Probabilistic Graphical Models in Computer Vision (IN2329)

Csaba Domokos

Summer Semester 2015/2016

5. Move making algorithms	2
Agenda for today's lecture *	
Binary image segmentation	4
Regular functions *	5
Regular energy functions	6
Binary image segmentation	7
Contrast-sensitive Potts-model	8
Energy minimization via minimum $s-t$ cut \ldots	🤉
Graph construction: unary energies	. 10
Graph construction: pairwise energies	
Graph construction: pairwise energies, $C-A\geqslant 0$, $D-C\geqslant 0$ *	
Graph construction: pairwise energies, $A-C\geqslant 0$, $C-D\geqslant 0$ *	
Graph construction: pairwise energies, $C-A\geqslant 0$, $C-D\geqslant 0$ *	
Graph construction: pairwise energies, $C-A\geqslant 0$, $C-D\geqslant 0$ *	
Graph construction: pairwise energies, $C-A\geqslant 0$, $C-D\geqslant 0$ *	
Graph construction: pairwise energies, $C - A \ge 0$, $C - D \ge 0$ *	
Graph construction: pairwise energies, $A-C\geqslant 0$, $D-C\geqslant 0$ *	
Graph construction	

Remarks		20
Multi-label problem		21
Multi-label proble	n	22
$\alpha - \beta$ swap		24
$\alpha-\beta$ swap		25
	l	
Graph constructio	n for semi-metrics	27
-	n: t-links	
	n: n-links	
	:hm *	
lpha-expansion		31
lpha-expansion		32
Local optimization	l	33
	1	
-	n: t-links	
Graph constructio	n: n-links	36
	thm *	
Stereo matching		39
		40
0,		

Agenda for today's lecture *

In the **previous lecture** we learnt about the minimum s-t cut problem

Today we are going to learn about

- Exact solution for binary image segmentation via graph cut
- Approximate solutions for the multi-label problem:
 - lacktriangle α -expansion
 - \bullet $\alpha \beta$ swap

IN2329 - Probabilistic Graphical Models in Computer Vision

5. Move making algorithms -3/46

Binary image segmentation

4 / 46

Regular functions *

Let us consider a function f of two binary variables, then f is called **regular**, if it satisfies the following inequality

$$f(0,0) + f(1,1) \le f(0,1) + f(1,0)$$
.

Example: the Potts-model is regular, i.e.

$$[0 \neq 0] + [1 \neq 1] = 0 \le 2 = [0 \neq 1] + [1 \neq 0]$$
.

IN2329 - Probabilistic Graphical Models in Computer Vision

5. Move making algorithms -5/46

Regular energy functions

Let us consider an energy function E of n binary variables which can be written as the sum of functions of up to two variables, that is

$$E(y_1, ..., y_n) = \sum_{i} E_i(y_i) + \sum_{i < j} E_{ij}(y_i, y_j).$$

E is regular, if each term E_{ij} for all i < j satisfies

$$E_{ij}(0,0) + E_{ij}(1,1) \leq E_{ij}(0,1) + E_{ij}(1,0)$$
.

If each term E_{ij} is regular, then it is possible to find the **global** minimum of E in polynomial time by solving a minimum s-t cut problem.

IN2329 - Probabilistic Graphical Models in Computer Vision

5. Move making algorithms -6 / 46

Binary image segmentation

We have already seen that binary image segmentation can be reformulated as the minimization of an energy function $E:\{0,1\}^{\mathcal{V}}\times\mathcal{X}\to\mathbb{R}$:

$$E(\mathbf{y}; \mathbf{x}) = \sum_{i \in \mathcal{V}} E_i(y_i; x_i) + \sum_{(i,j) \in \mathcal{E}} E_{ij}(y_i, y_j; x_i, x_j) .$$

where $\mathcal V$ corresponds to the output variables, i.e. the pixels, and $\mathcal E$ includes the pairs of neighboring pixels.

Assume probability densities p_b and p_f estimated for the background and the foreground, respectively. This can be achieved, for example, by making use of the EM algorithm. The **unary energies** E_i for all $i \in \mathcal{V}$ can be defined as

$$E_i(0, x_i) = 0$$

$$E_i(1, x_i) = \log \frac{p_b(x_i)}{p_f(x_i)}.$$

IN2329 - Probabilistic Graphical Models in Computer Vision

5. Move making algorithms -7/46

Contrast-sensitive Potts-model

The pairwise energy functions are defined as

$$E_{ij}(y_i, y_j; x_i, x_j) = w \exp(-\gamma ||x_i - x_j||^2) [|y_i \neq y_j|],$$

where $w \ge 0$ is a weighting factor. The parameter γ is the mean edge strength.

Original image

w is small w

 $w \ {\rm is} \ {\rm medium}$

w is high

IN2329 - Probabilistic Graphical Models in Computer Vision

5. Move making algorithms – 8 / 46

Energy minimization via minimum $s-t\ \mathrm{cut}$

Let us consider the following example

Through this example we illustrate how to minimize regular energy functions consisting of up to pairwise relationships. In our example $\mathbf{y} \in \{0,1\}^2$ and $E(\mathbf{y})$ is defined as

$$E(\mathbf{y}) = E_1(y_1) + E_2(y_2) + E_{12}(y_1, y_2)$$
.

We will create a flow network $(\mathcal{V} \cup \{s,t\}, \mathcal{E}', c, s, t)$ such that the minimum s-t cut will correspond to the minimization of our energy function $E(\mathbf{y})$, where the labeling for each $i \in \mathcal{V}$ is given by

$$y_i = \begin{cases} 0, & \text{if } i \in \mathcal{S} ,\\ 1, & \text{if } i \in \mathcal{T} . \end{cases}$$

IN2329 - Probabilistic Graphical Models in Computer Vision

5. Move making algorithms – 9 / 46

Graph construction: unary energies

Let us consider the unary energy function $E_i:\{0,1\}\to\mathbb{R}$.

Obviously, the minimum s-t cut of the flow network will correspond to

$$\underset{y_i \in \{0,1\}}{\operatorname{argmin}} E_i(y_i) .$$

Without loss of generality we can assume that $E_i(1) > E_i(0)$, then we can write

$$\underset{y_i \in \{0,1\}}{\operatorname{argmin}} E_i(y_i) = \underset{y_i \in \{0,1\}}{\operatorname{argmin}} E_i(y_i) - E_i(0) .$$

(t)

IN2329 - Probabilistic Graphical Models in Computer Vision

5. Move making algorithms -10/46

Graph construction: pairwise energies

Let us consider the pairwise energy function $E_{ij}(y_i, y_j) : \{0, 1\}^2 \to \mathbb{R}$. The possible values of $E_{ij}(y_i, y_j)$ are shown in the table:

$$\begin{array}{c|ccc} E_{ij} & y_j = 0 & y_j = 1 \\ \hline y_i = 0 & A & B \\ y_i = 1 & C & D \\ \end{array}$$

We furthermore assume that $E_{ij}(y_i, y_j)$ is regular, that is

$$E_{ij}(0,0) + E_{ij}(1,1) \leq E_{ij}(0,1) + E_{ij}(1,0)$$

 $A + D \leq B + C$.

Let us note that $E_{ij}(y_i,y_j)$ can be decomposed as:

IN2329 - Probabilistic Graphical Models in Computer Vision

5. Move making algorithms -11/46

$$E_{ij} \quad y_j = 0 \quad y_j = 1$$

$$y_i = 0 \quad A \quad B$$

$$y_i = 1 \quad C \quad D$$

Labeling: $y_i = y_j = 0$.

$$\begin{split} C-A\geqslant 0 &\Rightarrow C\geqslant A\;.\\ D-C\geqslant 0 &\Rightarrow D\geqslant C \;\Rightarrow\; D\geqslant A\;.\\ 0\leqslant B+C-A-D\leqslant B-A &\Rightarrow B\geqslant A\;. \end{split}$$

IN2329 - Probabilistic Graphical Models in Computer Vision

5. Move making algorithms – 12 / 46

$$E_{ij} \quad y_j = 0 \quad y_j = 1$$

$$y_i = 0 \quad A \quad B$$

$$y_i = 1 \quad C \quad D$$

Labeling: $y_i = y_j = 1$.

$$\begin{split} C-D\geqslant 0 &\Rightarrow C\geqslant D \;.\\ A-C\geqslant 0 &\Rightarrow A\geqslant C \;\Rightarrow\; A\geqslant D \;.\\ 0\leqslant B+C-A-D\leqslant B-D &\Rightarrow B\geqslant D \;. \end{split}$$

IN2329 - Probabilistic Graphical Models in Computer Vision

5. Move making algorithms -13/46

Note that the labeling $y_i=1,\ y_j=0$ in this case is not possible, since

$$C - A \geqslant 0 \Rightarrow C \geqslant A$$
.

IN2329 - Probabilistic Graphical Models in Computer Vision

5. Move making algorithms – 14 / 46

Assume that $\min\{C-A,B+C-A-D,C-D\}=C-A.$

$$E_{ij} \quad y_j = 0 \quad y_j = 1$$

$$y_i = 0 \quad A \quad B$$

$$y_i = 1 \quad C \quad D$$

Labeling: $y_i = y_j = 1$.

$$\begin{split} C-A \leqslant B+C-A-D &\Rightarrow 0 \leqslant B-C \Rightarrow B \geqslant D \;. \\ C-A \geqslant C-D &\Rightarrow A \geqslant D \;. \\ C-D \geqslant 0 &\Rightarrow C \geqslant D \;. \end{split}$$

IN2329 - Probabilistic Graphical Models in Computer Vision

5. Move making algorithms – 15 / 46

Assume that $\min\{C-A,B+C-A-D,C-D\}=B+C-A-D.$

$$E_{ij} \quad y_j = 0 \quad y_j = 1$$

$$y_i = 0 \quad A \quad B$$

$$y_i = 1 \quad C \quad D$$

Labeling: $y_i = 0$, $y_j = 1$.

$$\begin{split} B+C-A-D\leqslant C-A &\Rightarrow B\leqslant D\;.\\ B+C-A-D\geqslant C-D &\Rightarrow B\leqslant A\;.\\ C-A\geqslant 0 &\Rightarrow A\leqslant C \Rightarrow B\leqslant C\;. \end{split}$$

IN2329 - Probabilistic Graphical Models in Computer Vision

5. Move making algorithms – 16 / 46

Assume that $\min\{C-A,B+C-A-D,C-D\}=C-D.$

$$E_{ij} \quad y_j = 0 \quad y_j = 1$$

$$y_i = 0 \quad A \quad B$$

$$y_i = 1 \quad C \quad D$$

Labeling: $y_i = y_j = 0$.

$$C-D\leqslant B+C-A-D \Rightarrow B\geqslant A$$
.
$$C-D\leqslant C-A \Rightarrow D\geqslant A$$
.
$$C-D\geqslant 0 \Rightarrow C\geqslant D \Rightarrow C\geqslant A$$
.

IN2329 - Probabilistic Graphical Models in Computer Vision

5. Move making algorithms -17/46

$$E_{ij} \quad y_j = 0 \quad y_j = 1$$

$$y_i = 0 \quad A \quad B$$

$$y_i = 1 \quad C \quad D$$

Labeling: $y_i = 1$, $y_j = 0$.

$$D - C \geqslant 0 \Rightarrow D \geqslant C$$
.
 $A - C \geqslant 0 \Rightarrow A \geqslant C$.

 $0 \leqslant B + C - A - D \leqslant B - A \implies B \geqslant A \implies B \geqslant C.$

All the other cases can be similarly derived.

IN2329 - Probabilistic Graphical Models in Computer Vision

5. Move making algorithms – 18 / 46

Graph construction

Putting all together we get that

Unaries

Pairwise

Overall energy

$$\underset{\mathbf{y}}{\operatorname{argmin}} E_i(y_i) + E_j(y_j)$$

$$\underset{\mathbf{y}}{\operatorname{argmin}} E_{ij}(y_i, y_j)$$

$$\underset{\mathbf{y}}{\operatorname{argmin}} E_i(y_i) + E_j(y_j)$$

 $\ensuremath{\mathsf{IN2329}}$ - Probabilistic Graphical Models in Computer Vision

5. Move making algorithms -19/46

 $+ E_{ij}(y_i, y_j)$

Remarks

Regularity is an *extremely important* property as is allows to minimize energy functions by making use of graph cut. Moreover, without the regularity constraint, the problem become intractable.

Let E_2 be a nonregular function of two binary variables. Then minimizing the energy function

$$E(y_1, ..., y_n) = \sum_i E_i(y_i) + \sum_{i < j} E_2(y_i, y_j),$$

where E_i are arbitrary functions of one binary variable, is NP-hard.

IN2329 - Probabilistic Graphical Models in Computer Vision

5. Move making algorithms – 20 / 46

Multi-label problem

21 / 46

Multi-label problem

We define a label set $\mathcal{L} = \{1, 2, \dots, L\}$, where L is a (finite) constant. Therefore the output domain is defined as $\mathcal{Y} = \mathcal{L}^{\mathcal{V}}$. The energy function has the following form

$$E(\mathbf{y}; \mathbf{x}) = \sum_{i \in \mathcal{V}} E_i(y_i; \mathbf{x}) + \sum_{(i,j) \in \mathcal{E}} E_{ij}(y_i, y_j; \mathbf{x}) ,$$

where x consists of an input image.

In order to ease to notation we will omit ${\bf x}$ and define the energy function simply as

$$E(\mathbf{y}) = \sum_{i \in \mathcal{V}} E_i(y_i) + \sum_{(i,j) \in \mathcal{E}} E_{ij}(y_i, y_j) .$$

IN2329 - Probabilistic Graphical Models in Computer Vision

5. Move making algorithms -22 / 46

Metric *

A function $d: \mathcal{L} \times \mathcal{L} \to \mathbb{R}^+$ is called a **metric** if the following properties are satisfied:

- 1. Identity of indiscernibles: $d(\ell_1, \ell_2) = 0 \quad \Leftrightarrow \quad \ell_1 = \ell_2 \text{ for all } \ell_1, \ell_2 \in \mathcal{L}.$
- 2. Symmetry: $d(\ell_1,\ell_2) = d(\ell_2,\ell_1)$ for all $\ell_1,\ell_2 \in \mathcal{L}$.
- 3. Triangle inequality: $d(\ell_1, \ell_3) \leq d(\ell_1, \ell_2) + d(\ell_2, \ell_3)$ for all $\ell_1, \ell_2, \ell_3 \in \mathcal{L}$.

Example: the **truncated absolute distance** $d: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$, $d(x,y) = \min(K,|x-y|)$ is a *metric*, where K is some constant. (See Exercise)

If a function $d: \mathcal{L} \times \mathcal{L} \to \mathbb{R}$ satisfies the first two properties (i.e. identity of indiscernibles and symmetric), then it is called **semi-metric**.

Example: the **truncated quadratic function** $d: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$, $d(x,y) = \min(K, |x-y|^2)$ is a *semi-metric*, where K is some constant. (See Exercise)

IN2329 - Probabilistic Graphical Models in Computer Vision

5. Move making algorithms – 23 / 46

lpha-eta swap

 $\alpha - \beta$ swap

 $\alpha - \beta$ swap changes the variables that are labeled as $\ell \in \{\alpha, \beta\}$. Each of these variables can choose either α or β . We introduce the following notation

$$\mathcal{Z}_{\alpha\beta}(\mathbf{y}, \alpha, \beta) = \{\mathbf{z} \in \mathcal{Y} : z_i = y_i, \text{ if } y_i \notin \{\alpha, \beta\}, \text{ otherwise } z_i \in \{\alpha, \beta\}\}$$
.

The minimization of the energy function E can be reformulated as follows:

$$\begin{split} \hat{\mathbf{z}} &\in \underset{\mathbf{z} \in \mathcal{Z}_{\alpha\beta}(\mathbf{y}, \alpha, \beta)}{\operatorname{argmin}} E(\mathbf{z}) = \underset{\mathbf{z} \in \mathcal{Z}_{\alpha\beta}(\mathbf{y}, \alpha, \beta)}{\operatorname{argmin}} \sum_{i \in \mathcal{V}} E_i(z_i) + \sum_{(i,j) \in \mathcal{E}} E_{ij}(z_i, z_j) \\ &= \underset{\mathbf{z} \in \mathcal{Z}_{\alpha\beta}(\mathbf{y}, \alpha, \beta)}{\operatorname{argmin}} \bigg[\underbrace{\sum_{i \in \mathcal{V}, y_i \notin \{\alpha, \beta\}} E_i(y_i)}_{\text{constant}} + \underbrace{\sum_{i \in \mathcal{V}, y_i \in \{\alpha, \beta\}} E_i(z_i)}_{\text{unary}} \\ &+ \underbrace{\sum_{(i,j) \in \mathcal{E}} E_{ij}(y_i, y_j)}_{(i,j) \in \mathcal{E}} + \underbrace{\sum_{(i,j) \in \mathcal{E}} E_{ij}(z_i, y_j)}_{y_i \in \{\alpha, \beta\}, y_j \notin \{\alpha, \beta\}} + \underbrace{\sum_{(i,j) \in \mathcal{E}} E_{ij}(y_i, z_j)}_{y_i \notin \{\alpha, \beta\}, y_j \in \{\alpha, \beta\}} + \underbrace{\sum_{(i,j) \in \mathcal{E}} E_{ij}(z_i, z_j)}_{y_i y_j \in \{\alpha, \beta\}} \bigg]. \end{split}$$

IN2329 - Probabilistic Graphical Models in Computer Vision

5. Move making algorithms – 25 / 46

Local optimization

Let us consider $E_{ij}(z_i, z_j)$ for a given $(i, j) \in \mathcal{E}$:

E_{ij}	α	β
α	$E_{ij}(\alpha,\alpha)$	$E_{ij}(\alpha,\beta)$
β	$E_{ij}(\beta,\alpha)$	$E_{ij}(\beta,\beta)$

If we assume that $E_{ij}: \mathcal{L} \times \mathcal{L} \to \mathbb{R}$ is a semi-metric for each $(i, j) \in \mathcal{E}$, then

$$E_{ij}(\alpha,\alpha) + E_{ij}(\beta,\beta) = 0 \leq E_{ij}(\alpha,\beta) + E_{ij}(\beta,\alpha) = 2E_{ij}(\alpha,\beta)$$
,

which means that E_{ij} is **regular** w.r.t. the labeling $\mathcal{Z}_{\alpha\beta}(\mathbf{y},\alpha,\beta)$.

IN2329 - Probabilistic Graphical Models in Computer Vision

5. Move making algorithms – 26 / 46

Graph construction for semi-metrics

Let us consider the following binary energy function:

$$E(\mathbf{y}) = E_i(y_i) + E_j(y_j) + E_{ij}(y_i, y_j)$$
,

where E_{ij} is assumed to be a *semi-metric*.

Since E_{ij} is a *semi-metric*, we can construct a flow for $E(\mathbf{y})$ as follows:

 $E_{i}(1) + C - A$ i $E_{j}(1)$ $E_{j}(0) + E_{j}(0) + E_{j}(0) + E_{j}(0)$

y_i	y_{j}	$E(\mathbf{y})$
0	0	$E_i(0) + E_j(0)$
0	1	$E_i(0) + E_j(1) + E_{ij}(1,0)$
1	0	$E_i(1) + E_j(0) + E_{ij}(1,0)$
1	1	$E_i(1) + E_j(1)$

IN2329 - Probabilistic Graphical Models in Computer Vision

5. Move making algorithms – 27 / 46

Graph construction: t-links

We need to minimize the following **regular** *energy function*:

$$\hat{\mathbf{z}} \in \underset{\mathbf{z} \in \mathcal{Z}_{\alpha\beta}(\mathbf{y}, \alpha, \beta)}{\operatorname{argmin}} \sum_{\substack{i \in \mathcal{V} \\ y_i \in \{\alpha, \beta\}}} E_i(z_i) + \sum_{\substack{(i,j) \in \mathcal{E} \\ y_i \in \{\alpha, \beta\}, y_j \notin \{\alpha, \beta\}}} E_{ij}(z_i, y_j) + \sum_{\substack{(i,j) \in \mathcal{E} \\ y_i \notin \{\alpha, \beta\}, y_j \in \{\alpha, \beta\}}} E_{ij}(y_i, z_j) + \sum_{\substack{(i,j) \in \mathcal{E} \\ y_i, y_j \in \{\alpha, \beta\}}} E_{ij}(z_i, z_j).$$

Based on construction applied for binary image segmentation, we can also define a flow network $(\mathcal{V}', \mathcal{E}', c, \alpha, \beta)$, where $\mathcal{V}' = \{\alpha, \beta\} \cup \{i \in \mathcal{V} : y_i \in \{\alpha, \beta\}\}\}$ and $\mathcal{E}' = \{(\alpha, i), (i, \beta) : i \in \mathcal{V}' \setminus \{\alpha, \beta\}\} \cup \{(i, j), (j, i) \mid i, j \in \mathcal{V}' \setminus \{\alpha, \beta\}, (i, j) \in \mathcal{E}\}$.

 $\begin{array}{c|c} & & & & \\ E_i(1) & E_{ij}(0,1) & E_j(1) \\ \hline i & & & j \\ E_i(0) & E_{ij}(0,1) & E_j(0) \\ \hline t & & & \end{array}$

t-links

t-links: for all $i \in \mathcal{V}' \setminus \{\alpha, \beta\}$

$$c(\alpha, i) = E_i(\beta) + \sum_{(i,j)\in\mathcal{E}, y_j \notin \{\alpha,\beta\}} E_{ij}(\beta, y_j) + \sum_{(j,i)\in\mathcal{E}, y_j \notin \{\alpha,\beta\}} E_{ji}(y_j, \beta) .$$

$$c(i,\beta) = E_i(\alpha) + \sum_{(i,j)\in\mathcal{E}, y_j \notin \{\alpha,\beta\}} E_{ij}(\alpha, y_j) + \sum_{(j,i)\in\mathcal{E}, y_j \notin \{\alpha,\beta\}} E_{ji}(y_j, \alpha) .$$

IN2329 - Probabilistic Graphical Models in Computer Vision

5. Move making algorithms – 28 / 46

Graph construction: n-links

n-links: for all $(i, j) \in \mathcal{E}$, where $i, j \in \mathcal{V}' \setminus \{\alpha, \beta\}$

$$c(i,j) = c(j,i) = E_{ij}(\alpha,\beta)$$
.

IN2329 - Probabilistic Graphical Models in Computer Vision

5. Move making algorithms – 29 / 46

```
Input: An energy function E(\mathbf{y}) = \sum_{i \in \mathcal{V}} E_i(y_i) + \sum_{(i,j) \in \mathcal{E}} E_{ij}(y_i,y_j) to be minimized, where E_{ij} is a semi-metric for each (i,j) \in \mathcal{E}

Output: A local minimum \mathbf{y} \in \mathcal{Y} = \mathcal{L}^{\mathcal{V}} of E(\mathbf{y})

1: Choose an arbitrary initial labeling \mathbf{y} \in \mathcal{Y}

2: \hat{\mathbf{y}} \leftarrow \mathbf{y}

3: for all (\alpha,\beta) \in \mathcal{L} \times \mathcal{L} do

4: find \hat{\mathbf{z}} \in \operatorname{argmin}_{\mathbf{z} \in \mathcal{Z}_{\alpha\beta}(\hat{\mathbf{y}},\alpha,\beta)} E(\mathbf{z})

5: \hat{\mathbf{y}} \leftarrow \hat{\mathbf{z}}

6: end for

7: if E(\hat{\mathbf{y}}) < E(\mathbf{y}) then

8: \mathbf{y} \leftarrow \hat{\mathbf{y}}

9: Goto Step 2

10: end if

\alpha - \beta swap algorithm is guaranteed to terminate in a finite number of cycles. This algorithm computes at least |\mathcal{L}|^2 graph cuts, which may take a lot of time, even for moderately large label spaces.
```

IN2329 - Probabilistic Graphical Models in Computer Vision

5. Move making algorithms – 30 / 46

lpha-expansion 31 / 46

α -expansion

 α -expansion allows each variable either to keep its current label or to change it to the label $\alpha \in \mathcal{L}$. We introduce the following notation

$$\mathcal{Z}_{\alpha}(\mathbf{y}, \alpha) = \{\mathbf{z} \in \mathcal{Y} : z_i \in \{y_i, \alpha\} \text{ for all } i \in \mathcal{V}\}\$$
.

The minimization of the energy function E can be reformulated as follows:

$$\begin{split} \hat{\mathbf{z}} &\in \underset{\mathbf{z} \in \mathcal{Z}_{\alpha}(\mathbf{y}, \alpha)}{\operatorname{argmin}} E(\mathbf{z}) = \underset{\mathbf{z} \in \mathcal{Z}_{\alpha}(\mathbf{y}, \alpha)}{\operatorname{argmin}} \sum_{i \in \mathcal{V}} E_{i}(z_{i}) + \sum_{(i, j) \in \mathcal{E}} E_{ij}(z_{i}, z_{j}) \\ &= \underset{\mathbf{z} \in \mathcal{Z}_{\alpha}(\mathbf{y}, \alpha)}{\operatorname{argmin}} \left[\underbrace{\sum_{i \in \mathcal{V}, y_{i} = \alpha} E_{i}(\alpha)}_{\text{constant}} + \underbrace{\sum_{i \in \mathcal{V}, y_{i} \neq \alpha} E_{i}(z_{i})}_{\text{constant}} \underbrace{+ \underbrace{\sum_{i \in \mathcal{V}, y_{i} \neq \alpha} E_{ij}(\alpha, \alpha)}_{\text{constant}} + \underbrace{\sum_{i \in \mathcal{V}, y_{i} \neq \alpha} E_{ij}(\alpha, z_{j})}_{y_{i} = \alpha, y_{j} \neq \alpha} + \underbrace{\sum_{i \in \mathcal{V}, y_{i} \neq \alpha} E_{ij}(z_{i}, \alpha)}_{y_{i} \neq \alpha, y_{j} \neq \alpha} + \underbrace{\sum_{i \in \mathcal{V}, y_{i} \neq \alpha} E_{ij}(z_{i}, z_{j})}_{y_{i} \neq \alpha, y_{j} \neq \alpha} + \underbrace{\sum_{i \in \mathcal{V}, y_{i} \neq \alpha} E_{ij}(z_{i}, z_{j})}_{y_{i} \neq \alpha, y_{j} \neq \alpha} + \underbrace{\sum_{i \in \mathcal{V}, y_{i} \neq \alpha} E_{ij}(z_{i}, z_{j})}_{y_{i} \neq \alpha, y_{j} \neq \alpha} + \underbrace{\sum_{i \in \mathcal{V}, y_{i} \neq \alpha} E_{ij}(z_{i}, z_{j})}_{y_{i} \neq \alpha, y_{j} \neq \alpha} + \underbrace{\sum_{i \in \mathcal{V}, y_{i} \neq \alpha} E_{ij}(z_{i}, z_{j})}_{y_{i} \neq \alpha, y_{j} \neq \alpha} + \underbrace{\sum_{i \in \mathcal{V}, y_{i} \neq \alpha} E_{ij}(z_{i}, z_{j})}_{y_{i} \neq \alpha, y_{j} \neq \alpha} + \underbrace{\sum_{i \in \mathcal{V}, y_{i} \neq \alpha} E_{ij}(z_{i}, z_{j})}_{y_{i} \neq \alpha, y_{j} \neq \alpha} + \underbrace{\sum_{i \in \mathcal{V}, y_{i} \neq \alpha} E_{ij}(z_{i}, z_{j})}_{y_{i} \neq \alpha, y_{j} \neq \alpha} + \underbrace{\sum_{i \in \mathcal{V}, y_{i} \neq \alpha} E_{ij}(z_{i}, z_{j})}_{y_{i} \neq \alpha, y_{j} \neq \alpha} + \underbrace{\sum_{i \in \mathcal{V}, y_{i} \neq \alpha} E_{ij}(z_{i}, z_{j})}_{y_{i} \neq \alpha, y_{j} \neq \alpha} + \underbrace{\sum_{i \in \mathcal{V}, y_{i} \neq \alpha} E_{ij}(z_{i}, z_{j})}_{y_{i} \neq \alpha, y_{j} \neq \alpha} + \underbrace{\sum_{i \in \mathcal{V}, y_{i} \neq \alpha} E_{ij}(z_{i}, z_{j})}_{y_{i} \neq \alpha, y_{j} \neq \alpha} + \underbrace{\sum_{i \in \mathcal{V}, y_{i} \neq \alpha} E_{ij}(z_{i}, z_{j})}_{y_{i} \neq \alpha, y_{j} \neq \alpha} + \underbrace{\sum_{i \in \mathcal{V}, y_{i} \neq \alpha} E_{ij}(z_{i}, z_{j})}_{y_{i} \neq \alpha, y_{j} \neq \alpha} + \underbrace{\sum_{i \in \mathcal{V}, y_{i} \neq \alpha} E_{ij}(z_{i}, z_{j})}_{y_{i} \neq \alpha, y_{j} \neq \alpha} + \underbrace{\sum_{i \in \mathcal{V}, y_{i} \neq \alpha} E_{ij}(z_{i}, z_{j})}_{y_{i} \neq \alpha, y_{j} \neq \alpha} + \underbrace{\sum_{i \in \mathcal{V}, y_{i} \neq \alpha} E_{ij}(z_{i}, z_{j})}_{y_{i} \neq \alpha, y_{j} \neq \alpha} + \underbrace{\sum_{i \in \mathcal{V}, y_{i} \neq \alpha} E_{ij}(z_{i}, z_{j})}_{y_{i} \neq \alpha, y_{j} \neq \alpha} + \underbrace{\sum_{i \in \mathcal{V}, y_{i} \neq \alpha} E_{ij}(z_{i}, z_{j})}_{y_{i} \neq \alpha, y_{j} \neq \alpha} + \underbrace{\sum_{i \in \mathcal{V}, y_{i} \neq \alpha} E_{ij}(z_{i}, z_{j})}_{y_{i} \neq \alpha, y_{j} \neq \alpha} + \underbrace{\sum_{i \in \mathcal{V}, y_{i} \neq \alpha} E_{ij}(z_{i}, z_{j})}_{y_{i} \neq \alpha, y_{j}$$

IN2329 - Probabilistic Graphical Models in Computer Vision

5. Move making algorithms – 32 / 46

Local optimization

Let us consider $E_{ij}(z_i, z_j)$ for a given $(i, j) \in \mathcal{E}$:

	E_{ij}	α	y_j
ĺ	α	$E_{ij}(\alpha,\alpha)$	$E_{ij}(\alpha, y_j)$
	y_i	$E_{ij}(y_i,\alpha)$	$E_{ij}(y_i, y_j)$

If we assume that $E_{ij}: \mathcal{L} \times \mathcal{L} \to \mathbb{R}$ is a **metric** for each $(i, j) \in \mathcal{E}$, then

$$E_{ij}(\alpha,\alpha) + E_{ij}(y_i,y_j) = E_{ij}(y_i,y_j) \leqslant E_{ij}(y_i,\alpha) + E_{ij}(\alpha,y_j) ,$$

which means that E_{ij} is **regular** w.r.t. the labeling $\mathcal{Z}_{\alpha}(\mathbf{y}, \alpha)$.

IN2329 - Probabilistic Graphical Models in Computer Vision

5. Move making algorithms – 33 / 46

Graph construction

We need to minimize the following regular energy function:

$$\hat{\mathbf{z}} \in \underset{\mathbf{z} \in \mathcal{Z}_{\alpha}(\mathbf{y}, \alpha)}{\operatorname{argmin}} \underbrace{\sum_{i \in \mathcal{V}} E_{i}(z_{i}) + \sum_{\substack{(i, j) \in \mathcal{E} \\ y_{i} \neq \alpha}} E_{ij}(\alpha, z_{j}) + \sum_{\substack{(i, j) \in \mathcal{E} \\ y_{i} \neq \alpha, y_{j} = \alpha}} E_{ij}(z_{i}, \alpha) + \sum_{\substack{(i, j) \in \mathcal{E} \\ y_{i} \neq \alpha, y_{j} \neq \alpha}} E_{ij}(z_{i}, z_{j})}_{\text{pairwise}}$$

Based on construction applied for binary image segmentation, we can also define a flow network $(\mathcal{V}', \mathcal{E}', c, \alpha, \bar{\alpha})$, where $\mathcal{V}' = \{\alpha, \bar{\alpha}\} \cup \{i \in \mathcal{V} : y_i \neq \alpha\}$ and $\mathcal{E}' = \{(\alpha, i), (i, \bar{\alpha}) : i \in \mathcal{V}' \setminus \{\alpha, \bar{\alpha}\}\} \cup \{(i, j) \in \mathcal{E} : i, j \in \mathcal{V}' \setminus \{\alpha, \bar{\alpha}\}\}$.

IN2329 - Probabilistic Graphical Models in Computer Vision

5. Move making algorithms -34/46

Graph construction: t-links

t-links: for all $i \in \mathcal{V}' \setminus \{\alpha, \bar{\alpha}\}$

$$c(\alpha, i) = E_i(y_i) + \sum_{(i,j) \in \mathcal{E}, y_j = \alpha} E_{ij}(y_i, \alpha) + \sum_{(j,i) \in \mathcal{E}, y_j = \alpha} E_{ji}(\alpha, y_i) + \underbrace{\sum_{(i,j) \in \mathcal{E}, y_j \neq \alpha} E_{ij}(y_i, \alpha)}_{C}.$$

$$c(i,\bar{\alpha}) = E_i(\alpha) + \underbrace{\sum_{(j,i)\in\mathcal{E}, y_j \neq \alpha} E_{ji}(y_j,\alpha)}_{C} - \underbrace{\sum_{(j,i)\in\mathcal{E}, y_j \neq \alpha} E_{ji}(y_j,y_i)}_{D}.$$

IN2329 - Probabilistic Graphical Models in Computer Vision

5. Move making algorithms – 35 / 46

Graph construction: n-links

n-links: for all $(i, j) \in \mathcal{E}$, where $i, j \in \mathcal{V}' \setminus \{\alpha, \bar{\alpha}\}$

$$c(i,j) = E_{ij}(\alpha, y_j) + E_{ij}(y_i, \alpha) - E_{ij}(y_i, y_j).$$

IN2329 - Probabilistic Graphical Models in Computer Vision

5. Move making algorithms – 36 / 46

α -expansion algorithm *

Input: An energy function $E(\mathbf{y}) = \sum_{i \in \mathcal{V}} E_i(y_i) + \sum_{(i,j) \in \mathcal{E}} E_{ij}(y_i,y_j)$ to be minimized, where E_{ij} is a **metric** for each $(i,j) \in \mathcal{E}$

Output: A local minimum $\mathbf{y} \in \mathcal{Y} = \mathcal{L}^{\mathcal{V}}$ of $E(\mathbf{y})$

- 1: Choose an arbitrary initial labeling $\mathbf{y} \in \mathcal{Y}$
- 2: $\hat{\mathbf{y}} \leftarrow \mathbf{y}$
- 3: for all $\alpha \in \mathcal{L}$ do
- 4: find $\hat{\mathbf{z}} \in \operatorname{argmin}_{\mathbf{z} \in \mathcal{Z}_{\alpha}(\hat{\mathbf{x}}, \alpha)} E(\mathbf{z})$
- 5: $\hat{\mathbf{y}} \leftarrow \hat{\mathbf{z}}$
- 6: end for
- 7: if $E(\hat{\mathbf{y}}) < E(\mathbf{y})$ then
- 8: $\mathbf{y} \leftarrow \hat{\mathbf{y}}$
- 9: Goto Step 2
- 10: end if

 α -expansion is guaranteed to terminate in a finite number of cycles. This algorithm computes at least $|\mathcal{L}|$ graph cuts, which may take a lot of time, when the label space \mathcal{L} is large.

IN2329 - Probabilistic Graphical Models in Computer Vision

5. Move making algorithms -37/46

Optimality *

The $\alpha - \beta$ swap does not guarantee any closeness to the global minimum. Nevertheless, the local minimum that the α -expansion algorithm will find is at most twice the global minimum \mathbf{y}^* .

We have already assumed that E_{ij} is a metric for each $(i,j) \in \mathcal{E}$, hence $E_{ij}(\alpha,\beta) \neq 0$ for $\alpha \neq \beta \in \mathcal{L}$. Let us define

$$c = \max_{(i,j)\in\mathcal{E}} \left(\frac{\max_{\alpha \neq \beta \in \mathcal{L}} E_{ij}(\alpha,\beta)}{\min_{\alpha \neq \beta \in \mathcal{L}} E_{ij}(\alpha,\beta)} \right) .$$

Theorem 1. Let $\hat{\mathbf{y}}$ be a local minimum when the expansion moves are allowed and \mathbf{y}^* be the globally optimal solution. Then $E(\hat{\mathbf{y}}) \leqslant 2cE(\mathbf{y}^*)$.

IN2329 - Probabilistic Graphical Models in Computer Vision

5. Move making algorithms - 38 / 46

Stereo matching 39 / 46

Stereo matching

Left view Right view

Given two images (i.e. left and right), two observed 2D points p_1 and p_2 on the left image and right image, respectively, corresponding to a 3D point P in \mathbb{R}^3 . Note that P can be determined based on p_1 and p_2 .

For more details you may refer to the course Computer Vision II: Multiple View Geometry (IN2228).

IN2329 - Probabilistic Graphical Models in Computer Vision

5. Move making algorithms - 40 / 46

Stereo matching

The goal is to reconstruct 3D points according to corresponding pixels.

We assume **rectified images** (i.e. the directions of the cameras are parallel), which means that the corresponding pixels are situated in **horizontal lines** according to some displacement.

Left view

Right view

Therefore, we need to search for corresponding points in the same row of both views. We also assume that the pixels p_1 and p_2 corresponding to P have similar intensities.

IN2329 - Probabilistic Graphical Models in Computer Vision

5. Move making algorithms – 41 / 46

Energy function

We define $\mathcal{L} = \{1, 2, \dots, D\}$ as the **label set**, i.e. set of possible *horizontal displacement* of pixels on the *right view*), where D is a constant. Therefore the output domain $\mathcal{Y} = \mathcal{L}^{\mathcal{V}}$ and the *energy function* has the following form

$$E(\mathbf{y}; \mathbf{x}) = \sum_{i \in \mathcal{V}} E_i(y_i; \mathbf{x}) + \sum_{(i,j) \in \mathcal{E}} E_{ij}(y_i, y_j; \mathbf{x}) ,$$

where x consists of the images (i.e. left and right view) denoted by x^{left} and x^{right} , respectively.

Unary energies (a.k.a. data terms) E_i for all $i \in \mathcal{V}$ are defined as

$$E_i(y_i; \mathbf{x}) = \min(|x_i^{\mathsf{left}} - x_{i+y_i}^{\mathsf{right}}|^2, K)),$$

where K is a constant (e.g., $K = 20^2$).

IN2329 - Probabilistic Graphical Models in Computer Vision

5. Move making algorithms - 42 / 46

Energy function

Pairwise energies (a.k.a. **smooth terms**) E_{ij} for all $(i,j) \in \mathcal{E}$ are defined as

$$E_{ij}(y_i, y_j; \mathbf{x}) = U(|x_i^{\mathsf{left}} - x_j^{\mathsf{left}}|) \cdot [y_i \neq y_j]$$

where

$$U(|x_i^{\mathsf{left}} - x_j^{\mathsf{left}}|) = \begin{cases} 2C, & \text{if } |x_i^{\mathsf{left}} - x_j^{\mathsf{left}}| \leqslant 5\\ C, & \text{otherwise} \end{cases}$$

for some constant C.

Note the pairwise energies are defined by weighted Potts-model, which is a metric (see Exercise).

IN2329 - Probabilistic Graphical Models in Computer Vision

5. Move making algorithms - 43 / 46

Results *

Left view

Right view

Ground truth

Result of $\alpha - \beta$ swap

Result of α -expansion

It is worth noting that α -expansion algorithm generally runs faster than $\alpha - \beta$ swap. There is optimality guarantee only for α -expansion algorithm, however, the two algorithms perform almost the same in many practical applications.

IN2329 - Probabilistic Graphical Models in Computer Vision

5. Move making algorithms – 44 / 46

Summary *

 \blacksquare A binary energy function E consisting of up to pairwise functions is **regular**, if for each term E_{ij} for all i < j satisfies

$$E_{ij}(0,0) + E_{ij}(1,1) \leq E_{ij}(0,1) + E_{ij}(1,0)$$
.

- The minimization of regular energy functions can be achieved via graph cut.
- lacktriangle The multi-label problem for a finite label set ${\cal L}$

$$E(\mathbf{y}; \mathbf{x}) = \sum_{i \in \mathcal{V}} E_i(y_i; \mathbf{x}) + \sum_{(i,j) \in \mathcal{E}} E_{ij}(y_i, y_j; \mathbf{x}) ,$$

can be approximately solved by applying

- $\alpha \beta$ swap, if E_{ij} is semi-metric;
- lacktriangle α -expansion, if E_{ij} is metric.

In the next lecture we will learn about

- Linear programming relaxation for multi-label problem
- Fast primal-dual algorithm

IN2329 - Probabilistic Graphical Models in Computer Vision

5. Move making algorithms – 45 / 46

Literature *

- 1. Vladimir Kolmogorov and Ramin Zabih. What energy functions can be minimized via graph cuts? *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 26(2):147–159, February 2004
- 2. Yuri Boykov, Olga Veksler, and Ramin Zabih. Fast approximate energy minimization via graph cuts. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 23(11):1222–1239, November 2001
- 3. Sebastian Nowozin and Christoph H. Lampert. Structured prediction and learning in computer vision. Foundations and Trends in Computer Graphics and Vision, 6(3–4), 2010

IN2329 - Probabilistic Graphical Models in Computer Vision

5. Move making algorithms – 46 / 46