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In the previous lecture we learnt about graphical models

■ Bayesian network
■ Markov random field

Today we are going to learn about

■ Factor graph
■ Conditional random field (CRF)
■ Inference for graphical models
■ Binary image segmentation
■ Graph cut, maximum flow
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Factor graph

Factor graph CRF Inference Binary image segmentation Graph Cut Flow network

Recall: Markov random field ˚
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■ An undirected graphical model G “ pV, Eq is called
Markov random field, if the local Markov property
holds, i.e. two nodes are conditionally independent
whenever they are not connected.

Yi Yj

Yk Yl

■ A probability distribution ppyq on an undirected graphical model G “ pV, Eq is
called Gibbs distribution if it can be factorized into potential functions
ψcpycq ą 0 defined on cliques:

ppyq “ 1

Z

ź

cPCG
ψcpycq , where Z “

ÿ

yPY

ź

cPCG
ψcpycq ,

and CG denotes the set of all (maximal) cliques in G.

The Hammersley-Clifford theorem tells us that the above two definitions are
equivalent.

Factor graphs
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Factor graphs are undirected graphical models that make the
factorization explicit of the probability function.
A factor graph G “ pV,F , E 1q consists of

■ variable nodes V (©) and factor nodes F (�),
■ edges E 1 Ď V ˆ F between variable and factor nodes
■ N : F Ñ 2V is the scope of a factor, defined as the set of

neighboring variables, i.e. NpF q “ ti P V : pi, F q P Eu.
A family of distribution is defined that factorizes as:

ppyq “ 1

Z

ź

FPF
ψF pyNpF qq with Z “

ÿ

yPY

ź

FPF
ψF pyNpF qq .
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MRF
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Factor graph
Each factor F P F connects a subset of nodes, hence we write
yF “ yNpF q “ pyv1 , . . . , yv|F |q.

Examples ˚

Factor graph CRF Inference Binary image segmentation Graph Cut Flow network
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Yi Yj

Yk Yl

Yi Yj

Yk Yl

An exemplar MRF p1pyq “ 1
Z1
ψijklpyi, yj , yk, ylq

Yi Yj

Yk Yl

p2pyq “ 1

Z2
ψijpyi, yjqψikpyi, ykqψilpyi, ylq
ψjkpyj , ykqψjlpyj , ylqψklpyk, ylq

Factor graphs are universal, explicit about the factorization, hence it is easier to
work with them.

CRF

Factor graph CRF Inference Binary image segmentation Graph Cut Flow network



Conditional random field
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We have discussed the joint distribution

ppyq “ 1

Z

ź

FPF
ψF pyNpF qq ,

but we often have access to measurements X “ x, hence the conditional
distribution ppY “ y | X “ xq could be directly modeled, too.

This can be expressed compactly using conditional random fields (CRF) with the
factorization

ppy | xq “ppy,xq
ppxq “ ppy,xqř

y1PY ppy1,xq “
1
Z

ś
FPF ψF pyNpF q;xNpF qqř

y1PY
1
Z

ś
FPF ψF py1

NpF q;xNpF qq
“ 1

Zpxq
ź

FPF
ψF pyNpF q;xNpF qq .

Conditional random field

Factor graph CRF Inference Binary image segmentation Graph Cut Flow network
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ppy | xq “ 1

Zpxq
ź

FPF
ψF pyF ;xF q

with the partition function depending on x

Zpxq “
ÿ

yPY

ź

FPF
ψF pyF ;xF q .

Xi

Yi Yj

Xj

Shaded variables: The
observations X “ x.

Note that the potentials become also functions of (part of) x, i.e. ψF pyF ;xF q
instead of just ψF pyF q. Nevertheless, X is not part of the probability model, i.e. it
is not treated as random vector.

Potentials and energy functions
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We typically would like to infer marginal probabilities ppYF “ yF | xq for some
factors F P F .

Assuming ψF : YF Ñ R`, where YF “ ˆiPNpF qYi is the product domain of the
variables adjacent to F , instead of potentials, we can also work with energies.

We define an energy function EF : YF Ñ R for each factor F P F :

EF pyF ;xF q “ ´ logpψF pyF ;xF qq ô ψF pyF ;xF q “ expp´EF pyF ;xF qq .

ppy | xq “ 1

Zpxq
ź

FPF
ψF pyF ;xF q “ 1

Zpxq expp´
ÿ

FPF
EF pyF ;xF qq

“ 1

Zpxq expp´Epy;xqq .

Hence, ppy | xq is completely determined by Epy;xq.

Inference

Factor graph CRF Inference Binary image segmentation Graph Cut Flow network

Inference
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The goal is to make predictions y P Y , as good as possible, about unobserved
properties for a given data instance x P X .

Suppose we are given a graphical model (e.g., a factor graph). The inference
means the procedure to estimate the probability distribution, encoded by the
graphical model, for a given data (or observation).

Probabilistic inference: Given a graphical model and the observation x, find the
value of the log partition function and the marginal distributions for each factor,

logZpxq “ log
ÿ

yPY
expp´Epy;xqq ,

µF pyF q “ ppYF “ yF | xq @F P F , @yF P YF .

This typically includes variable marginals, i.e. µi “ ppyi | xq, to make a single
prediction yi for all variables i P V.

MAP inference
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Maximum A Posteriori (MAP) inference: Given a graphical model and the
observation x, find the state y˚ P Y of maximum probability

y˚ P argmax
yPY

ppY “ y | xq .

Both inference problems are known to be NP-hard for general graphs and factors,
but they can be tractable if the underlying graphical model is suitably restricted.

Energy minimization

Factor graph CRF Inference Binary image segmentation Graph Cut Flow network
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Assuming a finite X , the goal is to solve y˚ P argmaxyPY ppy | xq.

argmax
yPY

ppy | xq “ argmax
yPY

1

Zpxq expp´Epy;xqq

“ argmax
yPY

expp´Epy;xqq

“ argmax
yPY

´Epy;xq

“ argmin
yPY

Epy;xq .

Energy minimization can be interpreted as solving for the most likely state of
factor graph, i.e. MAP inference.

In practice, one typically models the energy function directly.

Binary image segmentation

Factor graph CRF Inference Binary image segmentation Graph Cut Flow network



Binary image segmentation
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Input image Figure–ground segmentation

Conditional independences are specified by a factor graph G “ pV,F , Eq, where all
pixels depend only on the neighboring ones.

Binary image segmentation
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The conditional distribution factorizes (up to pairwise factors) as

ppy | xq “ 1

Zpxq
ź

iPV
ψipyi;xiq

ź

iPV, jPNpiq
ψijpyi, yj ;xi, xjq

with
Zpxq “

ÿ

yPt0,1uV

ź

iPV
ψipyi;xiq

ź

iPV, jPNpiq
ψijpyi, yj ;xi, xjq ,

where Npiq “ tj P V : pi, j P Equ.
The corresponding energy function E : t0, 1uV ˆ X Ñ R:

Epy;xq “
ÿ

iPV
Eipyi;xiq `

ÿ

iPV, jPNpiq
Eijpyi, yj ;xi, xjq .

Binary image segmentation

Factor graph CRF Inference Binary image segmentation Graph Cut Flow network
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In order to define energy functions for unary factors, one can consider a set of
functions φi : Yi ˆ Xi Ñ r0; 1s:

Eipyi;xiq “ ´ log φipyi;xiq for all i P V .

For pairwise factor energies we use the Potts model here, that is

Eijpyi, yj ;xi, xjq :“ Eijpyi, yjq “ Jyi ‰ yjK “
#
0, if yi “ yj

1, otherwise.

The resulting energy function given as

Epy;xq “
ÿ

iPV
Eipyi;xiq `

ÿ

iPV, jPNpiq
Eijpyi, yj ;xi, xjq

“
ÿ

iPV
´ log φipyi;xiq `

ÿ

iPV, jPNpiq
Jyi ‰ yjK .

Summary ˚

Factor graph CRF Inference Binary image segmentation Graph Cut Flow network
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■ Factor graphs are universal, explicit about the factorization, hence it is easier
to work with them.

■ A Conditional random field is an undirected graphical model, which
expresses compactly ppy | xq for some observation X “ x.

■ The inference means the procedure to estimate the probability distribution,
encoded by the graphical model, for a given data.

■ Given a graphical model and the observation x, MAP inference means to find
the state y˚ P Y of maximum probability

y˚ P argmax
yPY

ppY “ y | xq .

■ In order to solve binary image segmentation, one may minimize the energy
function E : t0, 1uV ˆ X Ñ R:

Epy;xq “
ÿ

iPV
´ log φipyi;xiq `

ÿ

iPV, jPNpiq
Jyi ‰ yjK .

Graph Cut

Factor graph CRF Inference Binary image segmentation Graph Cut Flow network

Graph cut
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Assume a weighted directed graph G “ pV, E , cq
■ V “ t1, . . . , nu is a finite set of nodes,
■ E Ď tpi, jq P V ˆ V | i ‰ ju is the set of edges,
■ c : V ˆ V Ñ R is a weight function. (For any pi, jq R E , cpi, jq “ 0.)

A cut pS, T q of G is a disjoint partition of V into S and T “ VzS.
The capacity of the cut pS, T q is defined as

cutpS, T q “
ÿ

pi,jqPSˆT
cpi, jq .

Assume distinct nodes s, t P V, a cut pS, T q is
called s´ t cut if s P S and t P T .
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The minimum s´ t cut problem is to find an s´ t cut with the lowest cost.

Example: cutpS, T q “ cpv1, v3q ` cpv2, v4q “ 12 ` 14 “ 26.

Flow network

Factor graph CRF Inference Binary image segmentation Graph Cut Flow network

Flow network and flow
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Let G “ pV, E , cq be a directed weighted graph with non-negative edge weights.
Given two distinct nodes, a source s and a sink t, we call pV, E , c, s, tq a flow
network.

Let pV, E , c, s, tq be a flow network. A function f : V ˆ V Ñ R is called a flow if it
satisfies the following properties:

1. Capacity constraint:

fpi, jq ď cpi, jq for all i, j P V .

2. Skew-symmetry:

fpi, jq “ ´fpj, iq for all i, j P V .

3. Flow conservation:
ÿ

jPV
fpi, jq “ 0 for all i P Vzts, tu .
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The edges are labeled by
fpi, jq{cpi, jq.

Only positive fpi, jq are shown.



The value of a flow ˚
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The value of a flow f is defined as

|f | ∆“
ÿ

ps,iqPE
fps, iq “ ´

ÿ

pi,tqPE
fpi, tq .

The maximum-flow problem is to find a flow f with the highest cost for a given
flow network G.
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|f | “ 19.

An equivalent definition of flows ˚
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Now we give a more intuitive definition of flows. We will see that the previous
definition is more helpful for the analysis of the maximum-flow algorithm.

Let pV, E , c, s, tq be a flow network. A function f : E Ñ R` is called a flow if it
satisfies the following two properties:

1. fpi, jq ď cpi, jq for all pi, jq P E .
2. For all i P Vzts, tu

ÿ

pi,jqPE
fpi, jq “

ÿ

pj,iqPE
fpi, jq .
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One can see that the two definitions of the flow are equivalent. (See Exercise)

Working with flows ˚
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Let G “ pV, E , c, s, tq be a flow network and let f be a flow in G. We will use the
following notation for A,B Ď V

fpA,Bq “
ÿ

aPA

ÿ

bPB
fpa, bq .

It is easy to see that |f | “ fpV, ttuq, and fptiu,Vq “ 0 for all i P Vzts, tu due to
flow conservation.

Let G “ pV, E , c, s, tq be a flow network and let f be a flow in G. Then the
following equalities hold:

i) For all A Ď V, we have fpA,Aq “ 0.
ii) For all A,B Ď V, we have fpA,Bq “ ´fpB,Aq.
iii) For all A,B,C Ď V with AXB “ H, we have

fpAYB,Cq “ fpA,Cq ` fpB,Cq and fpC,AYBq “ fpC,Aq ` fpC,Bq .
Proof. Exercise.

Residual network

Factor graph CRF Inference Binary image segmentation Graph Cut Flow network

IN2329 - Probabilistic Graphical Models in Computer Vision 4. Conditional random field & Graph cut – 28 / 41

Let G “ pV, E , c, s, tq be a flow network and let f be a flow in G. The weighted
directed graph Gf “ pV, Ef , cf q is called residual network of G induced by f ,
where

cf pi, jq “ cpi, jq ´ fpi, jq ,
Ef “ tpi, jq P V ˆ V : cf pi, jq ą 0u .

s

v1

v2

v3

v4

t

11
/1
6

8/13

10

12/12

1/4

11/14

4/
9

15/20

7/7

4/
4

s

v1

v2

v3

v4

t

5

11

5

8

11 3

12

3

11

4

5

7

5

15

4

A path p from s to t in Gf is called an augmenting path.

Max-flow–min-cut theorem
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Let f be a flow in a flow network G “ pV, E , c, s, tq. Then the following conditions
are equivalent:

1) f is a maximal flow in G.
2) The residual graph Gf contains no augmenting paths.
3) |f | “ cutpS, T q for some s´ t cut of G.

Proof of Max-flow–min-cut theorem
1q ñ 2q ˚

Factor graph CRF Inference Binary image segmentation Graph Cut Flow network
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Suppose that f is maximum flow in G, but and there exists an augmenting path p
in the residual graph Gf .

The maximum amount by which we can increase the flow in p is the residual
capacity of p, given by

cf ppq “ mintcf pi, jq : pi, jq is on pu .
Furthermore, let us define fp : E Ñ R as follows:

fppi, jq “

$
’&
’%

cf ppq if pi, jq is on p

´cf ppq if pj, iq is on p

0 otherwise.

One can see that fp is a flow in Gf with value |fp| “ cf ppq ą 0. Therefore the
flow f ` fp has the value |f | ` |fp| ą |f |, which contradicts the optimality of f .

Proof of Max-flow–min-cut theorem
2q ñ 3q ˚

Factor graph CRF Inference Binary image segmentation Graph Cut Flow network
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Suppose that Gf has no augmenting path, i.e. s and t are disconnected in Gf .
Define

S :“ tv P V : there exists a path from s to v in Gfu .
Obviously, pS, T q is a cut of G, where T “ VzS.
For each pair of pi, jq P S ˆ T , we have fpi, jq “ cpi, jq, since otherwise
pi, jq P Ef , which would mean j P S.
One can see that the flow across pS, T q is |f |:

fpS, T q iii)“ fpS,Vq ´ fpS,Sq i)“ fpS,Vq iii)“ fptsu,Vq ` fpSztsu,Vq
“ fptsu,Vq “ |f | .

Therefore |f | “ fpS, T q “ cutpS, T q.

Proof of Max-flow–min-cut theorem
3q ñ 1q ˚

Factor graph CRF Inference Binary image segmentation Graph Cut Flow network
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Let f be a flow in G such that |f | “ cutpS, T q. In general, for any flow f in G the
following holds:

|f | “ fpS, T q “
ÿ

iPS

ÿ

jPT
fpi, jq ď

ÿ

iPS

ÿ

jPT
cpi, jq “ cutpS, T q .

Hence |f | “ cutpS, T q is maximal (equivalently cutpS, T q is minimal).



Ford-Fulkerson algorithm ˚
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Input: A flow network G “ pV, E , c, s, tq
Output: A minumum s´ t cut pS, T q of G
1: for all pi, jq P E do
2: fpi, jq Ð 0 and fpj, iq Ð 0
3: end for
4: while there exists a path p from s to t in the residual network Gf do
5: cf ppq Ð mintcf pi, jq : pi, jq is in pu
6: for all pi, jq in p do
7: fpi, jq Ð fpi, jq ` cf ppq
8: fpj, iq Ð ´fpi, jq
9: end for

10: end while
11: S Ð tv P V : there exists a path from s to v in Gfu and T Ð VzS

Example: iteration 1 ˚

Factor graph CRF Inference Binary image segmentation Graph Cut Flow network
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Flow Residual network
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Example: iteration 2 ˚

Factor graph CRF Inference Binary image segmentation Graph Cut Flow network
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Flow Residual network
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Example: iteration 3 ˚

Factor graph CRF Inference Binary image segmentation Graph Cut Flow network
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Flow Residual network
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Example: iteration 4 ˚

Factor graph CRF Inference Binary image segmentation Graph Cut Flow network
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Flow Residual network
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A “bad” example ˚
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Flow Residual network Residual network
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Note that there exists an example, where the flow, computed by the
Ford–Fulkerson algorithm, does not even converge to the maximum flow.

More precisely, if a flow network has integer (N0) or rational (Q`
0 ) capacities, then

the Ford–Fulkerson algorithm terminates and it computes a maximum flow.

Edmonds–Karp algorithm
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Input: A flow network G “ pV, E , c, s, tq
Output: A minumum s´ t cut pS, T q of G
1: for all pi, jq P E do
2: fpi, jq Ð 0 and fpj, iq Ð 0
3: end for
4: while there exists a path p from s to t in the residual network Gf do
5: p Ð shorthestPath(Gf ,s,t)
6: cf ppq Ð mintcf pi, jq : pi, jq is in pu
7: for all pi, jq in p do
8: fpi, jq Ð fpi, jq ` cf ppq
9: fpj, iq Ð ´fpi, jq

10: end for
11: end while
12: S Ð tv P V : there exists a path from s to v in Gfu and T Ð VzS
The complexity of this algorithm is OpVE2q. There exists more efficient algorithms
for maximum flow calculation with complexity OpV2Eq and OpV3q.

Summary ˚
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■ Max-flow–min-cut theorem tells us that the minimum cut problem can be
solved via maximum flow.
These two problems are dual to each other, moreover strong duality holds.

■ Edmonds--Karp algorithm: The Ford-Fulkerson algorithm becomes
polynomial, if the shortest path is used as augmented path.

In the next lecture we will learn about

■ Exact solution for binary image segmentation via graph cut
■ Multi-label problem
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