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Agenda for today’s lecture *
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In the previous lecture we learnt about

B Expectation-maximization algorithm, which is an iterative method for
parameter estimation, where the model also depends on latent variables

Today we are going to learn about Mixtures of Gaussians
1. Expectation-maximization algorithm for mixture of Gaussians

2. Introduction to Graphical models

B Directed graphical models: i e @ @ e

Bayesian network
B Undirected graphical models:
Markov random field
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Multivariate /Gaussian distribution Mixtures of Gaussians
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Assume a D-dimensional random vector X = (Xi,...,Xp), i.e. a vector whose While the Gaussian distribution has some important analytical properties, it suffers
components are random variables, with the joint density function from limitations when it comes to modelling real data sets. However the linear
combination of Gaussians can give rise to very complex densities.
exp (,‘l(x — )iy (x— M)) . Let us consider a superposition of K Gaussian
2 densities

1

- \/‘27"2| Px)
X is said to have multivariate Gaussian (or Normal) distribution with K
parameters p € R and 3 € RP*P assuming that 3 is positive definite. = Z e N(x | g, Zi)

k=1 %
p is called the mean vector and X is called the covariance matrix. We often use Mixture of three Gaussians

the notation X ~ N (x | u, £) denoting X has Normal distribution.

which is called a mixture of Gaussians.
The parameters 7, are called mixing coefficients.

K K
. . xn L -, N
R;m/nder. A symmetric A € R matrix is said to be positive definite, if 1 _ f p(x)dx = f Z T N (x| g, Sie)dx = Z o
u’ Au > 0 for all non-zero u e R™. RP RD 15 1

All the density functions are non-negative, hence 7, > 0 for 1 < k < K, therefore

0<mp<1 foral k=1,....K.
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Latent variables Latent variables: responsibilities
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We introduce a K-dimensional binary random variable z having a 1I-of-K The distribution of mixture of Gaussian, specified by the parameter vector
representation, i.e. z;, = 1 and all other elements are equal to 0. Let us define the 0 = (mw, 1, X), is given by

marginal distribution over z as A )
p(x) S p(x | 0) = D p(x,2|0) = Y p(z| O)p(x | 2.6)

K K
) Zk
which is considered as the prior probability of picking the k" component of a = Z H (“k p(x | g, Ek)) Z e N (x| e, Zie) -
k=1

mixture of Gaussians. This distribution can be also written in the form z k=1

K The posterior probabilities p(z, = 1 | x), denoted by v;(x), a.k.a. responsibilities,
p(z) = H T show the probability that a given sample x belongs to the k™ component.
k=1

Moreover, the conditional distribution of x given a particular value for z, i.e.the

likelihood, can be written as
K

1) =N(x| p, Xk), thus p(x|z)=||NEx|py Ze)™* .
k=1
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Example: Mixture of three 2D Gaussians * '+ Example: Mixture of three 2D Gaussians *
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0 0.5 1 0 05 1 0 0.5 1 0 0.5 1 0 0.5 1
Values of responsibilities Iso-countours of each
Samples from Iso-contours of p(x | 8) Surface plot of p(x | 8)
ded by RGB col p P p
p(z | O)p(x | 2.0) Samples from p(x | 6) coded by colors component

[1n() 2 )]
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Estimation of @ mixture of Gaussians Recall the EM algorithm
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Suppose we have a set of i.i.d. data samples {x,...,xy} drawn from a mixture 1: Choose an initial setting for the parameters ()
of Gaussians. The data set is represented by X € RV*P. 2t 0
The goal is to find the parameter vector 6 = (m, p, 2), specifying the model from 3: repeat
which the samples x;,, have most likely been drawn. We may find the parameters 4 t—ot+l 1) A (t-1)
which maximize the likelihood function p(x | 8). To simplify the optimization we 5 E step. Evaluate ¢ ® (Z) =p(Z]X,0%7)
use the log-likelihood function £(6) 6: M step. Evaluate 6 given by
0 € argmax £(8) = argmax Inp(X | 0) " argmax In H p(xn | 0) 0 = argznaxQ(G, 011y,
o n=1
LAgS where
= argmax In H H e N (% | g, k)™
WE Q(6.6""V) 2E[lnp(X.Z | 6) | X, 0]
= argma.x Z Z (In7g, + InN (x5 | gy, B)) - :Zp(z | X, 00 D) Inp(X,Z | 6)
n=lk=1 Z
Note that there is no closed-form solution for this model = iterative solution. 7: until convergence of either the parameters 6 or the log likelihood £(8;X)
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E step * M step for po *
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We need to calculate p(Z | X, 8°9). It is calculated based on p(z, | x,, 8°') for We have already known that 2,; = 7j(x,). Therefore, we may consider
aln=1,...,N
N N oK K
wgn P | 2, 6°9) p(ay, | €°9) e argznax Z Z 'yk(xn)(lnwk +InN(xy, | ;Lk,Ek)) st. >0, Z T =1.
P(zy | Xp,0°°) = i n=1k=1 k=1
p(xn | 6°) -
B HkK=1 (N (% | g, Sp)) ™ ein We calculate the derivative of £(0) w.r.t.
- K
2uiy mN (Xn | py; Bi) © - Z ( 1 N( | y.
s —z: 0) = ) ) ——— %o | bgs i
T N (% | 1, Z0) A (%) - ") Xo | e Zk) opy T

COE mN (X | s E)

Therefore, in the E step we need to calculate the responsibilities ~j(xy,,) for all
data points x,, and components k =1,..., K.
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M step for p * M step for X *
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Let us now consider the derivative of a Gaussian only

N K K
0 1 0 1 Tgr—1 9earmax22 (xn) (1 InN (xp | g, Bi)) sit >0 =1
= - ) = = — 2 (xp — b) = g Ve(Xn)(INT + IMN (Xn, | By, 248)) ST T » 2 Tk .
SN O | B) = e e (= 5000 = ) "= 60 — ) PPN Z
=ﬁ exp (_71(3(71 — )T (0 — Itk)>2;1(xn — ) Setting the derivative of £(0) w.r.t. Xy to 0, one can obtain (see exercise)
up?
=N (¢ | b Z) 5 (e = by - 55, = St 060G = ) (%0 — )"
o . A ZZ=1 Vi (Xim)
By substituting back and setting the derivative of £(0) w.r.t. g to 0, we get
N Remark: A 2 € RP*D matrix, calculated as
’Yk(xn

)= Z e Ty N (e | e, ) Sy (% — ) = 0 N
x B> 1
ne1 (nl/J’k k) E=7Z(XTL7N)(XTL7N)T7
N N -1
Zn=1 Vk(xn) Xn n=l1
NN .y PR .
Dim—1 Yk (Xm) is called sample covariance matrix of data points {x, € RP}_, where p is the

sample mean.
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M step for 7 * 1t » The EM Algorithm:for mixtures of Gaussian
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To integrate the conditions on 7 we use the Lagrange multiplier method 1: Initialize the means p;,, covariances 3 and mixing coefficients 7, for all
k=1,...,K
WIS & 2: repeat
0€arma.xZZ x,) (Inmg, + In N (x, 3 +/\1—Z7T . ’ .
& e ")< k (x| k)) ( Q) 3.  E step. Evaluate the responsibilities using the current parameter values

n=1k=1 k=1

Setting the derivative w.r.t. 7 to 0, we obtain Ye(%n) = e N (% | g Bi) foril<n<Nand 1 <k< K.

Sy m N (xa | g, S0)

N
Z ’Yk(xn) —A=0
=om 4: M step. Re-estimate the parameters (my, py, X) forall k =1,..., K

K v N
Z 'yk(xn) =\ Z Tk = N =\ Nnew =M new Zn:l ’Yk(xn)(xﬂ - “Eew)(xn - Nzew)T
A = et ) S )
N
_ X,
therefore rhew =W
N
= 2n=1 Tk (Xn)
k= N ) 5: until convergence of either the parameters 6 or the log likelihood £(8)
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__Example * __Remarks
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B The EM algorithm is not limited to mixtures of Gaussians, but it can also be
applied to other probability distributions.

B The algorithm does not necessary yield global maxima. In practice, it is
restarted with different initializations and the result with the highest
log-likelihood after convergence is chosen.

B One can think the EM algorithm as an alternating minimization procedure.
Considering f (0, q) as the objective function, one iteration of the EM
algorithm can be reformulated as

E-step: ¢t cargmax f(H(t), q)
q

M-step:  9U+1) € argmax f (6, q(t>)
6

3. Introduction to Graphical models - 19 / 36
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Graphical models
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Probabilistic graphical models encode a joint p(x,y) or conditional p(y | x)
probability distribution such that given some observations we are provided with a
full probability distribution over all feasible solutions.

The graphical models allow us to encode relationships between a set of random
variables using a concise language, by means of a graph.

Introduction to Graphical models

We will use the following notations

BV denotes a set of output variables (e.g., for pixels) and the corresponding
random variables are denoted by Y; for all i € V.

B The output domain ) is given by the product of individual variable domains
Vi (e.g., asingle label set £), so that Y = X, Vi.

B The input domain X is application dependent (e.g., X is a set of images).

B The realization Y = y means that Y; = y; for all i € V.

B G = (V,€)is an (un)directed graph, where £ encodes the conditional
independence assumption.

Bayesian networks
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Assume a directed, acyclic graphical model G = (V, ), where £V x V.

The factorization is given as @ a

(Y =y) = [ [P | Yoaui) -
eV

. . . Markov random field

where p(yi | Ypa, (i) is a conditional probability @

distribution on the parents of node i € V.
The conditional independence assumption is encoded by G that is a variable is
conditionally independent of its non-descendants given its parents.

For example:
p(y) =p(yi | yk) Py | Yir ;) p(yi) p(y;)

=p(yi | yx) (Y | vi,y5) p(i, ;) = (i | yx) P(Yis Y5, Yk)
=p(yi | Yi» 5> Yr) (Wi Yj> Yx) = P(Yis Ui ks Y1) -
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Markov.random field

I

Mixtures of Gaussians Introduction to Graphical models Markov random field

Gibbs: distribution

U
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An undirected graphical model G = (V, &) is called Markov Random Field (MRF)

if two nodes are conditionally independent whenever they are not connected. In

other words, for any node i in the graph, the local Markov property holds:
p(Yi | Yogy) =p(Yi | Yng)) »

where N(4) is denotes the neighbors of node i in the graph.
Alternatively, we use the following equivalent notation:

Y L Yoae | Yo
where cl(i) = N(i) u {i} is the closed neighborhood of i.
Example:

Y, LYY, Y = pilysve,v) =0l yjue)

p(yr | vis Yz uk) = plyr | Y5, uk) -
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1l

Markov random field

_Examples *

Mixtures of Gaussians

CG1 = {{Z}v{]}v {k}7{27]}7{]7k}}’ hence

Introduction to Graphical models

DY) = i 0 ki o 5w G

Ca, = 20701 (ie. all subsets of V)

H "/’c(YC)

ce2figik,l}

p(y) = %

U = (i}, {5}, {h}, 1), Go
(i, 7} Ad kY 4, 0 s kY 4, 0,
AR O R (R VA
i,k 1)
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A probability distribution p(y) on an undirected graphical model G = (V, &) is
called Gibbs distribution if it can be factorized into potential functions

1e(ye) > 0 defined on cliques (i.e. fully connected subgraph) that cover all nodes
and edges of G. That is,

p) = 5 [T ey

ceCa

where C denotes the set of all (maximal) cliques in G and

Z = Z 1_[ wc(}’c)'

yeY ceCa

is the normalization constant. Z is also known as partition function.

Graphical Models

Hammersley-Clifford theorem

Mixtures of Gaussians Introduction to Graphical models Markov random field

Let G = (V,&) be an undirected graphical model. The Hammersley-Clifford
theorem tells us that the followings are equivalent:

B G is an MRF model.
B The joint probability distribution p(y) on G is a Gibbs-distribution.

An MRF defines a family of joint probability distributions by means of an
undirected graph G = (V,€), £ <V x V (there are no self-edges), where the
graph encodes conditional independence assumptions between the random
variables corresponding to V.
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Proof of the Hammersley-Clifford theore
(backward direction) *

Introduction to Graphical models Markov random field

3. Introduction to Graphical models — 28 / 36

Mixtures of Gaussians

Let cl(i) = N; u {i} and assume that p(y) follows a Gibbs-distribution.

Woyn) _ _ 2va@P®)  _ Zwaa 7 [ eecy, Ye(ye)
p(yn;) Zy, Zv\cl(i) p(y) Zzz Zv\cl(i) % HCECG Ye(ye)

D
p(yi | yn,) =

Let us define two sets: C; := {ce€Cg:i€c}and R;:={ceCq:i¢c}.

2 eee, Ye(ye) Taer, Yalya)
X2 v e, Yeve) [aer, Yalya)
 leee, eye) 2y Haer, Yalya)
B Zyi Hcecl Ye(ye) Zv\d(i) Hdem Ya(ya)
_ [Teec, Ye(ye)

2y Meee, Yelye)
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I

Markov random field

Binomial theorem *

Mixtures of Gaussians Introduction to Graphical models

p(yi | yn,) = Mece, Velve)
N S Teee, 9evo)

_ HceCi wc(}’c) . HCE’R,l wc(yc)
B Zyi Hcecl Ye(ye) HcERi Ye(ye)
_ HceCG Ye(ye)
B Zyl Hce()c Ye(ye)
_oply)  plywgyve)
Cplwgy) Py

=pYi | ywgy) -

Therefore the local Markov property holds for any node i € V.

IN2329 - Probabilistic Graphical Models in Computer Vision 3. Introduction to Graphical models — 30 / 36

Proof of the Clifford-Hammersley theore
(forward direction) *
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Reminder: Let x,y € R and n € N, then

n n B

(a+b)" =3, <k>z(" Myt
k=0

where (};) = k!(:ilc)!'

We will use the following identity

0=(1-1)"= Zn)(fnk(Z) .

k=0

Reminder: A k-combination of a set S is a subset of k distinct elements of S. If
|S| = n, then number of k-combinations is equal to (}).

We define a candidate potential function for any subset s £V as follows:

_qlsl—lzl
Fo(Ys=yo) = [ oy yn) "0
2Es
where p(y.,y%) is a strictly positive distribution. We will use the following
notation:
a(y:) = p(y:,¥3) -

Assume that the local Markov property holds for any node i € V.
First, we show that, if s is not a clique, then f,(ys) = 1. For this sake, let us
assume that s is not a clique, therefore there exist a,b € s that are not connected
to each other. Hence

¥ =y~ [T = ]

2Cs z<s\{a,b}

(M) o
Q(ywu{a}) q(ywu(b}) '

where —1* meaning either 1 or -1 is not important at all.
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Proof of the Clifford-Hammersley theore

(forward direction) *

Introduction to Graphical models

Mixtures of Gaussians Markov random field

Proof of the Clifford-Hammersley theore
(forward direction) *
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Let us consider s € V such that s n z = (J, then it can be shown that (see
exercise)

A X (¥ ys)
a(y=1ys) =¥z | Y5 Y9\ (20s) ARE
We have (1)
4Yw) AYwotany) \'
fs(Ys = YS) = H ( ( ) u(; o) ) 3
wSs\{a,b} A Ywofa}) A\Ywoib}
where

4(Yw) 4w Yar yp) _ 9(Wa [ Y0:Yw) allb 4(Wa | yu)
(Y Ya) QYwrve)  1(Ya | Yu) a(Ya | Yu)

=1.
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_Summary *
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We also show that [ [,y fs(ys) = p(y). Consider any z < V and the
corresponding factor ¢(y.). Let n:=|V| —|z|.

B g(y.) oceursin f.(y2) as a(y=) ") = q(y.).

B ¢(y.) also occurs in the functions f,(ys) for s €V, where |s| = |z| + 1. The
number of such factors is (Tl‘) The exponent of those factors is
—qlsl=lel = 1 = 1.

m  ¢(y-) occurs in the functions f,(y,) for s © V, where |s| = |z| + 2. The

number of such factors is (g) and their exponent is —1lsI=121 = 1.

If we multiply all those factors, we get
a(y=) aly:)" gy ) L gly) TG = gy @)+ E) -+ E00)
=q(y:)’=1.

So all factors cancel themselves out except of ¢(y) = p(y). O
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Literature *
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B A graphical models allow us to encode relationships between a set of random
variables using a concise language, by means of a graph.

B A Bayesian network is a directed acyclic graphical model G = (V, ), where
conditional independence assumption is encoded by G that is a variable is
conditionally independent of its non-descendants given its parents.

B An MREF defines a family of joint probability distributions by means of an
undirected graph G = (V, ), where the graph encodes conditional
independence assumptions between the random variables.

In the next lecture we will learn about

m  Conditional random fields (CRF)
B Binary image segmentation
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The EM algorithm for Mixtures of Gaussians

1. Frank Dellaert. The expectation maximization algorithm. Technical Report
GIT-GVU-02-20, Georgia Institute of Technology, Atlanta, GA, USA, 2002

2. Shane M. Haas. The expectation-maximization and alternating minimization
algorithms. Unpublished, 2002

3. Christopher Bishop. Pattern Recognition and Machine Learning. Springer, 2006

Graphical models

4. Daphne Koller and Nir Friedman. Probabilistic Graphical Models: Principles and
Techniques. MIT Press, 2009

5. Sebastian Nowozin and Christoph H. Lampert. Structured prediction and learning in
computer vision. Foundations and Trends in Computer Graphics and Vision, 6(3-4),
2010

6. J. M. Hammersley and P. Clifford. Markov fields on finite graphs and lattices.
Unpublished, 1971

7. Samson Cheung. Proof of hammersley-clifford theorem. Unpublished, February 2008

IN2329 - Probabilistic Graphical Models in Computer Vision 3. Introduction to Graphical models — 36 / 36




