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In the previous lecture we learnt about

■ Expectation-maximization algorithm, which is an iterative method for
parameter estimation, where the model also depends on latent variables

Today we are going to learn about

1. Expectation-maximization algorithm for mixture of Gaussians
2. Introduction to Graphical models

■ Directed graphical models:
Bayesian network

■ Undirected graphical models:
Markov random field
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Assume a D-dimensional random vector X “ pX1, . . . , XDq, i.e. a vector whose
components are random variables, with the joint density function

ppx1, . . . , xDq “ 1a|2πΣ| exp
ˆ

´1

2
px ´ µqTΣ´1px ´ µq

˙
.

X is said to have multivariate Gaussian (or Normal) distribution with
parameters µ P RD and Σ P RDˆD assuming that Σ is positive definite.

µ is called the mean vector and Σ is called the covariance matrix. We often use
the notation X „ N px | µ,Σq denoting X has Normal distribution.

Reminder: A symmetric A P Rnˆn matrix is said to be positive definite, if
uTAu ą 0 for all non-zero u P Rn.

Mixtures of Gaussians
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While the Gaussian distribution has some important analytical properties, it suffers
from limitations when it comes to modelling real data sets. However the linear
combination of Gaussians can give rise to very complex densities.
Let us consider a superposition of K Gaussian
densities

ppxq “
Kÿ

k“1

πk N px | µk,Σkq ,

which is called a mixture of Gaussians.
The parameters πk are called mixing coefficients.

x

p(x)

Mixture of three Gaussians

1 “
ż

RD

ppxqdx “
ż

RD

Kÿ

k“1

πk N px | µk,Σkqdx “
Kÿ

k“1

πk .

All the density functions are non-negative, hence πk ě 0 for 1 ď k ď K, therefore

0 ď πk ď 1 for all k “ 1, . . . ,K .

Latent variables
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We introduce a K-dimensional binary random variable z having a 1-of-K
representation, i.e. zk “ 1 and all other elements are equal to 0. Let us define the
marginal distribution over z as

ppzk “ 1q “ πk ,

which is considered as the prior probability of picking the kth component of a
mixture of Gaussians. This distribution can be also written in the form

ppzq “
Kź

k“1

πzkk .

Moreover, the conditional distribution of x given a particular value for z, i.e.the
likelihood, can be written as

ppx | zk “ 1q “ N px | µk,Σkq , thus ppx | zq “
Kź

k“1

N px | µk,Σkqzk .

Latent variables: responsibilities
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The distribution of mixture of Gaussian, specified by the parameter vector
θ “ pπ,µ,Σq, is given by

ppxq ∆“ ppx | θq “
ÿ

z

ppx, z | θq “
ÿ

z

ppz | θqppx | z, θq

“
ÿ

z

Kź

k“1

`
πk ppx | µk,Σkq˘zk “

Kÿ

k“1

πk N px | µk,Σkq .

The posterior probabilities ppzk “ 1 | xq, denoted by γkpxq, a.k.a. responsibilities,
show the probability that a given sample x belongs to the kth component.

γkpxq ∆“ ppzk “ 1 | xq “ ppx | zk “ 1qppzk “ 1q
ppxq “ ppx | zk “ 1qppzk “ 1qřK

l“1 ppzl,xq
“ ppzk “ 1qppx | zk “ 1qřK

l“1 ppzl “ 1qppx | zl “ 1q “ πk N px | µk,ΣkqřK
l“1 πl N px | µl,Σlq

.



Example: Mixture of three 2D Gaussians ˚
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Example: Mixture of three 2D Gaussians ˚
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Estimation of a mixture of Gaussians
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Suppose we have a set of i.i.d. data samples tx1, . . . ,xNu drawn from a mixture
of Gaussians. The data set is represented by X P RNˆD.

The goal is to find the parameter vector θ “ pπ,µ,Σq, specifying the model from
which the samples xn have most likely been drawn. We may find the parameters
which maximize the likelihood function ppx | θq. To simplify the optimization we
use the log-likelihood function Lpθq

θ̂ P argmax
θ

Lpθq “ argmax
θ

ln ppX | θq i.i.d.“ argmax
θ

ln
Nź

n“1

ppxn | θq

“ argmax
θ

ln
Nź

n“1

Kź

k“1

`
πk N pxn | µk,Σkq˘znk

“ argmax
θ

Nÿ

n“1

Kÿ

k“1

znk
`
lnπk ` lnN pxn | µk,Σkq˘

.

Note that there is no closed-form solution for this model ñ iterative solution.

Recall the EM algorithm
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1: Choose an initial setting for the parameters θp0q
2: t Ñ 0
3: repeat
4: t Ñ t` 1
5: E step. Evaluate qpt´1qpZq ∆“ ppZ | X, θpt´1qq
6: M step. Evaluate θptq given by

θptq “ argmax
θ

Qpθ, θpt´1qq ,

where

Qpθ, θpt´1qq ∆“Erln ppX,Z | θq | X, θptqs
“

ÿ

Z

ppZ | X, θpt´1qq ln ppX,Z | θq

7: until convergence of either the parameters θ or the log likelihood Lpθ;Xq

E step ˚
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We need to calculate ppZ | X, θoldq. It is calculated based on ppzn | xn, θ
oldq for

all n “ 1, . . . , N

ppzn | xn, θ
oldq “ ppxn | zn, θoldq ppzn | θoldq

ppxn | θoldq

“
śK

k“1

`
N pxn | µk,Σkq˘znk πznk

křK
l“1 πlN pxn | µk,Σkq

“ πk N pxn | µk,Σkq
řK

l“1 πlN pxn | µk,Σkq
∆“ γkpxnq .

Therefore, in the E step we need to calculate the responsibilities γkpxnq for all
data points xn and components k “ 1, . . . ,K.

M step for µ ˚
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We have already known that znk “ γkpxnq. Therefore, we may consider

θ̂ P argmax
θ

Nÿ

n“1

Kÿ

k“1

γkpxnq`
lnπk ` lnN pxn | µk,Σkq˘

s.t. πk ą 0 ,
Kÿ

k“1

πk “ 1 .

We calculate the derivative of Lpθq w.r.t. µk

B
Bµk

Lpθq “
Nÿ

n“1

γkpxnq 1

N pxn | µk,Σkq
B

Bµk

N pxn | µk,Σkq .

M step for µ ˚
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Let us now consider the derivative of a Gaussian only

B
Bµk

N pxn | µk,Σkq “ 1a|2πΣk|
B

Bµk

exp
´

´ 1

2
pxn ´ µkqTΣ´1

k pxn ´ µkq
¯

“ 1a|2πΣk| exp
´´1

2
pxn ´ µkqTΣ´1

k pxn ´ µkq
¯
Σ´1

k pxn ´ µkq

“N pxn | µk,ΣkqΣ´1
k pxn ´ µkq .

By substituting back and setting the derivative of Lpθq w.r.t. µk to 0, we get

B
Bµk

Lpθq “
Nÿ

n“1

γkpxnq
N pxn | µk,ΣkqN pxn | µk,ΣkqΣ´1

k pxn ´ µkq “ 0

řN
n“1 γkpxnq xnřN
m“1 γkpxmq “ µk .

M step for Σ ˚
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θ̂ P argmax
θ

Nÿ

n“1

Kÿ

k“1

γkpxnq`
lnπk ` lnN pxn | µk,Σkq˘

s.t. πk ą 0 ,
Kÿ

k“1

πk “ 1 .

Setting the derivative of Lpθq w.r.t. Σk to 0, one can obtain (see exercise)

Σk “
řN

n“1 γkpxnqpxn ´ µkqpxn ´ µkqT
řN

m“1 γkpxmq .

Remark: A Σ P RDˆD matrix, calculated as

Σ “ 1

N ´ 1

Nÿ

n“1

pxn ´ µqpxn ´ µqT ,

is called sample covariance matrix of data points txn P RDuNn“1, where µ is the
sample mean.



M step for π ˚
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To integrate the conditions on π we use the Lagrange multiplier method

θ̂ P argmax
θ

Nÿ

n“1

Kÿ

k“1

γkpxnq`
lnπk ` lnN pxn | µk,Σkq˘ ` λp1 ´

Kÿ

k“1

πkq .

Setting the derivative w.r.t. πk to 0, we obtain

Nÿ

n“1

γkpxnq
πk

´ λ “0

Nÿ

n“1

Kÿ

k“1

γkpxnq “λ
Kÿ

k“1

πk ñ N “ λ

therefore

πk “
řN

n“1 γkpxnq
N

.

The EM Algorithm for mixtures of Gaussians
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1: Initialize the means µk, covariances Σk and mixing coefficients πk for all
k “ 1, . . . ,K

2: repeat
3: E step. Evaluate the responsibilities using the current parameter values

γkpxnq “ πk N pxn | µk,ΣkqřK
l“1 πl N pxn | µl,Σlq

for 1 ď n ď N and 1 ď k ď K .

4: M step. Re-estimate the parameters pπk,µk,Σkq for all k “ 1, . . . ,K

µnew
k “

řN
n“1 γkpxnqxnřN
m“1 γkpxmq , Σnew

k “
řN

n“1 γkpxnqpxn ´ µnew
k qpxn ´ µnew

k qT
řN

m“1 γkpxmq

πnewk “
řN

n“1 γkpxnq
N

5: until convergence of either the parameters θ or the log likelihood Lpθq

Example ˚
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Remarks
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■ The EM algorithm is not limited to mixtures of Gaussians, but it can also be
applied to other probability distributions.

■ The algorithm does not necessary yield global maxima. In practice, it is
restarted with different initializations and the result with the highest
log-likelihood after convergence is chosen.

■ One can think the EM algorithm as an alternating minimization procedure.
Considering fpθ, qq as the objective function, one iteration of the EM
algorithm can be reformulated as

E-step: qpt`1q P argmax
q

fpθptq, qq

M-step: θpt`1q P argmax
θ

fpθ, qptqq

Introduction to Graphical models
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Probabilistic graphical models encode a joint ppx,yq or conditional ppy | xq
probability distribution such that given some observations we are provided with a
full probability distribution over all feasible solutions.

The graphical models allow us to encode relationships between a set of random
variables using a concise language, by means of a graph.

We will use the following notations

■ V denotes a set of output variables (e.g., for pixels) and the corresponding
random variables are denoted by Yi for all i P V.

■ The output domain Y is given by the product of individual variable domains
Yi (e.g., a single label set L), so that Y “ Ś

iPV Yi.
■ The input domain X is application dependent (e.g., X is a set of images).
■ The realization Y “ y means that Yi “ yi for all i P V.
■ G “ pV, Eq is an (un)directed graph, where E encodes the conditional

independence assumption.

Bayesian networks
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Assume a directed, acyclic graphical model G “ pV, Eq, where E Ă V ˆ V.
The factorization is given as

ppY “ yq “
ź

iPV
ppyi | ypaGpiqq ,

where ppyi | ypaGpiqq is a conditional probability
distribution on the parents of node i P V.

Yi

Yk

Yj

Yl

The conditional independence assumption is encoded by G that is a variable is
conditionally independent of its non-descendants given its parents.

For example:

ppyq “ppyl | ykq ppyk | yi, yjq ppyiq ppyjq
“ppyl | ykq ppyk | yi, yjq ppyi, yjq “ ppyl | ykq ppyi, yj , ykq
“ppyl | yi, yj, ykq ppyi, yj , ykq “ ppyi, yj , yk, ylq .

Markov random field
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An undirected graphical model G “ pV, Eq is called Markov Random Field (MRF)
if two nodes are conditionally independent whenever they are not connected. In
other words, for any node i in the graph, the local Markov property holds:

ppYi | YVztiuq “ ppYi | YNpiqq ,
where Npiq is denotes the neighbors of node i in the graph.
Alternatively, we use the following equivalent notation:

Yi KK YVzclpiq | YNpiq ,

where clpiq “ Npiq Y tiu is the closed neighborhood of i.

Yi Yj

Yk Yl

Example:

Yi KK Yl | Yj , Yk ñ ppyi | yj , yk, ylq “ ppyi | yj , ykq ,
ppyl | yi, yj , ykq “ ppyl | yj , ykq .

Gibbs distribution
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A probability distribution ppyq on an undirected graphical model G “ pV, Eq is
called Gibbs distribution if it can be factorized into potential functions
ψcpycq ą 0 defined on cliques (i.e. fully connected subgraph) that cover all nodes
and edges of G. That is,

ppyq “ 1

Z

ź

cPCG
ψcpycq ,

where CG denotes the set of all (maximal) cliques in G and

Z “
ÿ

yPY

ź

cPCG
ψcpycq .

is the normalization constant. Z is also known as partition function.

Examples ˚
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CG1 “ ttiu, tju, tku, ti, ju, tj, kuu, hence

ppyq “ 1

Z
ψipyiqψjpyjqψkpykqψijpyi, yjqψjkpyj , ykq

Yi Yj Yk

G1

CG2 “ 2ti,j,k,lu (i.e. all subsets of V2)

ppyq “ 1

Z

ź

cP2ti,j,k,lu
ψcpycq

2ti,j,k,lu “ttiu, tju, tku, tlu,
ti, ju, ti, ku, ti, lu, tj, ku, tj, lu,
ti, j, ku, ti, j, lu, ti, k, lu, tj, k, lu,
ti, j, k, luu

Yi Yj

Yk Yl

G2

Hammersley-Clifford theorem
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Let G “ pV, Eq be an undirected graphical model. The Hammersley-Clifford
theorem tells us that the followings are equivalent:

■ G is an MRF model.
■ The joint probability distribution ppyq on G is a Gibbs-distribution.

An MRF defines a family of joint probability distributions by means of an
undirected graph G “ pV, Eq, E Ă V ˆ V (there are no self-edges), where the
graph encodes conditional independence assumptions between the random
variables corresponding to V.

Proof of the Hammersley-Clifford theorem
(backward direction) ˚
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Let clpiq “ Ni Y tiu and assume that ppyq follows a Gibbs-distribution.

ppyi | yNiq “ ppyi,yNiq
ppyNiq

“
ř

Vzclpiq ppyq
ř

yi

ř
Vzclpiq ppyq “

ř
Vzclpiq

1
Z

ś
cPCG ψcpycqř

xi

ř
Vzclpiq

1
Z

ś
cPCG ψcpycq

Let us define two sets: Ci :“ tc P CG : i P cu and Ri :“ tc P CG : i R cu.

“
ř

Vzclpiq
ś

cPCi ψcpycq ś
dPRi

ψdpydq
ř

yi

ř
Vzclpiq

ś
cPCi ψcpycq ś

dPRi
ψdpydq

“
ś

cPCi ψcpycq ř
Vzclpiq

ś
dPRi

ψdpydq
ř

yi

ś
cPCi ψcpycq ř

Vzclpiq
ś

dPRi
ψdpydq

“
ś

cPCi ψcpycqř
yi

ś
cPCi ψcpycq

Proof of the Hammersley-Clifford theorem
(backward direction) ˚
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ppyi | yNiq “
ś

cPCi ψcpycqř
yi

ś
cPCi ψcpycq

“
ś

cPCi ψcpycqř
yi

ś
cPCi ψcpycq ¨

ś
cPRi

ψcpycqś
cPRi

ψcpycq

“
ś

cPCG ψcpycqř
yi

ś
cPCG ψcpycq

“ ppyq
ppyVztiuq “ ppyVztiu, yiq

ppyVztiuq
“ ppyi | yVztiuq .

Therefore the local Markov property holds for any node i P V.

Binomial theorem ˚
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Reminder: Let x, y P R and n P N, then

pa` bqn “
nÿ

k“0

ˆ
n

k

˙
xpn´kqyk ,

where
`
n
k

˘ “ n!
k!pn´kq! .

We will use the following identity

0 “ p1 ´ 1qn “
nÿ

k“0

p´1qk
ˆ
n

k

˙
.

Reminder: A k-combination of a set S is a subset of k distinct elements of S. If
|S| “ n, then number of k-combinations is equal to

`
n
k

˘
.

Proof of the Clifford-Hammersley theorem
(forward direction) ˚
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We define a candidate potential function for any subset s Ď V as follows:

fspYs “ ysq “
ź

zĎs

ppyz,y
˚̄
z qp´1|s|´|z|q

where ppyz,y
˚̄
z q is a strictly positive distribution. We will use the following

notation:
qpyzq :“ ppyz,y

˚̄
z q .

Assume that the local Markov property holds for any node i P V.
First, we show that, if s is not a clique, then fspysq “ 1. For this sake, let us
assume that s is not a clique, therefore there exist a, b P s that are not connected
to each other. Hence

fspYs “ ysq “
ź

zĎs

qpyzqp´1|s|´|z|q “
ź

zĎszta,bu

ˆ
qpywq qpywYta,buq
qpywYtauq qpywYtbuq

˙p´1˚q
,

where ´1˚ meaning either 1 or -1 is not important at all.



Proof of the Clifford-Hammersley theorem
(forward direction) ˚
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Let us consider s Ď V such that sX z “ H, then it can be shown that (see
exercise)

qpyz | ysq ∆“ ppyz | ys,y
˚
VzpzYsqq “ qpyz,ysq

qpysq .

We have

fspYs “ ysq “
ź

wĎszta,bu

ˆ
qpywq qpywYta,buq
qpywYtauq qpywYtbuq

˙p´1˚q
,

where
qpywq qpyw, ya, ybq
qpyw, yaq qpyw, ybq “ qpya | yb,ywq

qpya | ywq
aKKb“ qpya | ywq

qpya | ywq “ 1 .

Proof of the Clifford-Hammersley theorem
(forward direction) ˚

Mixtures of Gaussians Introduction to Graphical models Markov random field
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We also show that
ś

sĎV fspysq “ ppyq. Consider any z Ă V and the
corresponding factor qpyzq. Let n :“ |V| ´ |z|.
■ qpyzq occurs in fzpyzq as qpyzqp´10q “ qpyzq.
■ qpyzq also occurs in the functions fspysq for s Ď V, where |s| “ |z| ` 1. The

number of such factors is
`
n
1

˘
. The exponent of those factors is

´1|s|´|z| “ ´11 “ ´1.
■ qpyzq occurs in the functions fspysq for s Ď V, where |s| “ |z| ` 2. The

number of such factors is
`
n
2

˘
and their exponent is ´1|s|´|z| “ 1.

If we multiply all those factors, we get

qpyzq1 qpyzq´pn1q qpyzqpn2q . . . qpyzqp´1nqpnnq “ qpyzqpn0q´pn1q`pn2q`¨¨¨`p´1qnpnnq
“ qpyzq0 “ 1 .

So all factors cancel themselves out except of qpyq “ ppyq.

Summary ˚
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■ A graphical models allow us to encode relationships between a set of random
variables using a concise language, by means of a graph.

■ A Bayesian network is a directed acyclic graphical model G “ pV, Eq, where
conditional independence assumption is encoded by G that is a variable is
conditionally independent of its non-descendants given its parents.

■ An MRF defines a family of joint probability distributions by means of an
undirected graph G “ pV, Eq, where the graph encodes conditional
independence assumptions between the random variables.

In the next lecture we will learn about

■ Conditional random fields (CRF)
■ Binary image segmentation
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