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2. Expectation-maximization algorithm

2 /41

Agenda for today’s lecture *

In the previous lecture we learnt about

B Probability space
m Conditional probability
B Independence, conditional independence

o
ARG, @
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@/ 3 Q@
) @ (v

Today we are going to learn about

1.
2.

Random variables (Y7,...,Yy)
Probability distributions

m Joint distribution (p(y1,...,99))
B Marginal distribution (p(y1))

m  Conditional distribution (p(y | ))
W Expectation

Expectation-maximization algorithm
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Random variables 4 /41

Example: throwing two “fair” dice *

We have the sample space Q = {(i,7) : 1 <1i,j < 6} and the (uniform) probability measure P({(i,])}) = 3, where
(Q,P(Q), P) forms a probability space.

In many cases it would be more natural to consider attributes of the outcomes. A random variable is a way of reporting an attribute of the outcome.
Le us consider the sum of the numbers showing on the dice, defined by define the mapping X : Q — ', X (i,7) =i + j, where Q' = {2,3,...,12}.
It can be seen that this mapping leads a probability space (', P()'), P"), such that P’ : P(2') — [0, 1] is defined as

P/(A') = P({(i,5) : X(irj) € A'}) .
Example: P'({11}) = P({(5,6),(6,5)}) = & .
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Preimage mapping

Let X : Q — € be an arbitrary mapping. The preimage mapping X! : P(Y) — P(Q) is defined as
X 1A ={weQ: X(w)e A} .

Q 94
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Random variable

Let (©2,.4) and (', A’) measurable spaces. A mapping X : (2, A) — (€', A") is called measurable mapping, if
X 1A ={weQ: X(wed}eA.

A measurable mapping X : (2, A) — (R,.A’) is called random variable.
Let X : (2, 4) — (' < R, A') be a random variable and P a measure over A. Then

P'(A) = Px(A) & P(X1(4")

defines a measure over A’.

Q Q
Px is called the image measure of P by X. XS
Specially, if P is a probability measure then Px is a probability measure over A’. (See Exercise.) I
A A’
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Example: throwing two “fair” dice *

We are given two sample spaces 2 = {(i,7) : 1 < 4,7 <6} and ' = {2,3,...,12}. We assume the (uniform) probability measure P over (Q, P(2)). Define

a mapping X : (Q,P(Q)) — (2, P()), where X(i,5) =i+ j.

Question: Is X a random variable? X_I(A’) —(weQ: X(w)e A’} e P(Q)

is satisfied, since for any w’ € Q' one can find an w € € such that X (w) = w’. Therefore X is measurable, thus it is a random variable. Moreover, P is a
babilit h the i

probability measure, hence the image measure Py (4') A PX-1(A)

is a probability measure on (', P(Q)).

Example: Px({2,4,5}) =P(X~'({2,4,5}))= P({(1,1),(1,3),(2,2),(3,1),(1,4),(2,3),(3,2), (4, )})= 55 = 5.
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Probability distributions

9 /41

Probability distribution

Note that a random variable is a measurable mapping from a probability space to a measure space. It is neither a variable nor random.

Let X : (2,4, P) — (¥ < R, A’) be a random variable. Then the image measure Px of P by X is called probability distribution.

We use the notation P(x) for P(X = x), where

Plz) =P(X =2) 2 P(fwe Q: X(w) = 1}) .

Similarly, P(X < 2) £ P({we Q: X(w) < z}).

Let X : (Q, A4, P) — (¥ < R, A") be a random variable. Then Fx : R —» R

Fx(z) 2P(X <z), zeR

is called cumulative distribution function (cdf.) of X.
Each probability measure is uniquely defined by its distribution function.
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Density function

Let F'x : R — R be the cumulative distribution function of a random variable X. A measurable function fx(x) is called a density function of X, if

X
(x) = J fx()dt, zeR.
—Q0
A measurable function we mean to be a function with improper Riemann-integral.

A random variable X : (2, A) — (€2, A’) is said to be discrete random variable if Q' is countable.

IN2329 - Probabilistic Graphical Models in Computer Vision 2. Expectation-maximization algorithm — 11 / 41

Continuous random variable

A random variable X : (2, A, P) — (R, A’) is called continuous random variable, if it has a density function fx(x). Then the followings are held:

1. fx(z) is non-negative,
2. Sofoo fx(z)dz =1,
3. Pla<X <b)2Fy(a<X <b)=1{ fx(z)de

Proof.
1. Fx is non-negative and monotonously increasing, thus fx(z) = 0.
2.
f fx(z)dz = Fx(0) — Fx(—0)=1-0=1.
3. Fx(a§X<b)=F( JfX d%—JfX dl‘—ffX dz.
O
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The Normal (Gaussian) distribution *

A continuous random variable X : R — R with density function

fx (@) = ! exp <—M>

o2 202

is said the have Normal distribution (or Gaussian distribution with parameters
peRand o e Ry.

Standard normal distribution: =0 and o = 1.

—pu=0,0=1
0-8 —u=0,0=05
—p=0,0=2
0.6 —_—pu=-2,0=05
0.4
0.2
0
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Joint distribution

values of X and y1,¥s,... denote the values of Y.

We introduce the notation

>

for the probability of the events

Therefore,

Suppose a probability space (2,4, P). Let X : (2, 4) —» (', A) and Y : (2, 4) — (", A”) be discrete random variables, where x1,x2,... denote the

pij = P(X =Y =y;) i,j=12,...

(X =2,V =y;} ={weQ: X(w) =2; and Y (w) = y;} .

These probabilities p;; form a distribution, called the joint distribution of X and Y.

22 pi=1.
i g
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Marginal distributions

Suppose a probability space (2,4, P). Let X : (2, 4) —» (', A) and Y : (2, 4) — (", A”) be discrete random variables, where x1,x2,... denote the
values of X and yi,%s,... denote the values of Y.

The distributions defined by the probabilities A A
pi=P(X =1;) and g¢; =P =yj)

are called the marginal distributions of X and of Y, respectively.

Let us consider the marginal distribution of X. Then

Similarly, the marginal distribution of Y is given by

g =P(Y =y;) =Y. P(X =x:,Y =y;) = > pij -
% %
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Example: marginal distribution *

Consider two producing machines creating identical product in a factory. Assume we are given the following table with probabilities

Machine | Machine Il
The product is good 0.56 0.41 0.97
The product is waste 0.01 0.02 0.03
0.57 043 | 1

The marginal distributions of discrete random variables corresponding to the values of {good, waste} and {l, I} are shown in the last column and last row,
respectively.

The following also holds

= TP =) = DT P =¥ =) = X 1
i i i (2]

11
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Joint density

Suppose a probability space (£2,.4, P). Let X : (Q,4) - (Y <R, A") and Y : (2, A) — (2" < R, A”) be random variables. The joint cumulative
distribution function of X and Y, denoted by Fxy : R2 — R, is defined as

Fxy(z,y) 2 P(X <z,Y <y), a,yeR.
If both X and Y are continuous random variables, then the joint density function fxy : R> — R is defined by
Ty
Fyy(z,y) = f f fxv (u,v)dudv .
—0 J—w0

The joint density function fxy(z,y) also satisfies the following property:

f; [’; fxy(u,v)dudv = 1.
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Marginal densities

Suppose a probability space (2,4, P). Let X : (Q, A) —» (2, A)and Y : (2, 4) — (", A”) be random variables with joint cumulative distribution
function Fxy : R? — R. The marginal cumulative distribution functions of X and Y are given by
Fx(x) :=Fxy(z,0) = lim Fxy(x,y), and
y—0
Fy(y) :=Fxy(0,y) = lim Fyy(z,y) .

If both X and Y are continuous random variables with the joint density function fxy (x,y), then the marginal density functions fx, fy : R — R are
defined as

i@ = [ perlesy and fr@) = [ fevteais.
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Conditional distribution

Suppose a probability space (2,4, P). Let X and Y be discrete random variables, where x1, x5, ... denote the values of X and y1,ys2,... denote the

values of Y.

The conditional distribution of X given Y is defined by

P(X =Y =y;) Pij

Py

PX =2, |Y =y;) = _
(X =il i) P(Y =y;) >k Phj

Therefore, >, P(X =x; | Y =y;) = >, Zii;kj =1 is also held.

The conditional cumulative distribution function is defined as

Fyy(@|y) 2 lim P(X <a|y<Y <y+h)

= li
e Py<Y <y+h)

PX<z,y<Y <y+h)

a4
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Conditional density

then the conditional density function of X given Y is defined as

_ fxy(x,y)

Suppose a probability space (2,4, P). Let X and Y be random variables with joint density function fxy (z,y). If the marginal density function fy (y) # 0,
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Expectation 21 / 41

Expectation
The expectation of a random variable is intuitively the long-run average value of repetitions of the experiment it represents.

Let X be a discrete random variable taking values x1, 2, ... with probabilities p1,pa,. .., respectively. The expectation (or expected value) of X is
defined as

a0
=1

assuming that this series is absolutely convergent (that is >, |z;|p; is convergent).
Example: throwing two “fair” dice and the value of X is is the sum the numbers showing on the dice.

1 2 3 4 5
ELX] =235 + 335 T 435 * 35 * O35
1

6 5 4 3 2
48— 49— 410 + 11— +12— =7.
T3 85 T 9536 105 Tllgg T2 =7
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Expectation

Let X be a (continuous) random variable with density function fx(z). The expectation of X is defined as

E[X] = joo z- fx(z)dz,

—00
assuming that this integral is absolutely convergent (that is the value of the integral Siooo |z - fx(x)|dz = Siooo |z| - fx(z)dz is finite).

Suppose a random variable X with density function fx(x). The expected value of a function g(z) : R — R is defined as

BlyX)] = [ gla) - e

—00

assuming that this integral is absolutely convergent.

15
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Conditional expectation

A random vector X = (X,...,X,,) is a vector whose components are random variables. If all X; are discrete, then X is called a discrete random vector.

Let (X,Y") be a discrete random vector. The conditional expectation of X given the event {Y = y} is defined as
a0
E[X|Y =y]=> 2P(X =Y =y),
i=1

assuming that this series is absolutely convergent.

Let (X,Y') be a (continuous) random vector with conditional density function fx|y(z | y). The conditional expectation of X given the event {Y = y} is

defined as
Q0

Ewwyzm:jan&mwyzwm,

—00

assuming that this integral is absolutely convergent.
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Conditional expectation

Suppose a (continuous) random vector (X,Y') with conditional density function fxy(z | y). The conditional expectation of a function g(z) : R — R
given the event {Y = y} is defined as

Q0

EMXHY=w=f o) - Fx (@ | Y = y)da

—0Q0

assuming that this integral is absolutely convergent.
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Summary *

B A random variable X : (Q, A, P) — (' € R, A, Px) is a measurable mapping from a probability space to a measure space.
The image measure Px of P by X is called probability distribution.

The function Fx : R - R, Fx(z) = P(z < X) is called cumulative distribution function of X.

A measurable function fx(z) is called density function of X, if

Fe(@) = [ fxltrat.

B Probability distributions and densities

¢ Joint distribution: pxy (z,y)
¢ Marginal distribution: px(x)
¢ Conditional distribution: px|y(z | y)

B The expected value is intuitively the long-run average value of repetitions of the experiment.
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EM algorithm 27 / 41

The Expectation-maximization algorithm 27 / 41

Latent variables

Suppose we are given a set of i.i.d. (i.e. independent and identically distributed) data samples {x1,...,xy} represented by a matrix X € RV*P_ The
samples are drawn from a model (e.g., mixture of Gaussians) given by its parameters 6.
There are mainly two applications of the EM algorithm:

1. The data has missing values due to limitations of the observation.
2. The likelihood function can be simplified by assuming missing values.

Latent variables gathering the missing values are represented by a matrix Z.
We generally want to maximize the posterior probability
0" € argmax p(0 | X) = argmapr(O, Z|X).
6 0 7

Alternatively, one can maximize the log-likelihood
Y & L(6;X) =np(X |6) =0 Y p(X,Z | 6) .
Z

IN2329 - Probabilistic Graphical Models in Computer Vision 2. Expectation-maximization algorithm — 28 / 41

19



Jensen’s inequality *
Reminder: A function f : R™ — R is convex, if Ya,b e R", Vt € [0,1]
flta+ (1 —=t)b) <tf(a)+ (1 —1t)f(b)

holds. A function f is said to be concave if —f is convex.

Assume a random vector X and a convex function ¢, then
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Proof of Jensen’s inequality *

For a discrete random variable X taking values z1, 9, ... with probabilities p1,p2,..., one can obtain

o0 e @] e¢]
A
p(E[X]) =¢ (Z sz‘pi) =L (Z xiPi) =a (Z xiPi) +0,
i=1 i=1 i=1
where L : R «— R, L(z) = ax + b is an affine function corresponding to the tangent line of ¢ at E[X].

Yk

S
Il
—_

0 e} a0
pilaz; +b) = Y pb+b= > pilaz; +b) = > p;L(x;)
i=1 -1 iz1

pip(xi) = Elp(X)] .

)
ngk

@
I
—
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The overview of the EM algorithm

The idea: start with a guess 8() for the parameters, calculate an easily computed lower bound B(8;0®") that touches the function Inp(X | ), and
maximize that bound instead. This procedure generally converges to a local maximizer 6.

Inp(X16)

B(6;61)

gt g(t+1)
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Lower bound maximization *

First we derive the lower bound B(6;6®).

p(X,Z |6
lnp(X|0)=anp(X,Z|0 1ant) 0z ’) )
Z —_——

9(Z)

where q(t)(Z) is an arbitrary probability distribution of the latent variables Z.

=InE [M] >E [mw]

¢"(2) ¢Z
9(Z)
_N 0z 1 P Z10) A pp g
;q (Z)In ) B(#;6Y) .
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Lagrange multiplier *

Suppose two functions f, g : R” — R having continuous first partial derivatives. We consider the following optimization problem

max f(x)
subject to g(x) = 0.

It is convenient to study the Lagrangian function, defined as
A
L(x,A) = f(x) + Ag(x) ,

where A\ # ( is called a Lagrange multiplier.
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Geometric interpretation of a Lagrange multiplier *

The constraint g(x) = 0 forms a D — 1 dimensional surface in R”. Suppose x and a nearby point x + ¢ lying on S

the surface g(x) = 0. Based on the Taylor expansion of g around x we get X4
gx+e)~gx)+elVg(x) = €'Vgx)~0.
969 =0

In the limit |e]| — 0, we have eT'Vg(x) = 0, which means that Vg(x) is normal to the constraint surface, since € is parallel to the surface.

At an optimal x4 lying on the constraint surface, V f(x4) must be orthogonal to the surface, otherwise we could increase the value of f by moving
along the constraint surface. Therefore, there exist a Lagrange multiplier )\ such that

Vf+AVg=0

which can be equivalently written as VL = 0. Note that %L = ( leads to the constraint g(x) = 0.
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Finding an optimal bound *
We want to find the best lower bound, defined as the bound B(8; ") that touches the objective function Inp(X | 8) at 6.
The optimal bound at the current guess 8®) can be found by maximizing

(X,Z]6")

B 90y =N O (zym 27 )
; ¢ (Z)

with respect to the distribution ¢(*)(Z).

Introducing a Lagrange multiplier \ to enforce Y, ¢)(Z) = 1, the objective becomes

th) 1anZ]0(t th) )In ¢® )—i—)\(Zq(t)(Z)—l).
Z
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Finding an optimal bound *
n(g") =>4 (Z)Inp(X,Z | 09) =" ¢ (Z)In g™ (Z) + A (Z ¢"(z) - 1) :
Z Z Z

Setting the derivative of & w.r.t. ¢(Z) to 0, we obtain

0 np(X,Z|0D)—Ing®(Z)—1-x1=0.

2q'"(Z)
p(X,Z | 6Y) exp(~1 - X) =¢'")(2) (1)
exp(—1-2) Y p(X,Z|0Y) =) ¢ (Z) =
Z Z
1 1
exp(—1 —\) = = .
Yzp(X.2|6Y)  p(X|6"Y)

Therefore, substituting back into Eq. (1), we get X. 716
¢D(Z) = pX,Z2167) —p(Z | X,00) (2)

p(X | 6W)

25
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Finding an optimal bound *

The resulting optimal bound at 0" indeed touches the objective function:

(X,Z | o )
B(OY;0 ®)(Z)1n pX,2]67)
Z q"(Z)
By substituting Eq. (2), we get
®)
' (z | X,0%)
| S —
p(X|6")
=lnp(X | 6Y) > p(Z | X,6%)
Z
[ S —
=1
—Inp(X | 6Y) .
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Maximizing the bound *

We want to maximize B(8;0®) with respect to 6.

0;01))

We need to consider the first term only

>d(Z)np(X,Z | 6

Z

0+ ¢ argmax B(0;0Y) = argmax Q(6,0") .
0 0

g
a

Z)In p(X,Z|6)

¢ (Z)

Z)Inp(X,Z|6) - > ¢"(Z)ng"(Z) .
Z

)=>p
Z
E[ln

(Z|X,6")Inp(X,Z | 6)

p(X,Z|0)|X,6"]

= Q.6").
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The EM algorithm

: Choose an initial setting for the parameters 6
t—0
repeat
t—t+1
E step. Evaluate ¢~ (Z) 2 p(Z | X,00D)
M step. Evaluate 8% given by

Q@O kN

0" = argmax Q(0,0" V)
]

where Q(0,01"V) SE[lnp(X,Z | 0) | X, 60"
=Y p(Z ] X0 ) Inp(X, Z | )
V4

7: until convergence of either the parameters 6 or the log likelihood £(6;X)
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Summary *

B We have finished the overview of Probability theory.
B The Expectation-maximization algorithm is an iterative method for parameter estimation of maximum likelihood, where the model also depends on
latent variables.

In the next lecture we will learn about

B The EM algorithm for Mixtures of Gaussians
B Introduction to Graphical models:

& Directed graphical models: Bayesian network
& Undirected graphical models: Markov random field

IN2329 - Probabilistic Graphical Models in Computer Vision 2. Expectation-maximization algorithm — 40 / 41
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