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6. FastPD: Approximate Labeling via Primal-Dual Schema 2 /40

Agenda for today’s lecture *

Let us consider an undirected graphical model given by G = (V, £), which takes values from an arbitrary (finite) label set £. More specially, assume that
the corresponding energy function E : LY — R is given by

E(X) = ZEZ(X,L) + Z Wij - d(Xi,Xj) s

eV (4,9)e€

where E; stands for a unary energy function, w;; € R are weighting factors, and d is a metric or a semi-metric (i.e. the triangle inequality is not necessary
satisfied).

In the previous lecture we learnt about the move making algorithms (i.e. & — 3 swap, a-expansion) as a possible way to approximately solve this problem.

Today we are going to learn about the FastPD algorithm, which provides an approximate solution via linear programming.
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Equivalent integer linear program
We are generally interested to find a MAP labelling x*:

x* € argmin F(x) = argmin { Z Ei(z;) + Z wyj - d(:):i,:rj)} .
xeLlVI xeLVl ey (i.§)e€

This can be equivalently written as an integer linear program (ILP):

Cmin >N Ei(@)ziat+ ) wy Y, da,f)Tijag
seotigaB i) el (ij)eE  aBeL
subject to . . Ti:a =1 VieV
Doer Tij:ap =Tjg VBEL,(1,5)€E
Z,@ec Tijiap = Tixa Vo €L, (i,j) €&
Ti:a, Tijiap € B Va,B€ L,(i,j) €&

Tj.o indicates whether vertex i is assigned label «, while ;5.5 indicates whether (neighboring) vertices i, j are assigned labels «, 3, respectively.
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Interpretation of the constraints

Let us assume that £ = {1,2,3} and consider the following factor graph example:
Py

Fi2

Fy
() =

T1:1 T12:11 [ ] T2:1
z1:2 | —— ] T12:23  T2:2
T1:3 T2:3

N

t ¢

Uniqueness: The constraints )., Z;.q = 1 for all i € V simply express the fact that each vertex must receive exactly one label.
Z Tij:ap = Tj:8 Z Tij:af = Tia VOJ,B el s (Z,j) eé
ael BeL

maintain consistency between variables, i.e. if 2., = 1 and z;.3 = 1 holds true, then these constraints force ;.3 = 1 to hold true as well.

Consistency: The constraints and
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Primal-dual LP 6 /40

LP relaxation *
The ILP defined before is in general NP-hard. Therefore we deal with the LP relaxation of our ILP. The relaxed LP can be written in standard form as

follows:

min {c,X)
Ti:asTij:afp

subject to Ax =b,x> 0.
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LP relaxation: cost function *
min {c,x) subject to Ax =b,x>0.
Ti:asTij:af
We may write x = [x? x7Z T, where
d i ] xi =211 -+ Tz Tag oo $2:3]T e R™ |
where n = |V| and m = |£|, and
T 2
X9 = [1312:11 Tt T12:13 0 0t Ti31 v 5E12:33] e RIEM™
Similarly, we can write ¢ = [cip cg]T, where
T
ci =[Ei(1) -+ Ei(3) Ex(l) -+ Ex(3)] eR™
co = [wid(1,1) - wipd(1,3) - wipd(3,1) - wipd(3,3)]" e REM,
Therefore, {(c,x) = {c1,x1) + {C2,X2).
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LP relaxation: uniqueness constraints *
min {c,x) subject to Ax =b,x>0.

Ti:asTij:af

We can write the (uniqueness) constraints >, . % = 1 for all i€ V as

11100 0"
{0 0011 1] | T Anxi=1a =br,
" x213
A
where 1,, € R" is the vector of all-ones.
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LP relaxation: consistency constraints *

min {c,x) subject to Ax =b,x>0.

Ti:asLij:aB

The (consistency) constraints Y. . Tij:a8 = Tj:3 < —j:8 + Diper Tij:ap = 0 and Zﬁeﬁ Tij:af = Tisa < —Tia + Zﬁeﬁ Zij.ap = 0 can be expressed as

0 0 0 -1 0 0|1 0010010 07]|*"H
o o o0 O -1 00100100710 :
o o o0 O 0O —-1{00 1001001 v23 | _ g
-1 0 0 0 0 0]1 1100000 0]||zizi]|
o -1 0 0 O O0O|0OO0OOT1TT1T1O0O0OO0
| 0 0 -1 0 0 0|0 O0OO0O0O0OO0OT1T1 1]
| £12:33 |
b'e
| Azi | Az ] [x;] = Ogigm =: b2
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LP relaxation: constraints *

min {(c,x) subject to Ax =b,x > 0.

Ti:asLij:aB

We can write all the constraints in a matrix-vector notation as follows.
Ax — [ Ay ‘ On><|5\m2 ] [Xl} _ |: 1, ] _ |:b1} _
Ay | Ay X2 02/51m b

2 . . . .
Hence, A € RF2[E[mxmn+|Elm* jg 5 sparse matrix with elements -1,0 and 1, furthermore b € R”“'g‘m, where the first mn elements are equal to one and
the others are equal to zero.
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Primal-dual LP

Consider a linear program (given in standard form):

min{c, x)

subject to Ax =b,x >0,
for a constraint matrix A € R™*™  a constraint vector b € R™ and a cost vector ¢ € R".
The dual LP is defined as
max (b, y)

subject to ATy < c.

For feasible solutions x and y weak duality holds:

(b,y)=bly =x"(ATy) = (y"A)x <c'x = (¢, x).
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Dual LP

max <{(b,y) subject to ATy < c.
YisYij:orYji: 8

Note that the dual variables y; for all i € V and ;j.q, y;i:p for all (i,7) € €, a, B € L correspond to the constraints of the primal LP.

We can write y = [y{ y3 y3T]T, where y; = [y1 - yn]T e R", and y2 € REEI™ and y3 € RI€I™ are the vectors consisting of the variables y;;.5 and
Yij:o in the same order as it is defined in the case of the primal LP.

The cost function results in .
T
(b,y) = (b1,y1) +<{ba, [ys yi] )=n,y1)= Z Yi -
i=1

AT ‘ AT C1
ATy:[ 11 QI}yS[ —c.
O|€\m2><n ‘ AgQ €2

The constraints ATy < c are given by
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Dual LP *

max
YiYij:a Yji:8

<1n7YI>

T
All

| A%,

subject to [

Or equivalently, we can formulate the dual LP as

T
0\€|m2><n ‘ A22

yi7y££3§ji:5;)yl
subject to  y; — Z Vija < Ei(a) VieV,ae L
jev, (i,5)e€
Yij:a + Yji:B < wijd(a76) V(’L,j) € 57 aaﬁ €L

Jy<[a)
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An intuitive view of the dual variables

We will refer to x; € L as the active label for a given the vertex i € V.

plane.

For this sake we introduce height variables defined as

2

JEV,(i,5)e€

Yij:a -

The constraints y; — 25cy.(; jjee Yijia < Ei(@) can be equivalently written as

2

JeV:(i,j)EE

Yi < Ei(a) + Yij:a
Since our objective is to maximize »,,,,;, the following relation holds

yi = min h; ()

ael

For each vertex we have a different copy of all labels in £. It is assumed that all these labels represent balls floating at certain heights relative to a reference

= hi(a)

[7] L

a=x;

i

Ifx;)-
L7/ 8 — O

[ f — W 251 W)

VieV,ae L.

Vie)V.

10
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Balance variables and load
We will refer to the variables y;;.o., y;i.3 as balance variables. Specially, the pair of y;;., yji.o is called conjugate balance variables.

The balls are not static, but may move in pairs through updating pairs of conjugate balance variables as h;(a) = ¢;(a) + Zjev (i.j)e€ Yij:a- Therefore, the
role of balance variables is to raise or lower labels.

T! w; T! Wi T|
() o O Iy
[ S 7 (/) 0 F—
+0 ’
LR /) ) —
T(f) | (x6;) e O "y 1,4) o

It is due to Yij:a + Yjia S wijd(a, ) =0 = Yijia < —Yjia-
We will call the variables y;;.,,, as active balance variable and use the following notation for the “load” between neighbors i, j, defined as

load;j = ijuw; + Yjica; -
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Primal-dual LP for multi-label problem

The (relaxed) primal LP:

The dual LP:

min OZZEZ‘(OJ).I‘Z‘;Q-F Z Wij Z d(a,ﬂ)l‘ij:aﬁ

T g
TienTifab 2oy el (i.j)e€  afel

subject to Y . Ti:a =1 YieV
ZQEL Tij:aB = Tj:8 Vﬁ € ‘Cv (717]) e
Z,@ec Tij.ap = Tia VYo €L, (i,j) €€

max Z Yi
YiYij:a Yji: B8 i

%
subject to  y; — Z Vija < Ei(a) VieV,ae L
JEV:(i,5)EE
Yij:a + Yji:B < wijd(a76) V(’L,j) € ga aaﬁ eL
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Primal-dual principle 18 / 40

Primal-dual principle
_{e,x) _
by >
<= <c LX) <oy
" (e xT)

i i i >
(b.y) (e.x7) (€, x) €—

< =

dual cost of cost of optimal primal cost of
integral solution x* integral solution x

solution y

Theorem 1. If x and y are integral-primal and dual feasible solutions satisfying:
(¢,x) < eb,y)
for e = 1, then x is an e-approximation to the optimal integral solution x*, that is
(e,x*) <{c,x) < e(b,y) < €lc,x™).
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The relaxed complementary slackness
One way to estimate a pair (x,y) satisfying the fundamental inequality
(c,x) < eb,y)
relies the complementary slackness principle.
Theorem 2. If the pair (x,y) of integral-primal and dual feasible solutions satisfies the so—cal(ed relaxed primal complementary slackness conditions:

. c
Vi: (z;>0) = Zaijyi > e_J ,
i J

then (x,y) also satisfies {c,x) < e(b,y) with ¢ = max; €; and therefore x is an e-approximation to the optimal integral solution x*.

Proof. Exercise. O

We aim to satisfy relaxed complementary slackness conditions in order to achieve an e-approximation solution.
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Primal-dual schema 21 / 40

Primal-dual schema

¢
c, X .
‘ sequence of dual costs \ ﬁ< € | sequence of primal costs
. ’ y IS

<4 | —t— | D>
<b,y1>—><b,y2>—>---<b,yf>T (e, x")4—(c,x) 4 {(c,x")

(e, x")

Typically, primal-dual e-approximation algorithms construct a sequence (Xk,yk)k=17m7t of primal and dual solutions until the elements x’, y* of the last pair
are both feasible and satisfy the relaxed primal complementary slackness conditions, hence the condition {c,x) < e(b,y) will be also fulfilled.
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Pseudo-code of the FastPD algorithm *

1 [x y] < Init Primals Duals()

2: labelChange —false

3: for all « € £ do > a-iteration
4: y «<PreEdit Duals(a,X,y)

5: [x' y'] <Update Duals Primals(a,Xx,y)
6: y' «PostEdit Duals(a,x’,y’)

7: if x' # x then

8: labelC'hange <true

9: end if

10: x—x andy <y

11: end for

12: if labelC'hange then

13: goto 2

14: end if

15: yfit «Dual Fit(y)
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PD1

24 / 40

Complementary slackness conditions *

From now on, in case of Algorithm PD1, we only assume that d(a, ) =0 < o = 3, and d(«, 3) = 0 (i.e. d is a semi-metric).

The complementary slackness conditions reduces to

Ei(x;
Z Yijux; = Z( Z)

€
JEVi(if)eE 1

Yi —
Yijex; + Yjix; =
€2
for specific values of €1,e0 = 1.

If z; = x; = o for neighboring pairs (i,7) € £, then

0 = wid(a, @) = Yijia + Yjira =

therefore we get that ¥;j.0 = —¥Yji:a-

=

wijd(:zi, .Tj)

yi > E;i(x;) n Z

c Yij.x;
1 jeVi(ij)eE
wijd(a, o) _0
€2 ’

IN2329 - Probabilistic Graphical Models in Computer Vision
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Complementary slackness conditions *

We have already known that y; = minaes hi(a). If €1 = 1, then we get

Ez' ZT;
Y; = —( ) + Z Yijix;, = hl(xz) :

€1 JEVi(i,j)eE
Therefore
hi(x;) = mighi(a) , (1)
oe

which means that, at each vertex, the active label should have the lowest height.

If €2 = €app 1= Qddm%, then the complementary condition simply reduces to:

w;id(zi, 7
Yijiai + Yjica; = wigdtinzy) (2)
€app

It requires that any two active labels should be raised proportionally to their “load”.

IN2329 - Probabilistic Graphical Models in Computer Vision 6. FastPD: Approximate Labeling via Primal-Dual Schema — 26 / 40
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Feasibility constraints *

To ensure feasibility of y, PD1 enforces for any a € L:

Yijia S wijdmin/2 where  dpyin = m;rﬁl d(a?ﬂ) (3)

says that there is an upper bound on how much we can raise a label.
Hence, we get the feasibility condition

Yijia T Yjis < 2Widmin/2 = wijdmin < wijd(a, B) .

Moreover the algorithm keeps the active balance variables non-negative, that is y;;.,, > 0 for all i € V.

The proportionality condition (2) will be also fulfilled as Yijeass Yjiz; = 0 and if yj.p, = m, then

wijdmin d(a:i,a:j) - wijd(:zi,a:j) - wijd(:zi,a:j)

yljxl = 2 dmax - zdn% Eapp
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Subroutine Init_Primals_Duals() *
1: x is simply initialized by a random label assignment = Init primals
2: for all (4,7) € £ with x; # z; do > Init duals
3 Yijay < Wid(xi, 75)/2 and Yy, < —wigd(zi, x5)/2
4 Yjie; < wigd(zs, 5)/2 and Yijoo; — —wijd(zi, x;)/2
5. end for
6: for all : €V do
7: Y; < minger hi(@)
8: end for
9: return [x y]|
IN2329 - Probabilistic Graphical Models in Computer Vision 6. FastPD: Approximate Labeling via Primal-Dual Schema — 28 / 40
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Update primal and dual variables

(%) <o o .......
iy | )

Ii(x;)

P

Dual variables update: Given the current active labels, any non-active label is raised, until it either reaches the active label, or attains the maximum raise
allowed by the upper bound defined in (3).

Primal variables update: Given the new heights, there might still be vertices whose active labels are not at the lowest height. For each such vertex 7, we
select a non-active label, which is below z;, but has already reached the maximum raise allowed by the upper bound defined in (3).

The optimal update of the a-heights can be simulated by pushing the maximum amount of flow through a directed graph G’ = (V U {s,t},&’, ¢, s,1).
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Flow construction: n-links

For each (i, ) € £, we insert two directed edges (i,7) and (j,) into &’.

The flow value f;;, f;; represent respectively the increase, decrease of balance variable ;;.,:
! — s . . d / — !
Yijia = Yij:a t fij — fji an Yiiia = " Yijia -

According to (3), the capacities cap;; and cap,; are set based on

1
cap;; + Yijia = 5 Wijdmin = CAPj; + Yjia -

|
2 Capu = 5“](7(’{111&1 _.y(/:a
&
1
Capjl = Eu’zjdmm _y_zl o
IN2329 - Probabilistic Graphical Models in Computer Vision 6. FastPD: Approximate Labeling via Primal-Dual Schema — 30 / 40
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Flow construction: n-links
If o is already the active label of i (or j), then label v at ¢ (or j) need not move.

Therefore, ygj:a = Yij:a and yz-m = Yjiza, that is
ri=aorz;=a = cap; =cap; =0.

h i("ci) ez O
L/
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Flow construction: t-links *

Each node i € V'\{s,t} connects to either the source node s or the sink node ¢ (but not to both of them).
There are three possible cases to consider:

Case 1 (hi(a) < hi(x;)): we want to raise label & as much as it reaches label x;. We connect source node s to node i.
Due to the flow conservation property, f; = }icy.(; jee (fij — [fji) assuming the more intuitive definition of flows (see Lecture 4).
The flow f; through that edge will then represent the total relative raise of label a:

)+ fi= ( yij:a) + > (fy—fi)
J€V (w) JeV:(ij)e€
= ( yij:a> + Z (ygj:a - yji:a)
Jjev: (w) JeV:(i,g)e
= Ei(a) + Z yij:a = h;(a) :
jEV:(i,5)EE
IN2329 - Probabilistic Graphical Models in Computer Vision 6. FastPD: Approximate Labeling via Primal-Dual Schema — 32 / 40
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Flow construction: t-links

capy; = hi(x;) — hi(a) .
;
hi(xi)" ....... O
X
N7 — E
L/

We need to raise up the ball corresponding to the label « only as high as the current active label of ¢, but not higher than that, we therefore set:

IN2329 - Probabilistic Graphical Models in Computer Vision
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Flow construction: t-links

We connect i to the sink node ¢ through directed edge (i,t).

T I —

hix)-

(//

Case 2 (h;(«) = hi(x;) and c # x;): we can then afford a decrease in the height of « at ¢, as long as a remains above ).

The flow f; through edge it will equal the total relative decrease in the height of «:

hi(a) = hi(a) — fi
capy; = hi(a) — hi(@;) .

IN2329 - Probabilistic Graphical Models in Computer Vision
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Flow construction: t-links

By convention cap;; := 1.

i)

74

Case 3 (a = z;): we want to keep the height of « fixed at the current iteration.

Note that the capacities of the n-edges for p are set to 0, since i has the active label. Therefore, f; = 0 and A/

= hva

YRet

IN2329 - Probabilistic Graphical Models in Computer Vision
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Reassign rule

keeps its current label (i.e. z = z;).

fij < cap;;
hi(a) —hi(a) < hi(z;) — hi(a)
hi(a) < hi(x;) = hi(x;)

Label a will be the new label of i (i.e. 2 = ) iff there exists unsaturated path (i.e. fi; < cap;;) between the source node s and node i. In all other cases, i

13 5

Ji=50
cap;=50

cap;=50
=100 /cap;=500

24
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Subroutine Update_Duals _Primals(a,x,y) *

I X «—xandy <y

2. Apply max-flow to G’ and compute flows f;, fi;
3: for all (i,j) € € do

4: Yijo < Yijia + fij — i

5. end for

6: forall i€V do

7 x; < a < 3 unsaturated path s v~ i in G’
8: end for

9: return [x' y’]

IN2329 - Probabilistic Graphical Models in Computer Vision
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Subroutine PostEdit_Duals(a,x’,y’) *

The goal is to restore all active balance variables y;;.,,, to be non-negative.

! /. . ! — .
L. = o # 2}t we have cap;;, yij.a = 0, therefore ;.. , = cap;; + yijia =
/ —

2. o= :z; = a: we have ygj:a = —yz-m, therefore Ioad;j = yl’-j:a + y}m
Note that none of the “load” were altered.

1: function PosTEDpIT_DuAaLs(a,x,y’)

2: for all (i, j) € £ with (2] = 2 = @) and (y;;., <0 or y};,, < 0) do
3 Yijo < 0and yiy, < 0

4 end for

5 forallieV do

6: yi — mingeg bl (a)

7 end for

8 return y’

9: end function

0.
0. By setting y;;(a) = v/}, = 0 we get load;; = 0 as well.

IN2329 - Probabilistic Graphical Models in Computer Vision
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Summary *
In summary, one can see that PD1 always leads to an e-approximate solution:

Theorem 3. The final primal-dual solutions generated by PD1 satisfy
1. hi(x;) = minger hi(a) for alli eV,

2. m # xj = load;j > 7wijigi;’xj) for all (i,j € &),

3. Yijia < % for all (i,j € £) and a € L,

and thus they satisfy the relaxed complementary slackness conditions with €1 =1, €3 = €5pp = 2dmax

dmin

In the next lecture we will learn about

B FastPD: PD2 and PD3 algorithms
B Branch-and-mincut algorithm to achieve global optimal binary segmentation in case of prior information
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