) \exp(-1 - \lambda) = q^{(t)}(\mathbf{Z})$$

$$\exp(-1 - \lambda) \sum_{\mathbf{Z}} p(\mathbf{X}, \mathbf{Z} \mid \boldsymbol{\theta}^{(t)}) = \sum_{\mathbf{Z}} q^{(t)}(\mathbf{Z}) = 1$$

$$\exp(-1 - \lambda) = \frac{1}{\sum_{\mathbf{Z}} p(\mathbf{X}, \mathbf{Z} \mid \boldsymbol{\theta}^{(t)})} = \frac{1}{p(\mathbf{X} \mid \boldsymbol{\theta}^{(t)})}.$$
(1)

Therefore, substituting back into Eq. (1), we get

$$q^{(t)}(\mathbf{Z}) = \frac{p(\mathbf{X}, \mathbf{Z} \mid \boldsymbol{\theta}^{(t)})}{p(\mathbf{X} \mid \boldsymbol{\theta}^{(t)})} = p(\mathbf{Z} \mid \mathbf{X}, \boldsymbol{\theta}^{(t)}).$$
(2)

Tible.

Maximizing the bound *

We want to maximize $B(\boldsymbol{\theta}; \boldsymbol{\theta}^{(t)})$ with respect to $\boldsymbol{\theta}$.

$$\begin{split} B(\boldsymbol{\theta}; \boldsymbol{\theta}^{(t)}) &= \sum_{\mathbf{Z}} q^{(t)}(\mathbf{Z}) \ln \frac{p(\mathbf{X}, \mathbf{Z} \mid \boldsymbol{\theta})}{q^{(t)}(\mathbf{Z})} \\ &= \sum_{\mathbf{Z}} q^{(t)}(\mathbf{Z}) \ln p(\mathbf{X}, \mathbf{Z} \mid \boldsymbol{\theta}) - \sum_{\mathbf{Z}} q^{(t)}(\mathbf{Z}) \ln q^{(t)}(\mathbf{Z}) \;. \end{split}$$

We need to consider the first term only

$$\begin{split} \sum_{\mathbf{Z}} q^{(t)}(\mathbf{Z}) \ln p(\mathbf{X}, \mathbf{Z} \mid \boldsymbol{\theta}) &= \sum_{\mathbf{Z}} p(\mathbf{Z} \mid \mathbf{X}, \boldsymbol{\theta}^{(t)}) \ln p(\mathbf{X}, \mathbf{Z} \mid \boldsymbol{\theta}) \\ &= \mathbb{E} \left[\ln p(\mathbf{X}, \mathbf{Z} \mid \boldsymbol{\theta}) \mid \mathbf{X}, \boldsymbol{\theta}^{(t)} \right] \stackrel{\Delta}{=} Q(\boldsymbol{\theta}, \boldsymbol{\theta}^{(t)}) \; . \end{split}$$

$$\boldsymbol{\theta}^{(t+1)} \in \operatorname*{argmax}_{\boldsymbol{\theta}} B(\boldsymbol{\theta}; \boldsymbol{\theta}^{(t)}) = \operatorname*{argmax}_{\boldsymbol{\theta}} Q(\boldsymbol{\theta}, \boldsymbol{\theta}^{(t)}) \; .$$

Summary

- We have finished the overview of Probability theory.
- The Expectation-maximization algorithm is an iterative method for parameter estimation of maximum likelihood, where the model also depends on latent variables

In the next lecture we will learn about

- The EM algorithm for Mixtures of Gaussians
- Introduction to Graphical models:
 - Directed graphical models: Bayesian network
- Undirected graphical models: Markov random field

Probability theory

- 1. Marek Capiński and Ekkerhard Kopp. Measure, Integral and Probability. Springer, 1998
- Daphne Koller and Nir Friedman. Probabilistic Graphical Models: Principles and Techniques. MIT Press, 2009

The Expectation-maximization algorithm

- 3. A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society, 39(1):1-38, 1977
- Christopher Bishop. Pattern Recognition and Machine Learning. Springer, 2006
- Frank Dellaert. The expectation maximization algorithm. Technical Report GIT-GVU-02-20, Georgia Institute of Technology, Atlanta, GA, USA, 2002
- Shane M. Haas. The expectation-maximization and alternating minimization $% \left(1\right) =\left(1\right) \left(1\right) \left$
- algorithms. Unpublished, 2002
 Yihua Chen and Maya R. Gupta. EM demystified: An expectation-maximization tutorial. Technical Report UWEETR-2010-0002, University of Washington, Seattle, WA, USA, 2009