Probabilistic Graphical Models in Computer Vision (IN2329)

Csaba Domokos

Summer Semester 2015/2016

6. FastPD: Approximate Labeling via Primal-Dual Schema

Agenda for today's lecture *

Consider an undirected graphical model given by $G=(\mathcal{V}, \mathcal{E})$ which takes values from an arbitrary (finite) label set \mathcal{L}. More specially, assume that the corresponding energy function $E: \mathcal{L}^{\mathcal{V}} \rightarrow \mathbb{R}$ is given by

$$
E(\mathbf{x})=\sum_{i \in \mathcal{V}} E_{i}\left(\mathbf{x}_{i}\right)+\sum_{(i, j) \in \mathcal{E}} w_{i j} \cdot d\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)
$$

where E_{i} stands for a unary energy function, $w_{i j} \in \mathbb{R}$ are weighting factors, and d is a metric or a semi-metric (i.e. the triangle inequality is not necessary satisfied). In the previous lecture we learnt about the move making algorithms (i.e. $\alpha-\beta$ swap, α-expansion) as a possible way to approximately solve this problem.

Today we are going to learn about the FastPD algorithm which is an approximate solution via primal-dual linear programming.

We are generally interested to find a MAP labelling x^{*} :

$$
\mathbf{x}^{*} \in \underset{\mathbf{x} \in \mathcal{L}^{|\mathcal{V}|}}{\operatorname{argmin}} E(\mathbf{x})=\underset{\mathbf{x} \in \mathcal{L}^{|\mathcal{V}|}}{\operatorname{argmin}}\left\{\sum_{i \in \mathcal{V}} E_{i}\left(x_{i}\right)+\sum_{(i, j) \in \mathcal{E}} w_{i j} \cdot d\left(x_{i}, x_{j}\right)\right\} .
$$

This can be equivalently written as an integer linear program (ILP):

$$
\begin{aligned}
& \min _{x_{i: \alpha}, x_{i j: \alpha \beta}} \sum_{i \in \mathcal{V}} \sum_{\alpha \in \mathcal{L}} E_{i}(\alpha) x_{i: \alpha}+\sum_{(i, j) \in \mathcal{E}} w_{i j} \sum_{\alpha, \beta \in \mathcal{L}} d(\alpha, \beta) x_{i j: \alpha \beta} \\
& \text { subject to } \quad \sum_{\alpha \in \mathcal{L}} x_{i: \alpha}=1 \quad \forall i \in \mathcal{V} \\
& \sum_{\alpha \in \mathcal{L}} x_{i j: \alpha \beta}=x_{j: \beta} \\
& \sum_{\beta \in \mathcal{L}} x_{i j: \alpha \beta}=x_{i: \alpha} \\
& \forall \alpha \in \mathcal{L},(i, j) \in \mathcal{E} \\
& x_{i: \alpha}, x_{i j: \alpha \beta} \in \mathbb{B}
\end{aligned} \quad \forall \alpha, \beta \in \mathcal{L},(i, j) \in \mathcal{E},(i, j) \in \mathcal{E} .
$$

$x_{i: \alpha}$ indicates whether vertex i is assigned label α, while $x_{i j: \alpha \beta}$ indicates whether (neighboring) vertices i, j are assigned labels α, β, respectively.

Let us assume that $\mathcal{L}=\{1,2,3\}$ and consider the following factor graph example:

Uniqueness: The constraints $\sum_{\alpha \in \mathcal{L}} x_{i: \alpha}=1$ for all $i \in \mathcal{V}$ simply express the fact that each vertex must receive exactly one label.

Consistency: The constraints

$$
\sum_{\alpha \in \mathcal{L}} x_{i j: \alpha \beta}=x_{j: \beta} \quad \text { and } \quad \sum_{\beta \in \mathcal{L}} x_{i j: \alpha \beta}=x_{i: \alpha} \quad \forall \alpha, \beta \in \mathcal{L},(i, j) \in \mathcal{E}
$$

maintain consistency between variables, i.e. if $x_{i: \alpha}=1$ and $x_{j: \beta}=1$ holds true, then these constraints force $x_{i j: \alpha \beta}=1$ to hold true as well.

Primal-dual LP Primal-dual principle Primal-dual schema PD1

Primal-dual LP

The ILP defined before is in general NP-hard. Therefore we deal with the LP relaxation of our ILP. The relaxed LP can be written in standard form as follows:

$$
\begin{aligned}
& \min _{x_{i: \alpha}, x_{i j: \alpha \beta}}\langle\mathbf{c}, \mathbf{x}\rangle \\
& \text { subject to } \mathbf{A x}=\mathbf{b}, \mathbf{x} \geqslant \mathbf{0} .
\end{aligned}
$$

$$
\min _{x_{i: \alpha}, x_{i j: \alpha \beta}}\langle\mathrm{c}, \mathrm{x}\rangle \quad \text { subject to } \mathrm{A} \mathrm{x}=\mathrm{b}, \mathrm{x} \geqslant \mathbf{0} .
$$

We may write $\mathbf{x}=\left[\begin{array}{ll}\mathbf{x}_{1}^{T} & \mathbf{x}_{2}^{T}\end{array}\right]^{T}$, where

$$
\mathbf{x}_{1}=\left[\begin{array}{llllll}
x_{1: 1} & \cdots & x_{1: 3} & x_{2: 1} & \cdots & x_{2: 3}
\end{array}\right]^{T} \in \mathbb{R}^{m n}
$$

where $n=|\mathcal{V}|$ and $m=|\mathcal{L}|$, and

$$
\mathbf{x}_{2}=\left[\begin{array}{lllllll}
x_{12: 11} & \cdots & x_{11: 13} & \cdots & x_{11: 31} & \cdots & x_{11: 31}
\end{array}\right]^{T} \in \mathbb{R}^{|\mathcal{E}| m^{2}}
$$

Similarly, we can write $\mathbf{c}=\left[\begin{array}{ll}\mathbf{c}_{1}^{T} & \mathbf{c}_{2}^{T}\end{array}\right]^{T}$, where
$\mathbf{c}_{1}=\left[\begin{array}{llllll}E_{1}(1) & \cdots & E_{1}(3) & E_{2}(1) & \cdots & E_{2}(3)\end{array}\right]^{T} \in \mathbb{R}^{m n}$
$\mathbf{c}_{2}=\left[\begin{array}{lllllll}w_{12} d(1,1) & \cdots & w_{12} d(1,3) & \cdots & w_{12} d(3,1) & \cdots & w_{12} d(3,2)\end{array}\right]^{T} \in \mathbb{R}^{|\mathcal{E}| m^{2}}$.
Therefore, $\langle\mathbf{c}, \mathbf{x}\rangle=\left\langle\mathbf{c}_{1}, \mathbf{x}_{1}\right\rangle+\left\langle\mathbf{c}_{2}, \mathbf{x}_{2}\right\rangle$.

$$
\min _{x_{i: \alpha}, x_{i j: \alpha \beta}}\langle\mathbf{c}, \mathbf{x}\rangle \quad \text { subject to } \mathrm{A} \mathbf{x}=\mathrm{b}, \mathbf{x} \geqslant \mathbf{0} .
$$

We can write the (uniqueness) constraints $\sum_{\alpha \in \mathcal{L}} x_{i: \alpha}=1$ for all $i \in \mathcal{V}$ as

$$
\underbrace{\left[\begin{array}{llllll}
1 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 & 1
\end{array}\right]}_{\mathbf{A}_{11}}\left[\begin{array}{c}
x_{1: 1} \\
\vdots \\
x_{2: 3}
\end{array}\right]=\mathbf{A}_{11} \mathbf{x}_{1}=\mathbf{1}_{n}=: \mathbf{b}_{1}
$$

where $\mathbf{1}_{n} \in \mathbb{R}^{n}$ is the vector of all-ones.

LP relaxation: consistency constraints

$$
\min _{x_{i: \alpha}, x_{i j}: \alpha \beta}\langle\mathbf{c}, \mathbf{x}\rangle \quad \text { subject to } \mathbf{A} \mathbf{x}=\mathbf{b}, \mathbf{x} \geqslant \mathbf{0} .
$$

The (consistency) constraint $\sum_{\alpha \in \mathcal{L}} x_{i j: \alpha \beta}=x_{j: \beta} \Leftrightarrow-x_{j: \beta}+\sum_{\alpha \in \mathcal{L}} x_{i j: \alpha \beta}=0$ can be expressed as

$$
\left.\begin{array}{c}
{\left[\begin{array}{cccccc|ccccccccc}
0 & 0 & 0 & -1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & -1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & -1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 \\
-1 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1
\end{array}\right]\left[\begin{array}{c}
x_{1: 1} \\
\vdots \\
x_{2: 3} \\
x_{11: 11} \\
\vdots \\
x_{11: 33}
\end{array}\right]=\mathbf{0},} \\
\\
{\left[\mathbf{A}_{21}\right.}
\end{array} \mathbf{A}_{22}\right]\left[\begin{array}{c}
\mathbf{x}_{1} \\
\mathbf{x}_{2}
\end{array}\right]=\mathbf{0}_{2|\mathcal{E}| m}=: \mathbf{b}_{2} .
$$

$$
\min _{x_{i: \alpha}, x_{i j: \alpha \beta}}\langle\mathbf{c}, \mathbf{x}\rangle \quad \text { subject to } \mathbf{A} \mathbf{x}=\mathbf{b}, \mathbf{x} \geqslant \mathbf{0} .
$$

We can write all the constraints in a matrix-vector notation as follows.

$$
\mathbf{A} \mathbf{x}=\left[\begin{array}{c|c}
\mathbf{A}_{11} & \mathbf{0}_{n \times|\mathcal{E}| m^{2}} \\
\hline \mathbf{A}_{21} & \mathbf{A}_{22}
\end{array}\right]\left[\begin{array}{c}
\mathbf{x}_{1} \\
\mathbf{x}_{2}
\end{array}\right]=\left[\begin{array}{c}
\mathbf{1}_{n} \\
\mathbf{0}_{2|\mathcal{E}| m}
\end{array}\right]=\left[\begin{array}{l}
\mathbf{b}_{1} \\
\mathbf{b}_{2}
\end{array}\right]=\mathbf{b}
$$

Hence, $\mathbf{A} \in \mathbb{R}^{n+2|\mathcal{E}| m \times m n+|\mathcal{E}| m^{2}}$ is a sparse matrix with elements $-1,0$ and 1 , furthermore $\mathbf{b} \in \mathbb{R}^{n+2|\mathcal{E}| m}$, where the first $m n$ elements are equal to one and the others are equal to zero.

Consider a linear program (given in standard form):

$$
\begin{aligned}
& \min _{\mathbf{x} \in \mathbb{R}^{n}}\langle\mathbf{c}, \mathbf{x}\rangle \\
& \text { subject to } \mathbf{A x}=\mathbf{b}, \mathbf{x} \geqslant \mathbf{0}
\end{aligned}
$$

for a constraint matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$, a constraint vector $\mathbf{b} \in \mathbb{R}^{m}$ and a cost vector $\mathbf{c} \in \mathbb{R}^{n}$.

The dual $L P$ is defined as

$$
\begin{aligned}
& \max _{\mathbf{y} \in \mathbb{R}^{m}}\langle\mathbf{b}, \mathbf{y}\rangle \\
& \text { subject to } \mathbf{A}^{T} \mathbf{y} \leqslant \mathbf{c} .
\end{aligned}
$$

For feasible solutions \mathbf{x} and \mathbf{y} weak duality holds:

$$
\langle\mathbf{b}, \mathbf{y}\rangle=\mathbf{b}^{T} \mathbf{y}=\mathbf{x}^{T}\left(\mathbf{A}^{T} \mathbf{y}\right)=\left(\mathbf{y}^{T} \mathbf{A}\right) \mathbf{x} \leqslant \mathbf{c}^{T} \mathbf{x}=\langle\mathbf{c}, \mathbf{x}\rangle .
$$

Dual LP

$$
\max _{y_{i}, y_{i j: \alpha}, y_{j i: \beta}}\langle\mathbf{b}, \mathbf{y}\rangle \quad \text { subject to } \mathbf{A}^{T} \mathbf{y} \leqslant \mathbf{c}
$$

Note that the dual variables y_{i} for all $i \in \mathcal{V}$ and $y_{i j: \alpha}, y_{j i: \beta}$ for all $(i, j) \in \mathcal{E}$, $\alpha, \beta \in \mathcal{L}$ correspond to the constraints of the primal LP.
We can write $\mathbf{y}=\left[\begin{array}{lll}\mathbf{y}_{1}^{T} & \mathbf{y}_{2}^{T} & \mathbf{y}_{3}^{T}\end{array}\right]^{T}$, where $\mathbf{y}_{1}=\left[\begin{array}{lll}y_{1} & \cdots & y_{n}\end{array}\right]^{T} \in \mathbb{R}^{n}$, and $\mathbf{y}_{2} \in \mathbb{R}^{|\mathcal{E}| m}$ and $\mathbf{y}_{3} \in \mathbb{R}^{|\mathcal{E}| m}$ are the vectors consisting of the variables $y_{j i: \beta}$ and $y_{i j: \alpha}$ in the same order as it is defined in the case of the primal LP.

The cost function results in

$$
\langle\mathbf{b}, \mathbf{y}\rangle=\left\langle\mathbf{b}_{1}, \mathbf{y}_{1}\right\rangle+\left\langle\mathbf{b}_{2},\left[\begin{array}{ll}
\mathbf{y}_{2}^{T} & \mathbf{y}_{3}^{T}
\end{array}\right]^{T}\right\rangle=\left\langle\mathbf{1}_{n}, \mathbf{y}_{1}\right\rangle=\sum_{i=1}^{n} y_{i} .
$$

The constraints $\mathbf{A}^{T} \mathbf{y} \leqslant \mathbf{c}$ are given by

$$
\mathbf{A}^{T} \mathbf{y}=\left[\begin{array}{c|c}
\mathbf{A}_{11}^{T} & \mathbf{A}_{21}^{T} \\
\hline \mathbf{0}_{|\mathcal{E}| m^{2} \times n} & \mathbf{A}_{22}^{T}
\end{array}\right] \mathbf{y} \leqslant\left[\begin{array}{l}
\mathbf{c}_{1} \\
\mathbf{c}_{2}
\end{array}\right]=\mathbf{c}
$$

$$
\begin{aligned}
& \max _{y_{i}, y_{i j: \alpha}, y_{j i: \beta}}\left\langle\mathbf{1}_{n}, \mathbf{y}_{1}\right\rangle \\
& \text { subject to }\left[\begin{array}{c|c}
\mathbf{A}_{11}^{T} & \mathbf{A}_{21}^{T} \\
\hline \mathbf{0}_{|\mathcal{E}| m^{2} \times n} & \mathbf{A}_{22}^{T}
\end{array}\right] \mathbf{y} \leqslant\left[\begin{array}{l}
\mathbf{c}_{1} \\
\mathbf{c}_{2}
\end{array}\right] .
\end{aligned}
$$

Or equivalently, we can formulate the dual LP as

$$
\begin{array}{lll}
\max _{y_{i}, y_{i j}: \alpha, y_{j i: \beta}} & \sum_{i \in \mathcal{V}} y_{i} & \\
\text { subject to } & y_{i}-\sum_{j \in \mathcal{V},(i, j) \in \mathcal{E}} y_{i j: \alpha} & \leqslant \varphi_{i}(\alpha)
\end{array} \quad \forall i \in \mathcal{V}, \alpha \in \mathcal{L} \quad\left\{\begin{array}{ll}
\\
& y_{i j: \alpha}+y_{j i: \beta}
\end{array} \quad \leqslant w_{i j} d(\alpha, \beta) \quad \forall(i, j) \in \mathcal{E}, \alpha, \beta \in \mathcal{L}\right.
$$

What An intuitive view of the dual variables

We will use the notation $x_{i} \in \mathcal{L}$ for the active label given the vertex $i \in \mathcal{V}$.
For each vertex we have a different copy of all labels in \mathcal{L}. It is assumed that all these labels represent balls floating at certain heights relative to a reference plane.
For this sake we introduce height variables defined as

$$
h_{i}(\alpha)=E_{i}(\alpha)+\sum_{j \in \mathcal{V},(i, j) \in \mathcal{E}} y_{i j: \alpha} .
$$

The constraints $y_{i}-\sum_{j \in \mathcal{V}:(i, j) \in \mathcal{E}} y_{i j: \alpha} \leqslant E_{i}(\alpha)$ can be equivalently written as

$$
y_{i} \leqslant E_{i}(\alpha)+\sum_{j \in \mathcal{V}:(i, j) \in \mathcal{E}} y_{i j: \alpha}=h_{i}(\alpha) \quad \forall i \in \mathcal{V}, \alpha \in \mathcal{L} .
$$

Since our objective is to maximize $\sum_{i \in \mathcal{V}} y_{i}$, the following relation holds

$$
y_{i}=\min _{\alpha \in \mathcal{L}} h_{i}(\alpha) \quad \forall i \in \mathcal{V}
$$

We will refer to the variables $y_{i j: \alpha}, y_{j i: \beta}$ as balance variables. Specially, the pair of $y_{i j: \alpha}, y_{j i: \alpha}$ is called conjugate balance variables.
The balls are not static, but may move in pairs through updating pairs of conjugate balance variables as $h_{i}(\alpha)=\varphi_{i}(\alpha)+\sum_{j \in \mathcal{V},(i, j) \in \mathcal{E}} y_{i j: \alpha}$. Therefore, the role of balance variables is to raise or lower labels.

It is due to $y_{i j: \alpha}+y_{j i: \alpha} \leqslant w_{i j} d(\alpha, \alpha)=0 \quad \Rightarrow \quad y_{i j: \alpha} \leqslant-y_{j i: \alpha}$.
We will call the variables $y_{i j: x_{i}}$ as active balance variable and use the following notation for the "load" between neighbors i, j, defined as

$$
\operatorname{load}_{i j}=y_{i j: x_{i}}+y_{j i: x_{j}}
$$

thit - Primal-dual LP for our multi-label problem

The (relaxed) primal LP:

$$
\begin{aligned}
& \min _{x_{i: \alpha}, x_{i j: \alpha \beta} \geqslant 0} \sum_{i \in \mathcal{V}} \sum_{\alpha \in \mathcal{L}} E_{i}(\alpha) x_{i: \alpha}+\sum_{(i, j) \in \mathcal{E}} w_{i j} \sum_{\alpha, \beta \in \mathcal{L}} d(\alpha, \beta) x_{i j: \alpha \beta} \\
& \text { subject to } \quad \sum_{\alpha \in \mathcal{L}} x_{i: \alpha}=1 \quad \forall i \in \mathcal{V} \\
& \sum_{\alpha \in \mathcal{L}} x_{i j: \alpha \beta}=x_{j: \beta} \quad \forall \beta \in \mathcal{L},(i, j) \in \mathcal{E} \\
& \sum_{\beta \in \mathcal{L}} x_{i j: \alpha \beta}=x_{i: \alpha} \quad \forall \alpha \in \mathcal{L},(i, j) \in \mathcal{E}
\end{aligned}
$$

The dual LP:

$$
\begin{array}{lll}
\max _{y_{i}, y_{i j: \alpha}, y_{j i: \beta}} \sum_{i \in \mathcal{V}} y_{i} & & \\
\text { subject to } & y_{i}-\sum_{j \in \mathcal{V}:(i, j) \in \mathcal{E}} y_{i j: \alpha} & \leqslant E_{i}(\alpha)
\end{array} \quad \forall i \in \mathcal{V}, \alpha \in \mathcal{L},
$$

Primal-dual principle

Primal-dual principle

Theorem 1. If \mathbf{x} and \mathbf{y} are integral-primal and dual feasible solutions satisfying:

$$
\langle\mathbf{c}, \mathbf{x}\rangle \leqslant \epsilon\langle\mathbf{b}, \mathbf{y}\rangle
$$

for $\epsilon \geqslant 1$, then x is an ϵ-approximation to the optimal integral solution x^{*}, that is

$$
\left\langle\mathbf{c}, \mathbf{x}^{*}\right\rangle \leqslant\langle\mathbf{c}, \mathbf{x}\rangle \leqslant \epsilon\langle\mathbf{b}, \mathbf{y}\rangle \leqslant \epsilon\left\langle\mathbf{c}, \mathbf{x}^{*}\right\rangle .
$$

Whit The relaxed complementary slackness

One way to estimate a pair (\mathbf{x}, \mathbf{y}) satisfying the fundamental inequality

$$
\langle\mathbf{c}, \mathbf{x}\rangle \leqslant \epsilon\langle\mathbf{b}, \mathbf{y}\rangle
$$

relies the complementary slackness principle.
Theorem 2. If the pair (\mathbf{x}, \mathbf{y}) of integral-primal and dual feasible solutions satisfies the so-called relaxed primal complementary slackness conditions:

$$
\forall j:\left(x_{j}>0\right) \quad \Rightarrow \quad \sum_{i} a_{i j} y_{i} \geqslant \frac{c_{j}}{\epsilon_{j}}
$$

then (\mathbf{x}, \mathbf{y}) also satisfies $\langle\mathbf{c}, \mathbf{x}\rangle \leqslant \epsilon\langle\mathbf{b}, \mathbf{y}\rangle$ with $\epsilon=\max _{j} \epsilon_{j}$ and therefore \mathbf{x} is an ϵ-approximation to the optimal integral solution \mathbf{x}^{*}.

Proof. Exercise.

We aim to satisfy relaxed complementary slackness conditions in order to achieve an ϵ-approximation solution.

Primal-dual schema

Typically, primal-dual ϵ-approximation algorithms construct a sequence $\left(\mathbf{x}^{k}, \mathbf{y}^{k}\right)_{k=1, \ldots, t}$ of primal and dual solutions until the elements $\mathbf{x}^{t}, \mathbf{y}^{t}$ of the last pair are both feasible and satisfy the relaxed primal complementary slackness conditions, hence the condition $\langle\mathbf{c}, \mathbf{x}\rangle \leqslant \epsilon\langle\mathbf{b}, \mathbf{y}\rangle$ will be also fulfilled.

```
1: \([\mathbf{x}, \mathbf{y}] \leftarrow\) Init_Primals_Duals()
2: labelChange \(\leftarrow\) false
3: for all \(\alpha \in \mathcal{L}\) do \(\{\alpha\)-iteration \(\}\)
4: \(\quad \mathbf{y} \leftarrow\) PreEdit_Duals \((\alpha, \mathbf{x}, \mathbf{y})\)
5: \(\quad\left[\mathbf{x}^{\prime}, \mathbf{y}^{\prime}\right] \leftarrow\) Update_Duals_Primals \((\alpha, \mathbf{x}, \mathbf{y})\)
6: \(\quad \mathbf{y}^{\prime} \leftarrow\) PostEdit_Duals \(\left(\alpha, \mathbf{x}^{\prime}, \mathbf{y}^{\prime}\right)\)
7: if \(\mathbf{x}^{\prime} \neq \mathrm{x}\) then
8: \(\quad\) labelChange \(\leftarrow\) true
9: end if
10: \(\quad \mathbf{x} \leftarrow \mathbf{x}^{\prime} ; \mathbf{y} \leftarrow \mathrm{y}^{\prime}\)
11: end for
12: if labelChange then
13: goto 2
14: end if
15: \(\mathbf{y}^{\text {fit }} \leftarrow\) Dual_Fit ( \(\mathbf{y}\) )
```

Primal-dual LP Primal-dual principle Primal-dual schema PD1

Incimin

PD1

From now on, in case of Algorithm PD1, we only assume that $d(\alpha, \beta)=0 \Leftrightarrow \alpha=\beta$, and $d(\alpha, \beta) \geqslant 0$ (i.e. semi-metric).

The complementary slackness conditions reduces to

$$
\begin{aligned}
y_{i}-\sum_{j \in \mathcal{V}:(i, j) \in \mathcal{E}} y_{i j: x_{i}} \geqslant \frac{E_{i}\left(x_{i}\right)}{\epsilon_{1}} \Rightarrow y_{i} \geqslant \frac{E_{i}\left(x_{i}\right)}{\epsilon_{1}}+\sum_{j \in \mathcal{V}:(i, j) \in \mathcal{E}} y_{i j: x_{i}} \\
y_{i j: x_{i}}+y_{j i: x_{j}} \geqslant \frac{w_{i j} d\left(x_{i}, x_{j}\right)}{\epsilon_{2}}
\end{aligned}
$$

for specific values of $\epsilon_{1}, \epsilon_{2} \geqslant 1$.
If $x_{i}=x_{j}=\alpha$ for neighboring pairs $(i, j) \in \mathcal{E}$, then

$$
0=w_{i j: \alpha} d(\alpha, \alpha) \geqslant y_{i j: i \alpha}+y_{i j: j \alpha} \geqslant \frac{w_{i j} d(\alpha, \alpha)}{\epsilon_{2}}=0
$$

therefore we get that $y_{i j: \alpha}=-y_{i j: \alpha}$.

Thit Complementary slackness conditions

We have already known that $y_{i}=\min _{\alpha \in \mathcal{L}} h_{i}(\alpha)$. If $\epsilon_{1}=1$, then we get

$$
y_{i} \geqslant E_{i}\left(x_{i}\right)+\sum_{j \in \mathcal{V}:(i, j) \in \mathcal{E}} y_{i j: x_{i}}=h_{i}\left(x_{i}\right) .
$$

Therefore

$$
\begin{equation*}
h_{i}\left(x_{i}\right)=\min _{\alpha \in \mathcal{L}} h_{i}(\alpha), \tag{1}
\end{equation*}
$$

which means that, at each vertex, the active label should have the lowest height.
If $\epsilon_{2}=\epsilon_{\mathrm{app}}:=\frac{2 d_{\max }}{d_{\min }}$, then the complementary condition simply reduces to:

$$
\begin{equation*}
y_{i j: x_{i}}+y_{i j: x_{j}} \geqslant \frac{w_{i j} d\left(x_{i}, x_{j}\right)}{\epsilon_{\mathrm{app}}} \tag{2}
\end{equation*}
$$

It requires that any two active labels should be raised proportionally to their "load".

To ensure feasibility of \mathbf{y}, PD1 enforces for any $\alpha \in \mathcal{L}$:

$$
\begin{equation*}
y_{i j: \alpha} \leqslant w_{i j} d_{\min } / 2 \quad \text { where } \quad d_{\min }=\min _{\alpha \neq \beta} d(\alpha, \beta) \tag{3}
\end{equation*}
$$

says that there is an upper bound on how much we can raise a label.
Hence, we get the feasibility condition

$$
y_{i j: \alpha}+y_{j i: \beta} \leqslant 2 w_{i j} d_{\min } / 2=w_{i j} d_{\min } \leqslant w_{i j} d(\alpha, \beta)
$$

Moreover the algorithm keeps the active balance variables non-negative, that is $y_{i j: x_{i}} \geqslant 0$ for all $i \in \mathcal{V}$.

The proportionality condition (2) will be also fulfilled as $y_{i j: x_{i}}, y_{i j: x_{j}} \geqslant 0$ and if $y_{i j: x_{i}}=\frac{w_{i j} d_{\text {min }}}{2}$, then

$$
y_{i j: x_{i}} \geqslant \frac{w_{i j} d_{\min }}{2} \frac{d\left(x_{i}, x_{j}\right)}{d_{\max }}=\frac{w_{i j} d\left(x_{i}, x_{j}\right)}{\frac{2 d_{\max }}{d_{\min }}}=\frac{w_{i j} d\left(x_{i}, x_{j}\right)}{\epsilon_{\mathrm{app}}}
$$

1: \mathbf{x} is simply initialized by a random label assignment
2: \{Init primals $\}$
3: for all $(i, j) \in \mathcal{E}$ with $x_{i} \neq x_{j}$ do \{Init duals\}
4: $\quad y_{i j: x_{i}} \leftarrow w_{i j} d\left(x_{i}, x_{j}\right) / 2$
5: $\quad y_{j i: x_{i}} \leftarrow-w_{i j} d\left(x_{i}, x_{j}\right) / 2$
6: $\quad y_{j i: x_{j}} \leftarrow w_{i j} d\left(x_{i}, x_{j}\right) / 2$
7: $\quad y_{i j: x_{j}} \leftarrow-w_{i j} d\left(x_{i}, x_{j}\right) / 2$
end for
9: for all $i \in \mathcal{V}$ do
$10:$

$$
y_{i} \leftarrow \min _{\alpha \in \mathcal{L}} h_{i}(\alpha)
$$

11: end for
12: return $[\mathrm{x}, \mathrm{y}$]

Dual variables update: Given the current active labels, any non-active label is raised, until it either reaches the active label, or attains the maximum raise allowed by the upper bound (3).
Primal variables update: Given the new heights, there might still be vertices whose active labels are not at the lowest height. For each such vertex i, we select a non-active label, which is below x_{i}, but has already reached the maximum raise allowed by the upper bound (3).

The optimal update of the α-heights can be simulated by pushing the maximum amount of flow through a directed graph $G^{\prime}=\left(\mathcal{V} \cup\{s, t\}, \mathcal{E}^{\prime}, c, s, t\right)$.

For each $(i, j) \in \mathcal{E}$, we insert two directed edges $i j$ and $j i$ into \mathcal{E}^{\prime}.
The flow value $f_{i j}, f_{i j}$ represent respectively the increase, decrease of balance variable $y_{p q: \alpha}$:

$$
y_{i j: \alpha}^{\prime}=y_{i j: \alpha}+f_{i j}-f_{j i} \quad \text { and } \quad y_{j i: \alpha}^{\prime}=-y_{i j: \alpha}^{\prime} .
$$

According to (3), the capacities cap ${ }_{i j}$ and $\operatorname{cap}_{j i}$ are set based on

$$
\operatorname{cap}_{i j}+y_{i j: \alpha}=\frac{1}{2} w_{i j} d_{\min }=\operatorname{cap}_{j i}+y_{j i: \alpha} . \quad \operatorname{cap}_{\mathrm{ij}}=\frac{1}{2} w_{i j} d_{\min }-y_{i j: \alpha}
$$

If α is already the active label of i (or j), then label α at i (or j) need not move. Therefore, $y_{i j: \alpha}^{\prime}=y_{i j: \alpha}$ and $y_{j i: \alpha}^{\prime}=y_{j i: \alpha}$, that is

$$
x_{i}=\alpha \text { or } x_{j}=\alpha \quad \Rightarrow \quad \operatorname{cap}_{i j}=\operatorname{cap}_{j i}=0
$$

Each node $i \in \mathcal{V}^{\prime}-\{s, t\}$ connects to either the source node s or the sink node t (but not to both of them).
There are three possible cases to consider:
Case $1\left(h_{i}(\alpha)<h_{i}\left(x_{i}\right)\right)$: we want to raise label α as much as it reaches label x_{i}. We connect source node s to node i.
Due to the flow conservation property, $f_{i}=\sum_{j \in \mathcal{V}:(i, j) \in \mathcal{E}}\left(f_{i j}-f_{j i}\right)$.
The flow f_{i} through that edge will then represent the total relative raise of label α :

$$
\begin{aligned}
h_{i}(\alpha)+f_{i} & =\left(\varphi_{i}(\alpha)+\sum_{j \in \mathcal{V}:(i, j) \in \mathcal{E}} y_{i j: \alpha}\right)+\sum_{j \in \mathcal{V}:(i, j) \in \mathcal{E}}\left(f_{i j}-f_{j i}\right) \\
& =\left(\varphi_{i}(\alpha)+\sum_{j \in \mathcal{V}:(i, j) \in \mathcal{E}} y_{i j: \alpha}\right)+\sum_{j \in \mathcal{V}:(i, j) \in \mathcal{E}}\left(y_{i j: \alpha}^{\prime}-y_{j i: \alpha}\right) \\
& =\varphi_{p}(\alpha)+\sum_{j \in \mathcal{V}:(i, j) \in \mathcal{E}} y_{i j: \alpha}^{\prime}=h_{i}^{\prime}(\alpha)
\end{aligned}
$$

We need to raise α only as high as the current active label of i, but not higher than that, we therefore set:

$$
\operatorname{cap}_{s i}=h_{i}\left(x_{i}\right)-h_{i}(\alpha)
$$

Case $2\left(h_{i}(\alpha) \geqslant h_{i}\left(x_{i}\right)\right.$ and $\left.c \neq x_{i}\right)$: we can then afford a decrease in the height of α at i, as long as α remains above x_{p}.

We connect i to the sink node t through directed edge (i, t).
The flow f_{i} through edge it will equal the total relative decrease in the height of α :

$$
\begin{aligned}
h_{i}^{\prime}(\alpha) & =h_{i}(\alpha)-f_{i} \\
\operatorname{cap}_{i t} & =h_{i}(\alpha)-h_{i}\left(x_{i}\right) .
\end{aligned}
$$

Case 3 ($\alpha=x_{i}$): we want to keep the height of α fixed at the current iteration.
Note that the capacities of the n-edges for p are set to 0 , since i has the active label. Therefore, $f_{i}=0$ and $h_{i j: \alpha}^{\prime}=h_{i j: \alpha}$.
By convention $\operatorname{cap}_{i j}:=1$.

Label α will be the new label of i (i.e. $x_{i}^{\prime}=\alpha$) iff there exists unsaturated path between the source node s and node i. In all other cases, i keeps its current label (i.e. $x_{i}^{\prime}=x_{i}$).

$$
\begin{aligned}
f_{i j} & <\operatorname{cap}_{i j} \\
h_{i}^{\prime}(\alpha)-h_{i}(\alpha) & <h_{i}\left(x_{i}\right)-h_{i}(\alpha) \\
h_{i}^{\prime}(\alpha) & <h_{i}\left(x_{i}\right)=h_{i}^{\prime}\left(x_{i}\right)
\end{aligned}
$$

Ufit + Subroutine Update Duals_Primals (α, x, y)
 *

1: $\mathbf{x}^{\prime} \leftarrow \mathbf{x}, \mathbf{y}^{\prime} \leftarrow \mathbf{y}$
2: Apply max-flow to G^{\prime} and compute flows $f_{i}, f_{i j}$
3: for all $(i, j) \in \mathcal{E}$ do
4: $\quad y_{i j: \alpha}^{\prime} \leftarrow y_{i j: \alpha}+f_{i j}-f_{j i}$
5: end for
6: for all $i \in \mathcal{V}$ do
7: $\quad x_{i} \leftarrow \alpha \Leftrightarrow \exists$ unsaturated path $s \leadsto i$ in G^{\prime}
8: end for
9: return $\left[\mathrm{x}^{\prime}, \mathrm{y}^{\prime}\right]$

The goal is to restore all active balance variables $y_{i j}: x_{i}$ to be non-negative.

1. $x_{i}^{\prime}=\alpha \neq x_{j}^{\prime}$: we have $\operatorname{cap}_{i j}, y_{i j: \alpha} \geqslant 0$, therefore $y_{i j: \alpha}^{\prime}=\operatorname{cap}_{i j}+y_{i j: \alpha} \geqslant 0$.
2. $\quad x_{i}^{\prime}=x_{j}^{\prime}=\alpha$: we have $y_{i j: \alpha}^{\prime}=-y_{j i: \alpha}^{\prime}$, therefore load ${ }_{i j}^{\prime}=y_{i j: \alpha}^{\prime}+y_{j i: \alpha}^{\prime}=0$. By setting $y_{i j}^{\prime}(\alpha)=y_{j i: \alpha}^{\prime}=0$ we get load ${ }_{i j}^{\prime}=0$ as well.
Note that none of the "load" were altered.

1: for all $(i, j) \in \mathcal{E}$ with $\left(x_{i}^{\prime}=x_{j}^{\prime}=\alpha\right)$ and $\left(y_{i j: \alpha}^{\prime}<0\right.$ or $\left.y_{j i: \alpha}^{\prime}<0\right)$ do
2: $\quad y_{i j: \alpha}^{\prime} \leftarrow 0, y_{j i: \alpha}^{\prime} \leftarrow 0$

end for

4: for all $i \in \mathcal{V}$ do
5: $\quad y_{i}^{\prime} \leftarrow \min _{\alpha \in \mathcal{L}} h_{i}^{\prime}(\alpha)$
6: end for
7: return y^{\prime}

Summary

In summary, one can see that PD1 always leads to an ϵ-approximate solution:
Theorem 3. The final primal-dual solutions generated by PD1 satisfy

1. $h_{i}\left(x_{i}\right)=\min _{\alpha \in \mathcal{L}} h_{i}(\alpha)$ for all $i \in \mathcal{V}$,
2. $\quad x_{i} \neq x_{j} \Rightarrow$ load $_{i j} \geqslant \frac{w_{i j} d\left(x_{p}, x_{q}\right)}{\epsilon_{\text {app }}}$ for all $(i, j \in \mathcal{E})$,
3. $y_{i j: \alpha} \leqslant \frac{w_{i j} d_{\text {min }}}{2}$ for all $(i, j \in \mathcal{E})$ and $\alpha \in \mathcal{L}$,
and thus they satisfy the relaxed complementary slackness conditions with $\epsilon_{1}=1$, $\epsilon_{2}=\epsilon_{\text {app }}=\frac{2 d_{\text {max }}}{d_{\text {min }}}$.

In the next lecture we will learn about

- PD2 and PD3 algorithms

■ Branch-and-mincut algorithm to achieve global optimal binary segmentation in case of prior information

1. Nikos Komodakis and Georgios Tziritas. Approximate labeling via the primal-dual schema. Technical report, University of Crete, February 2005
2. Nikos Komodakis and Georgios Tziritas. Approximate labeling via graph-cuts based on linear programming. IEEE Transactions on Pattern Analysis and Machine Intelligence, 29(8):1436-1453, August 2007
