# Probabilistic Graphical Models in Computer Vision (IN2329)

# Csaba Domokos

Summer Semester 2015/2016

| 2. Expectation-maximization algorithm                             |
|-------------------------------------------------------------------|
| 2. Expectation-maximization algorithm                             |
|                                                                   |
| Random variables                                                  |
| Example: throwing two "fair" dice *                               |
| Preimage mapping                                                  |
| Random variable                                                   |
| Example: throwing two "fair" dice $^*$                            |
| Probability distributions                                         |
| Probability distribution       1         Density function       1 |
| Density function                                                  |
| Continuous random variable                                        |
| The Normal (Gaussian) distribution $^*$                           |
| Joint distribution                                                |
| Marginal distributions                                            |
| Example: marginal distribution $^*$                               |
| Joint density                                                     |
| Marginal densities                                                |

| Conditional density                                 | 20             |
|-----------------------------------------------------|----------------|
| Expectation                                         | 2:             |
| Expectation                                         | 2:             |
| Expectation                                         | 23             |
| Conditional expectation                             |                |
| Conditional expectation                             |                |
| Summary *                                           |                |
| EM algorithm                                        | 2              |
| The Expectation-maximization algorithm              | 2 <sup>.</sup> |
| Latent variables                                    |                |
| Jensen's inequality $^st$                           | 29             |
| Proof of Jensen's inequality *                      |                |
| The overview of the EM algorithm                    |                |
| Lower bound maximization *                          |                |
| Lagrange multiplier *                               |                |
| Geometric interpretation of a Lagrange multiplier * |                |
| Finding an optimal bound *                          |                |
| Finding an optimal bound *                          |                |
| Finding an optimal bound *                          |                |
| Maximizing the bound *                              |                |
| The EM algorithm.                                   |                |
| Summary *                                           |                |
| Literature *                                        |                |

# Agenda for today's lecture \*

In the **previous lecture** we learnt about

- Probability space
- Conditional probability
- Independence, conditional independence



Today we are going to learn about

- 1. Random variables  $(Y_1, \ldots, Y_9)$
- 2. Probability distributions
  - Joint distribution  $(p(y_1, \ldots, y_9))$
  - $\blacksquare$  Marginal distribution  $(p(y_1))$
  - $\blacksquare$  Conditional distribution  $(p(y \mid x))$
  - Expectation
- 3. Expectation-maximization algorithm

IN2329 - Probabilistic Graphical Models in Computer Vision

2. Expectation-maximization algorithm - 3 / 41

Random variables 4 / 41

Example: throwing two "fair" dice \*

We have the sample space  $\Omega = \{(i,j) : 1 \le i,j \le 6\}$  and the (uniform) probability measure  $P(\{(i,j)\}) = \frac{1}{36}$ , where  $(\Omega, \mathcal{P}(\Omega), P)$  forms a probability space.



In many cases it would be more natural to consider *attributes* of the outcomes. A **random variable** is a way of reporting an *attribute* of the *outcome*. Le us consider the *sum of the numbers showing on the dice*, defined by define the **mapping**  $X: \Omega \to \Omega'$ , X(i,j) = i + j, where  $\Omega' = \{2, 3, \dots, 12\}$ .

It can be seen that this mapping leads a *probability space*  $(\Omega', \mathcal{P}(\Omega'), P')$ , such that  $P': \mathcal{P}(\Omega') \to [0,1]$  is defined as

$$P'(A') = P(\{(i,j) : X(i,j) \in A'\}).$$

Example:  $P'(\{11\}) = P(\{(5,6),(6,5)\}) = \frac{2}{36}$ .

IN2329 - Probabilistic Graphical Models in Computer Vision

2. Expectation-maximization algorithm – 5 / 41

## **Preimage mapping**

Let  $X:\Omega\to\Omega'$  be an arbitrary mapping. The **preimage mapping**  $X^{-1}:\mathcal{P}(\Omega')\to\mathcal{P}(\Omega)$  is defined as

$$X^{-1}(A') = \{ \omega \in \Omega : X(\omega) \in A' \} .$$



IN2329 - Probabilistic Graphical Models in Computer Vision

2. Expectation-maximization algorithm - 6 / 41

#### Random variable

Let  $(\Omega, \mathcal{A})$  and  $(\Omega', \mathcal{A}')$  measurable spaces. A mapping  $X : (\Omega, \mathcal{A}) \to (\Omega', \mathcal{A}')$  is called measurable mapping, if

$$X^{-1}(A') = \{ \omega \in \Omega : X(\omega) \in A' \} \in \mathcal{A} .$$

A measurable mapping  $X:(\Omega,\mathcal{A})\to(\mathbb{R},\mathcal{A}')$  is called random variable.

Let  $X:(\Omega,\mathcal{A})\to (\Omega'\subseteq\mathbb{R},\mathcal{A}')$  be a random variable and P a measure over  $\mathcal{A}.$  Then

$$P'(A') := P_X(A') \stackrel{\Delta}{=} P(X^{-1}(A'))$$

defines a measure over  $\mathcal{A}'$ .

 $P_X$  is called the **image measure** of P by X.

Specially, if P is a probability measure then  $P_X$  is a probability measure over  $\mathcal{A}'$ . (See Exercise.)



IN2329 - Probabilistic Graphical Models in Computer Vision

2. Expectation-maximization algorithm - 7 / 41

## Example: throwing two "fair" dice \*

We are given two sample spaces  $\Omega = \{(i,j): 1 \leq i,j \leq 6\}$  and  $\Omega' = \{2,3,\ldots,12\}$ . We assume the *(uniform) probability measure* P over  $(\Omega,\mathcal{P}(\Omega))$ . Define a mapping  $X: (\Omega,\mathcal{P}(\Omega)) \to (\Omega',\mathcal{P}(\Omega'))$ , where X(i,j) = i+j.

Question: Is X a random variable?

$$X^{-1}(A') = \{ \omega \in \Omega : X(\omega) \in A' \} \in \mathcal{P}(\Omega)$$

is satisfied, since for any  $\omega' \in \Omega'$  one can find an  $\omega \in \Omega$  such that  $X(\omega) = \omega'$ . Therefore X is measurable, thus it is a random variable. Moreover, P is a probability measure, hence the image measure  $P_X(A') \stackrel{\Delta}{=} P(X^{-1}(A'))$ 

is a probability measure on  $(\Omega', \mathcal{P}(\Omega'))$ .

 $\underline{\textit{Example}}: \ P_X(\{2,4,5\}) = P(X^{-1}(\{2,4,5\})) = P(\{(1,1),(1,3),(2,2),(3,1),(1,4),(2,3),(3,2),(4,1)\}) = \frac{8}{36} = \frac{2}{9}.$ 

IN2329 - Probabilistic Graphical Models in Computer Vision

2. Expectation-maximization algorithm - 8 / 41

Probability distributions 9 / 41

## **Probability distribution**

Note that a random variable is a measurable mapping from a probability space to a measure space. It is neither a variable nor random.

Let  $X:(\Omega,\mathcal{A},P)\to (\Omega'\subseteq\mathbb{R},\mathcal{A}')$  be a random variable. Then the image measure  $P_X$  of P by X is called **probability distribution**.

We use the notation P(x) for P(X = x), where

$$P(x) := P(X = x) \stackrel{\Delta}{=} P(\{\omega \in \Omega : X(\omega) = x\}).$$

Similarly,  $P(X < x) \stackrel{\Delta}{=} P(\{\omega \in \Omega : X(\omega) < x\}).$ 

Let  $X:(\Omega,\mathcal{A},P)\to (\Omega'\subseteq\mathbb{R},\mathcal{A}')$  be a random variable. Then  $F_X:\mathbb{R}\to\mathbb{R}$ 

$$F_X(x) \stackrel{\Delta}{=} P(X < x) , \quad x \in \mathbb{R}$$

is called cumulative distribution function (cdf.) of X.

Each probability measure is *uniquely defined* by its distribution function.

IN2329 - Probabilistic Graphical Models in Computer Vision

2. Expectation-maximization algorithm - 10 / 41

#### **Density function**

Let  $F_X: \mathbb{R} \to \mathbb{R}$  be the cumulative distribution function of a random variable X. A measurable function  $f_X(x)$  is called a density function of X, if

$$F_X(x) = \int_{-\infty}^x f_X(t) dt$$
,  $x \in \mathbb{R}$ .

A measurable function we mean to be a function with improper Riemann-integral.

A random variable  $X:(\Omega,\mathcal{A})\to (\Omega',\mathcal{A}')$  is said to be **discrete random variable** if  $\Omega'$  is countable.

IN2329 - Probabilistic Graphical Models in Computer Vision

2. Expectation-maximization algorithm – 11 / 41

#### Continuous random variable

A random variable  $X:(\Omega,\mathcal{A},P)\to(\mathbb{R},\mathcal{A}')$  is called **continuous random variable**, if it has a density function  $f_X(x)$ . Then the followings are held:

- 1.  $f_X(x)$  is non-negative,
- $2. \quad \int_{-\infty}^{\infty} f_X(x) dx = 1,$
- 3.  $P(a \leqslant X < b) \stackrel{\Delta}{=} F_X(a \leqslant X < b) = \int_a^b f_X(x) dx$ .

Proof.

- 1.  $F_X$  is non-negative and monotonously increasing, thus  $f_X(x) \ge 0$ .

$$\int_{-\infty}^{\infty} f_X(x) \mathrm{d}x = F_X(\infty) - F_X(-\infty) = 1 - 0 = 1.$$

3.

$$\begin{split} \int_{-\infty}^{\infty} f_X(x) \mathrm{d}x &= F_X(\infty) - F_X(-\infty) = 1 - 0 = 1 \;. \\ F_X(a \leqslant X < b) &= F_X(b) - F_X(a) = \int_{-\infty}^b f_X(x) \mathrm{d}x - \int_{-\infty}^a f_X(x) \mathrm{d}x = \int_a^b f_X(x) \mathrm{d}x. \end{split}$$

IN2329 - Probabilistic Graphical Models in Computer Vision

2. Expectation-maximization algorithm - 12 / 41

## The Normal (Gaussian) distribution \*

A *continuous* random variable  $X : \mathbb{R} \to \mathbb{R}$  with density function

$$f_X(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$$

is said the have Normal distribution (or Gaussian distribution with parameters  $\mu \in \mathbb{R}$  and  $\sigma \in \mathbb{R}_+$ .



Standard normal distribution:  $\mu=0$  and  $\sigma=1$ .

IN2329 - Probabilistic Graphical Models in Computer Vision

2. Expectation-maximization algorithm - 13 / 41

#### Joint distribution

Suppose a probability space  $(\Omega, \mathcal{A}, P)$ . Let  $X : (\Omega, \mathcal{A}) \to (\Omega', \mathcal{A}')$  and  $Y : (\Omega, \mathcal{A}) \to (\Omega'', \mathcal{A}'')$  be discrete random variables, where  $x_1, x_2, \ldots$  denote the values of X and  $y_1, y_2, \ldots$  denote the values of Y.

We introduce the notation

$$p_{ij} \stackrel{\Delta}{=} P(X = x_i, Y = y_j) \quad i, j = 1, 2, \dots$$

for the probability of the events

$$\{X=x_i,Y=y_j\}:=\{\omega\in\Omega:X(\omega)=x_i\text{ and }Y(\omega)=y_j\}\;.$$

These probabilities  $p_{ij}$  form a distribution, called the **joint distribution** of X and Y.

Therefore,

$$\sum_{i} \sum_{j} p_{ij} = 1 .$$

IN2329 - Probabilistic Graphical Models in Computer Vision

2. Expectation-maximization algorithm – 14 / 41

#### Marginal distributions

Suppose a probability space  $(\Omega, \mathcal{A}, P)$ . Let  $X : (\Omega, \mathcal{A}) \to (\Omega', \mathcal{A}')$  and  $Y : (\Omega, \mathcal{A}) \to (\Omega'', \mathcal{A}'')$  be discrete random variables, where  $x_1, x_2, \ldots$  denote the values of X and  $y_1, y_2, \ldots$  denote the values of Y.

The distributions defined by the probabilities

$$p_i \stackrel{\Delta}{=} P(X = x_i)$$
 and  $q_j \stackrel{\Delta}{=} P(Y = y_j)$ 

are called the marginal distributions of X and of Y, respectively.

Let us consider the marginal distribution of X. Then

$$p_i = P(X = x_i) = \sum_j P(X = x_i, Y = y_j) = \sum_j p_{ij}.$$

Similarly, the marginal distribution of Y is given by

$$q_j = P(Y = y_j) = \sum_i P(X = x_i, Y = y_j) = \sum_i p_{ij}$$
.

IN2329 - Probabilistic Graphical Models in Computer Vision

2. Expectation-maximization algorithm - 15 / 41

## Example: marginal distribution \*

Consider two producing machines creating identical product in a factory. Assume we are given the following table with probabilities

|                      | Machine I | Machine II |      |
|----------------------|-----------|------------|------|
| The product is good  | 0.56      | 0.41       | 0.97 |
| The product is waste | 0.01      | 0.02       | 0.03 |
|                      | 0.57      | 0.43       | 1    |

The marginal distributions of discrete random variables corresponding to the values of {good, waste} and {I, II} are shown in the last column and last row, respectively.

The following also holds

$$\sum_{i} p_{i} = \sum_{i} P(X = x_{i}) = \sum_{i} \sum_{j} P(X = x_{i}, Y = y_{i}) = \sum_{i} \sum_{j} p_{ij} = 1.$$

IN2329 - Probabilistic Graphical Models in Computer Vision

2. Expectation-maximization algorithm – 16 / 41

#### Joint density

Suppose a probability space  $(\Omega, \mathcal{A}, P)$ . Let  $X : (\Omega, \mathcal{A}) \to (\Omega' \subseteq \mathbb{R}, \mathcal{A}')$  and  $Y : (\Omega, \mathcal{A}) \to (\Omega'' \subseteq \mathbb{R}, \mathcal{A}'')$  be random variables. The **joint cumulative** distribution function of X and Y, denoted by  $F_{XY} : \mathbb{R}^2 \to \mathbb{R}$ , is defined as

$$F_{XY}(x,y) \stackrel{\Delta}{=} P(X < x, Y < y) , \quad x, y \in \mathbb{R} .$$

If both X and Y are continuous random variables, then the joint density function  $f_{XY}: \mathbb{R}^2 \to \mathbb{R}$  is defined by

$$F_{XY}(x,y) = \int_{-\infty}^{x} \int_{-\infty}^{y} f_{XY}(u,v) du dv.$$

The *joint density function*  $f_{XY}(x,y)$  also satisfies the following property:

$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{XY}(u,v) du dv = 1.$$

IN2329 - Probabilistic Graphical Models in Computer Vision

2. Expectation-maximization algorithm - 17 / 41

#### Marginal densities

Suppose a probability space  $(\Omega, \mathcal{A}, P)$ . Let  $X : (\Omega, \mathcal{A}) \to (\Omega', \mathcal{A}')$  and  $Y : (\Omega, \mathcal{A}) \to (\Omega'', \mathcal{A}'')$  be random variables with *joint cumulative distribution* function  $F_{XY} : \mathbb{R}^2 \to \mathbb{R}$ . The marginal cumulative distribution functions of X and Y are given by

$$F_X(x) := F_{XY}(x, \infty) = \lim_{y \to \infty} F_{XY}(x, y)$$
, and

$$F_Y(y) := F_{XY}(\infty, y) = \lim_{x \to \infty} F_{XY}(x, y)$$
.

If both X and Y are continuous random variables with the joint density function  $f_{XY}(x,y)$ , then the marginal density functions  $f_X, f_Y : \mathbb{R} \to \mathbb{R}$  are defined as

$$f_X(x) = \int_{-\infty}^{\infty} f_{XY}(x,y) \mathrm{d}y$$
 and  $f_Y(y) = \int_{-\infty}^{\infty} f_{XY}(x,y) \mathrm{d}x$ .

IN2329 - Probabilistic Graphical Models in Computer Vision

2. Expectation-maximization algorithm -18 / 41

#### Conditional distribution

Suppose a probability space  $(\Omega, \mathcal{A}, P)$ . Let X and Y be discrete random variables, where  $x_1, x_2, \ldots$  denote the values of X and  $y_1, y_2, \ldots$  denote the values of Y.

The **conditional distribution** of X given Y is defined by

$$P(X = x_i \mid Y = y_j) = \frac{P(X = x_i, Y = y_j)}{P(Y = y_j)} = \frac{p_{ij}}{\sum_k p_{kj}} = \frac{p_{ij}}{q_j}.$$

Therefore,  $\sum_i P(X=x_i \mid Y=y_j) = \sum_i \frac{p_{ij}}{\sum_k p_{kj}} = 1$  is also held.

The conditional cumulative distribution function is defined as

$$F_{X|Y}(x \mid y) \stackrel{\Delta}{=} \lim_{h \to 0} P(X < x \mid y \le Y < y + h)$$
$$= \lim_{h \to 0} \frac{P(X < x, y \le Y < y + h)}{P(y \le Y < y + h)}.$$

IN2329 - Probabilistic Graphical Models in Computer Vision

2. Expectation-maximization algorithm - 19 / 41

#### **Conditional density**

Suppose a probability space  $(\Omega, \mathcal{A}, P)$ . Let X and Y be random variables with joint density function  $f_{XY}(x, y)$ . If the marginal density function of X given Y is defined as

$$f_{X|Y}(x \mid y) = \frac{f_{XY}(x,y)}{f_Y(y)} .$$

IN2329 - Probabilistic Graphical Models in Computer Vision

2. Expectation-maximization algorithm – 20 / 41

Expectation 21 / 41

#### **Expectation**

The expectation of a random variable is intuitively the long-run average value of repetitions of the experiment it represents.

Let X be a discrete random variable taking values  $x_1, x_2, \ldots$  with probabilities  $p_1, p_2, \ldots$ , respectively. The **expectation** (or **expected value**) of X is defined as

$$\mathbb{E}[X] = \sum_{i=1}^{\infty} x_i p_i \;,$$

assuming that this series is absolutely convergent (that is  $\sum_{i=1}^{\infty} |x_i| p_i$  is convergent).

Example: throwing two "fair" dice and the value of X is is the sum the numbers showing on the dice.

$$\mathbb{E}[X] = 2\frac{1}{36} + 3\frac{2}{36} + 4\frac{3}{36} + 5\frac{4}{36} + 6\frac{5}{36} + 7\frac{6}{36} + 8\frac{5}{36} + 9\frac{4}{36} + 10\frac{3}{36} + 11\frac{2}{36} + 12\frac{1}{36} = 7.$$

IN2329 - Probabilistic Graphical Models in Computer Vision

2. Expectation-maximization algorithm - 22 / 41

#### **Expectation**

Let X be a (continuous) random variable with density function  $f_X(x)$ . The expectation of X is defined as

$$\mathbb{E}[X] = \int_{-\infty}^{\infty} x \cdot f_X(x) \mathrm{d}x \;,$$

assuming that this integral is absolutely convergent (that is the value of the integral  $\int_{-\infty}^{\infty} |x \cdot f_X(x)| dx = \int_{-\infty}^{\infty} |x| \cdot f_X(x) dx$  is finite).

Suppose a random variable X with density function  $f_X(x)$ . The expected value of a function  $g(x): \mathbb{R} \to \mathbb{R}$  is defined as

$$\mathbb{E}[g(X)] = \int_{-\infty}^{\infty} g(x) \cdot f_X(x) dx ,$$

assuming that this integral is absolutely convergent.

2. Expectation-maximization algorithm – 23 / 41

#### **Conditional expectation**

A random vector  $\mathbf{X} = (X_1, \dots, X_n)$  is a vector whose components are random variables. If all  $X_i$  are discrete, then  $\mathbf{X}$  is called a **discrete random vector**. Let (X,Y) be a discrete random vector. The **conditional expectation** of X given the event  $\{Y=y\}$  is defined as

$$\mathbb{E}[X \mid Y = y] = \sum_{i=1}^{\infty} x_i P(X = x_i \mid Y = y) ,$$

assuming that this series is absolutely convergent.

Let (X,Y) be a *(continuous) random vector* with *conditional density function*  $f_{X|Y}(x\mid y)$ . The **conditional expectation** of X given the event  $\{Y=y\}$  is defined as

$$\mathbb{E}[X \mid Y = y] = \int_{-\infty}^{\infty} x \cdot f_{X|Y}(x \mid Y = y) dx,$$

assuming that this integral is absolutely convergent.

IN2329 - Probabilistic Graphical Models in Computer Vision

2. Expectation-maximization algorithm - 24 / 41

## **Conditional expectation**

Suppose a (continuous) random vector (X,Y) with conditional density function  $f_{X|Y}(x\mid y)$ . The conditional expectation of a function  $g(x):\mathbb{R}\to\mathbb{R}$  given the event  $\{Y=y\}$  is defined as

$$\mathbb{E}[g(X) \mid Y = y] = \int_{-\infty}^{\infty} g(x) \cdot f_{X|Y}(x \mid Y = y) dx,$$

assuming that this integral is absolutely convergent.

IN2329 - Probabilistic Graphical Models in Computer Vision

2. Expectation-maximization algorithm – 25 / 41

## Summary \*

- A random variable  $X:(\Omega, \mathcal{A}, P) \to (\Omega' \subseteq \mathbb{R}, \mathcal{A}', P_X)$  is a measurable mapping from a probability space to a measure space.
- The image measure  $P_X$  of P by X is called **probability distribution**.
- The function  $F_X : \mathbb{R} \to \mathbb{R}$ ,  $F_X(x) = P(x < X)$  is called **cumulative distribution function** of X.
- $\blacksquare$  A measurable function  $f_X(x)$  is called **density function** of X, if

$$F_X(x) = \int_{-\infty}^x f_X(t) dt .$$

- Probability distributions and densities
  - lacktriangle Joint distribution:  $p_{XY}(x,y)$
  - lacktriangle Marginal distribution:  $p_X(x)$
  - Conditional distribution:  $p_{X|Y}(x \mid y)$
- The **expected value** is intuitively the long-run average value of repetitions of the experiment.

IN2329 - Probabilistic Graphical Models in Computer Vision

2. Expectation-maximization algorithm - 26 / 41

**EM** algorithm

27 / 41

## The Expectation-maximization algorithm

27 / 41

#### Latent variables

Suppose we are given a set of *i.i.d.* (i.e. independent and identically distributed) data samples  $\{\mathbf{x}_1, \dots, \mathbf{x}_N\}$  represented by a matrix  $\mathbf{X} \in \mathbb{R}^{N \times D}$ . The samples are drawn from a model (e.g., mixture of Gaussians) given by its parameters  $\boldsymbol{\theta}$ .

There are mainly two applications of the EM algorithm:

- 1. The data has **missing values** due to limitations of the observation.
- 2. The likelihood function can be simplified by assuming missing values.

**Latent variables** gathering the missing values are represented by a matrix  $\mathbf{Z}$ .

We generally want to maximize the posterior probability

$$\boldsymbol{\theta}^* \in \operatorname*{argmax}_{\boldsymbol{\theta}} p(\boldsymbol{\theta} \mid \mathbf{X}) = \operatorname*{argmax}_{\boldsymbol{\theta}} \sum_{\mathbf{Z}} p(\boldsymbol{\theta}, \mathbf{Z} \mid \mathbf{X}) \; .$$

Alternatively, one can maximize the log-likelihood

$$\mathcal{L}(\boldsymbol{\theta}; \mathbf{X}) = \ln p(\mathbf{X} \mid \boldsymbol{\theta}) = \ln \sum_{\mathbf{Z}} p(\mathbf{X}, \mathbf{Z} \mid \boldsymbol{\theta}) .$$

IN2329 - Probabilistic Graphical Models in Computer Vision

2. Expectation-maximization algorithm - 28 / 41

# Jensen's inequality $\ensuremath{^*}$

Reminder. A function  $f: \mathbb{R}^n \to \mathbb{R}$  is convex, if  $\forall a, b \in \mathbb{R}^n$ ,  $\forall t \in [0, 1]$ 

$$f(ta + (1-t)b) \le tf(a) + (1-t)f(b)$$

holds. A function f is said to be **concave** if -f is convex.

Assume a random vector  ${\bf X}$  and a convex function  $\varphi$ , then

$$\varphi\left(\mathbb{E}[\mathbf{X}]\right) \leqslant \mathbb{E}\left[\varphi(\mathbf{X})\right]$$
.



IN2329 - Probabilistic Graphical Models in Computer Vision

2. Expectation-maximization algorithm - 29 / 41

## **Proof of Jensen's inequality \***

For a discrete random variable X taking values  $x_1, x_2, \ldots$  with probabilities  $p_1, p_2, \ldots$ , one can obtain

$$\varphi(\mathbb{E}[X]) = \varphi\left(\sum_{i=1}^{\infty} x_i p_i\right) \stackrel{\Delta}{=} L\left(\sum_{i=1}^{\infty} x_i p_i\right) = a\left(\sum_{i=1}^{\infty} x_i p_i\right) + b,$$

where  $L: \mathbb{R} \leftarrow \mathbb{R}$ , L(x) = ax + b is an affine function corresponding to the **tangent line** of  $\varphi$  at  $\mathbb{E}[X]$ .

$$= \sum_{i=1}^{\infty} p_i(ax_i + b) - \sum_{i=1}^{\infty} p_i b + b = \sum_{i=1}^{\infty} p_i(ax_i + b) = \sum_{i=1}^{\infty} p_i L(x_i)$$

$$\leq \sum_{i=1}^{\infty} p_i \varphi(x_i) = \mathbb{E}[\varphi(X)].$$

IN2329 - Probabilistic Graphical Models in Computer Vision

2. Expectation-maximization algorithm - 30 / 41

## The overview of the EM algorithm

The idea: start with a guess  $\theta^{(t)}$  for the parameters, calculate an easily computed lower bound  $B(\theta; \theta^{(t)})$  that touches the function  $\ln p(\mathbf{X} \mid \boldsymbol{\theta})$ , and maximize that bound instead. This procedure generally converges to a **local maximizer**  $\hat{\boldsymbol{\theta}}$ .



IN2329 - Probabilistic Graphical Models in Computer Vision

2. Expectation-maximization algorithm - 31 / 41

## Lower bound maximization \*

First we derive the lower bound  $B(\theta; \theta^{(t)})$ .

$$\ln p(\mathbf{X} \mid \boldsymbol{\theta}) = \ln \sum_{\mathbf{Z}} p(\mathbf{X}, \mathbf{Z} \mid \boldsymbol{\theta}) = \ln \sum_{\mathbf{Z}} q^{(t)}(\mathbf{Z}) \underbrace{\frac{p(\mathbf{X}, \mathbf{Z} \mid \boldsymbol{\theta})}{q^{(t)}(\mathbf{Z})}}_{g(\mathbf{Z})}$$

where  $q^{(t)}(\mathbf{Z})$  is an arbitrary probability distribution of the latent variables  $\mathbf{Z}$ .

$$= \ln \mathbb{E} \underbrace{\left[ \frac{p(\mathbf{X}, \mathbf{Z} \mid \boldsymbol{\theta})}{q^{(t)}(\mathbf{Z})} \right]}_{g(\mathbf{Z})} \geqslant \mathbb{E} \left[ \ln \frac{p(\mathbf{X}, \mathbf{Z} \mid \boldsymbol{\theta})}{q^{(t)}\mathbf{Z}} \right]$$
$$= \sum_{\mathbf{Z}} q^{(t)}(\mathbf{Z}) \ln \frac{p(\mathbf{X}, \mathbf{Z} \mid \boldsymbol{\theta})}{q^{(t)}(\mathbf{Z})} \stackrel{\triangle}{=} B(\boldsymbol{\theta}; \boldsymbol{\theta}^{(t)}) .$$

IN2329 - Probabilistic Graphical Models in Computer Vision

2. Expectation-maximization algorithm - 32 / 41

## Lagrange multiplier \*

Suppose two functions  $f,g:\mathbb{R}^D\to\mathbb{R}$  having continuous first partial derivatives. We consider the following optimization problem

$$\max f(\mathbf{x})$$

subject to 
$$g(\mathbf{x}) = 0$$
.

It is convenient to study the Lagrangian function, defined as

$$L(\mathbf{x}, \lambda) \stackrel{\Delta}{=} f(\mathbf{x}) + \lambda g(\mathbf{x}) ,$$

where  $\lambda \neq 0$  is called a Lagrange multiplier.

IN2329 - Probabilistic Graphical Models in Computer Vision

2. Expectation-maximization algorithm - 33 / 41

## Geometric interpretation of a Lagrange multiplier \*

The constraint  $g(\mathbf{x}) = 0$  forms a D-1 dimensional surface in  $\mathbb{R}^D$ . Suppose  $\mathbf{x}$  and a nearby point  $\mathbf{x} + \boldsymbol{\varepsilon}$  lying on the surface  $g(\mathbf{x}) = 0$ . Based on the Taylor expansion of g around  $\mathbf{x}$  we get

$$g(\mathbf{x} + \boldsymbol{\varepsilon}) \approx g(\mathbf{x}) + \boldsymbol{\varepsilon}^T \nabla g(\mathbf{x}) \quad \Rightarrow \quad \boldsymbol{\varepsilon}^T \nabla g(\mathbf{x}) \approx 0.$$



In the limit  $\|\varepsilon\| \to 0$ , we have  $\varepsilon^T \nabla g(\mathbf{x}) = 0$ , which means that  $\nabla g(\mathbf{x})$  is normal to the constraint surface, since  $\varepsilon$  is parallel to the surface.

At an optimal  $\mathbf{x}_A$  lying on the constraint surface,  $\nabla f(\mathbf{x}_A)$  must be orthogonal to the surface, otherwise we could increase the value of f by moving along the constraint surface. Therefore, there exist a Lagrange multiplier  $\lambda$  such that

$$\nabla f + \lambda \nabla g = 0$$

which can be equivalently written as  $\nabla_x L = 0$ . Note that  $\frac{\partial}{\partial \lambda} L = 0$  leads to the constraint  $g(\mathbf{x}) = 0$ .

IN2329 - Probabilistic Graphical Models in Computer Vision

2. Expectation-maximization algorithm - 34 / 41

#### Finding an optimal bound \*

We want to find the *best* lower bound, defined as the bound  $B(\theta; \theta^{(t)})$  that touches the objective function  $\ln p(\mathbf{X} \mid \boldsymbol{\theta})$  at  $\boldsymbol{\theta}^{(t)}$ .

The optimal bound at the current guess  $oldsymbol{ heta}^{(t)}$  can be found by maximizing

$$B(\boldsymbol{\theta^{(t)}}; \boldsymbol{\theta^{(t)}}) = \sum_{\mathbf{Z}} q^{(t)}(\mathbf{Z}) \ln \frac{p(\mathbf{X}, \mathbf{Z} \mid \boldsymbol{\theta^{(t)}})}{q^{(t)}(\mathbf{Z})}$$

with respect to the distribution  $q^{(t)}(\mathbf{Z})$ .

Introducing a Lagrange multiplier  $\lambda$  to enforce  $\sum_{\mathbf{Z}} q^{(t)}(\mathbf{Z}) = 1$ , the objective becomes

$$h(q^{(t)}) = \sum_{\mathbf{Z}} q^{(t)}(\mathbf{Z}) \ln p(\mathbf{X}, \mathbf{Z} \mid \boldsymbol{\theta}^{(t)}) - \sum_{\mathbf{Z}} q^{(t)}(\mathbf{Z}) \ln q^{(t)}(\mathbf{Z}) + \lambda \left( \sum_{\mathbf{Z}} q^{(t)}(\mathbf{Z}) - 1 \right).$$

IN2329 - Probabilistic Graphical Models in Computer Vision

2. Expectation-maximization algorithm - 35 / 41

## Finding an optimal bound \*

$$h(q^{(t)}) = \sum_{\mathbf{Z}} q^{(t)}(\mathbf{Z}) \ln p(\mathbf{X}, \mathbf{Z} \mid \boldsymbol{\theta}^{(t)}) - \sum_{\mathbf{Z}} q^{(t)}(\mathbf{Z}) \ln q^{(t)}(\mathbf{Z}) + \lambda \left( \sum_{\mathbf{Z}} q^{(t)}(\mathbf{Z}) - 1 \right) .$$

Setting the derivative of h w.r.t.  $q^{(t)}(\mathbf{Z})$  to 0, we obtain

$$\frac{\partial}{\partial q^{(t)}(\mathbf{Z})} h = \ln p(\mathbf{X}, \mathbf{Z} \mid \boldsymbol{\theta}^{(t)}) - \ln q^{(t)}(\mathbf{Z}) - 1 - \lambda = 0.$$

$$p(\mathbf{X}, \mathbf{Z} \mid \boldsymbol{\theta}^{(t)}) \exp(-1 - \lambda) = q^{(t)}(\mathbf{Z})$$

$$\exp(-1 - \lambda) \sum_{\mathbf{Z}} p(\mathbf{X}, \mathbf{Z} \mid \boldsymbol{\theta}^{(t)}) = \sum_{\mathbf{Z}} q^{(t)}(\mathbf{Z}) = 1$$
(1)

$$\exp(-1 - \lambda) = \frac{1}{\sum_{\mathbf{Z}} p(\mathbf{X}, \mathbf{Z} \mid \boldsymbol{\theta}^{(t)})} = \frac{1}{p(\mathbf{X} \mid \boldsymbol{\theta}^{(t)})}.$$

Therefore, substituting back into Eq. (1), we get

$$q^{(t)}(\mathbf{Z}) = \frac{p(\mathbf{X}, \mathbf{Z} \mid \boldsymbol{\theta}^{(t)})}{p(\mathbf{X} \mid \boldsymbol{\theta}^{(t)})} = p(\mathbf{Z} \mid \mathbf{X}, \boldsymbol{\theta}^{(t)}).$$
(2)

IN2329 - Probabilistic Graphical Models in Computer Vision

2. Expectation-maximization algorithm – 36 / 41

# Finding an optimal bound st

The resulting optimal bound at  $oldsymbol{ heta}^{(t)}$  indeed touches the objective function:

$$B(\boldsymbol{\theta}^{(t)}; \boldsymbol{\theta}^{(t)}) = \sum_{\mathbf{Z}} q^{(t)}(\mathbf{Z}) \ln \frac{p(\mathbf{X}, \mathbf{Z} \mid \boldsymbol{\theta}^{(t)})}{q^{(t)}(\mathbf{Z})}$$

By substituting Eq. (2), we get

$$= \sum_{\mathbf{Z}} p(\mathbf{Z} \mid \mathbf{X}, \boldsymbol{\theta}^{(t)}) \ln \underbrace{\frac{p(\mathbf{X}, \mathbf{Z} \mid \boldsymbol{\theta}^{(t)})}{p(\mathbf{Z} \mid \mathbf{X}, \boldsymbol{\theta}^{(t)})}}_{p(\mathbf{X} \mid \boldsymbol{\theta}^{(t)})}$$

$$= \ln p(\mathbf{X} \mid \boldsymbol{\theta}^{(t)}) \sum_{\mathbf{Z}} p(\mathbf{Z} \mid \mathbf{X}, \boldsymbol{\theta}^{(t)})$$

$$= \ln p(\mathbf{X} \mid \boldsymbol{\theta}^{(t)}) .$$

IN2329 - Probabilistic Graphical Models in Computer Vision

2. Expectation-maximization algorithm – 37 / 41

## Maximizing the bound $\mbox{*}$

We want to maximize  $B(\boldsymbol{\theta}; \boldsymbol{\theta}^{(t)})$  with respect to  $\boldsymbol{\theta}$ .

$$B(\boldsymbol{\theta}; \boldsymbol{\theta}^{(t)}) = \sum_{\mathbf{Z}} q^{(t)}(\mathbf{Z}) \ln \frac{p(\mathbf{X}, \mathbf{Z} \mid \boldsymbol{\theta})}{q^{(t)}(\mathbf{Z})}$$
$$= \sum_{\mathbf{Z}} q^{(t)}(\mathbf{Z}) \ln p(\mathbf{X}, \mathbf{Z} \mid \boldsymbol{\theta}) - \sum_{\mathbf{Z}} q^{(t)}(\mathbf{Z}) \ln q^{(t)}(\mathbf{Z}) .$$

We need to consider the first term only

$$\sum_{\mathbf{Z}} q^{(t)}(\mathbf{Z}) \ln p(\mathbf{X}, \mathbf{Z} \mid \boldsymbol{\theta}) = \sum_{\mathbf{Z}} p(\mathbf{Z} \mid \mathbf{X}, \boldsymbol{\theta}^{(t)}) \ln p(\mathbf{X}, \mathbf{Z} \mid \boldsymbol{\theta})$$
$$= \mathbb{E}[\ln p(\mathbf{X}, \mathbf{Z} \mid \boldsymbol{\theta}) \mid \mathbf{X}, \boldsymbol{\theta}^{(t)}] \stackrel{\Delta}{=} Q(\boldsymbol{\theta}, \boldsymbol{\theta}^{(t)}).$$

$$\boldsymbol{\theta}^{(t+1)} \in \operatorname*{argmax}_{\boldsymbol{\theta}} B(\boldsymbol{\theta}; \boldsymbol{\theta}^{(t)}) = \operatorname*{argmax}_{\boldsymbol{\theta}} Q(\boldsymbol{\theta}, \boldsymbol{\theta}^{(t)}) \; .$$

IN2329 - Probabilistic Graphical Models in Computer Vision

2. Expectation-maximization algorithm - 38 / 41

## The EM algorithm

1: Choose an initial setting for the parameters  $oldsymbol{ heta}^{(0)}$ 

2: 
$$t \rightarrow 0$$

3: repeat

4: 
$$t \rightarrow t+1$$

5: **E step**. Evaluate  $q^{(t-1)}(\mathbf{Z}) \stackrel{\Delta}{=} p(\mathbf{Z} \mid \mathbf{X}, \boldsymbol{\theta}^{(t-1)})$ 

6: **M step**. Evaluate  $\boldsymbol{\theta}^{(t)}$  given by

$$\begin{split} \pmb{\theta}^{(t)} &= \operatorname*{argmax}_{\pmb{\theta}} Q(\pmb{\theta}, \pmb{\theta}^{(t-1)}) \;, \\ \text{where } Q(\pmb{\theta}, \pmb{\theta}^{(t-1)}) & \stackrel{\triangle}{=} \mathbb{E}[\ln p(\mathbf{X}, \mathbf{Z} \mid \pmb{\theta}) \mid \mathbf{X}, \pmb{\theta}^{(t-1)}] \\ &= \sum_{\mathbf{Z}} p(\mathbf{Z} \mid \mathbf{X}, \pmb{\theta}^{(t-1)}) \ln p(\mathbf{X}, \mathbf{Z} \mid \pmb{\theta}) \end{split}$$

7: **until** convergence of either the parameters  $\theta$  or the log likelihood  $\mathcal{L}(\theta; \mathbf{X})$ 



2. Expectation-maximization algorithm - 39 / 41

# Summary \*

- We have finished the overview of Probability theory.
- The **Expectation-maximization algorithm** is an iterative method for parameter estimation of *maximum likelihood*, where the model also depends on *latent variables*.

In the **next lecture** we will learn about

- The EM algorithm for Mixtures of Gaussians
- Introduction to Graphical models:
  - ◆ Directed graphical models: Bayesian network
  - ◆ Undirected graphical models: Markov random field

IN2329 - Probabilistic Graphical Models in Computer Vision

2. Expectation-maximization algorithm - 40 / 41

#### Literature \*

#### Probability theory

- 1. Marek Capiński and Ekkerhard Kopp. Measure, Integral and Probability. Springer, 1998
- 2. Daphne Koller and Nir Friedman. Probabilistic Graphical Models: Principles and Techniques. MIT Press, 2009

#### The Expectation-maximization algorithm

- 3. A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from incomplete data via the EM algorithm. *Journal of the Royal Statistical Society*, 39(1):1–38, 1977
- 4. Christopher Bishop. Pattern Recognition and Machine Learning. Springer, 2006
- 5. Frank Dellaert. The expectation maximization algorithm. Technical Report GIT-GVU-02-20, Georgia Institute of Technology, Atlanta, GA, USA, 2002
- 6. Shane M. Haas. The expectation-maximization and alternating minimization algorithms. Unpublished, 2002
- 7. Yihua Chen and Maya R. Gupta. EM demystified: An expectation-maximization tutorial. Technical Report UWEETR-2010-0002, University of Washington, Seattle, WA, USA, 2009

IN2329 - Probabilistic Graphical Models in Computer Vision

2. Expectation-maximization algorithm - 41 / 41