

Probabilistic Graphical Models in Computer Vision (IN2329)

Csaba Domokos

Summer Semester 2015/2016

6. FastPD: Approximate Labeling via Primal-Dual Schema

Agenda for today's lecture *

Primal-dual LP

Primal-dual principle

Primal-dual schema

PD1

Consider an undirected graphical model given by $G = (\mathcal{V}, \mathcal{E})$ which takes values from an **arbitrary** (finite) label set \mathcal{L} . More specially, assume that the corresponding energy function $E : \mathcal{L}^{\mathcal{V}} \to \mathbb{R}$ is given by

$$E(\mathbf{x}) = \sum_{i \in \mathcal{V}} E_i(\mathbf{x}_i) + \sum_{(i,j) \in \mathcal{E}} w_{ij} \cdot d(\mathbf{x}_i, \mathbf{x}_j) ,$$

where E_i stands for a unary energy function, $w_{ij} \in \mathbb{R}$ are weighting factors, and d is a metric or a semi-metric (i.e. the triangle inequality is not necessary satisfied).

In the **previous lecture** we learnt about the move making algorithms (i.e. $\alpha - \beta$ swap, α -expansion) as a possible way to *approximately* solve this problem.

Today we are going to learn about the FastPD algorithm which is an approximate solution via primal-dual linear programming.

Equivalent integer linear program

Primal-dual LP

Primal-dual principle Primal-dual schema

PD1

We are generally interested to find a MAP labelling x^* :

$$\mathbf{x}^* \in \underset{\mathbf{x} \in \mathcal{L}^{|\mathcal{V}|}}{\operatorname{argmin}} E(\mathbf{x}) = \underset{\mathbf{x} \in \mathcal{L}^{|\mathcal{V}|}}{\operatorname{argmin}} \left\{ \sum_{i \in \mathcal{V}} E_i(x_i) + \sum_{(i,j) \in \mathcal{E}} w_{ij} \cdot d(x_i, x_j) \right\}.$$

This can be equivalently written as an **integer linear program** (ILP):

$$\begin{aligned} & \min_{x_{i:\alpha}, x_{ij:\alpha\beta}} \sum_{i \in \mathcal{V}} \sum_{\alpha \in \mathcal{L}} E_i(\alpha) x_{i:\alpha} + \sum_{(i,j) \in \mathcal{E}} w_{ij} \sum_{\alpha,\beta \in \mathcal{L}} d(\alpha,\beta) x_{ij:\alpha\beta} \\ & \text{subject to} & \sum_{\alpha \in \mathcal{L}} x_{i:\alpha} &= 1 & \forall i \in \mathcal{V} \\ & \sum_{\alpha \in \mathcal{L}} x_{ij:\alpha\beta} &= x_{j:\beta} & \forall \beta \in \mathcal{L}, (i,j) \in \mathcal{E} \\ & \sum_{\beta \in \mathcal{L}} x_{ij:\alpha\beta} &= x_{i:\alpha} & \forall \alpha \in \mathcal{L}, (i,j) \in \mathcal{E} \\ & x_{i:\alpha}, x_{ij:\alpha\beta} \in \mathbb{B} & \forall \alpha,\beta \in \mathcal{L}, (i,j) \in \mathcal{E} \end{aligned}$$

 $x_{i:\alpha}$ indicates whether vertex i is assigned label α , while $x_{ij:\alpha\beta}$ indicates whether (neighboring) vertices i, j are assigned labels α, β , respectively.

Interpretation of the constraints

Primal-dual LP

Primal-dual principle

Primal-dual schema

PD1

Let us assume that $\mathcal{L} = \{1, 2, 3\}$ and consider the following factor graph example:

Uniqueness: The constraints $\sum_{\alpha \in \mathcal{L}} x_{i:\alpha} = 1$ for all $i \in \mathcal{V}$ simply express the fact that each vertex must receive exactly one label.

Consistency: The constraints

$$\sum_{\alpha \in \mathcal{L}} x_{ij:\alpha\beta} = x_{j:\beta} \quad \text{and} \quad \sum_{\beta \in \mathcal{L}} x_{ij:\alpha\beta} = x_{i:\alpha} \quad \forall \alpha, \beta \in \mathcal{L} , (i,j) \in \mathcal{E}$$

maintain consistency between variables, i.e. if $x_{i:\alpha} = 1$ and $x_{j:\beta} = 1$ holds true, then these constraints force $x_{ij:\alpha\beta} = 1$ to hold true as well.

Primal-dual LP

LP relaxation

Primal-dual LP

Primal-dual principle

Primal-dual schema

PD1

The ILP defined before is in general NP-hard. Therefore we deal with the **LP** relaxation of our ILP. The relaxed LP can be written in *standard form* as follows:

$$\min_{x_{i:\alpha}, x_{ij:\alpha\beta}} \langle \mathbf{c}, \mathbf{x} \rangle$$

subject to $Ax = b, x \ge 0$.

LP relaxation: cost function

Primal-dual LP

Primal-dual principle Primal-dual schema

PD1

$$\min_{x_{i:\alpha},x_{ij:\alpha\beta}}\langle \mathbf{c},\mathbf{x}
angle$$
 subject to $\mathbf{A}\mathbf{x}=\mathbf{b},\mathbf{x}\geqslant\mathbf{0}$.

We may write $\mathbf{x} = \begin{bmatrix} \mathbf{x}_1^T & \mathbf{x}_2^T \end{bmatrix}^T$, where

$$\mathbf{x}_1 = \begin{bmatrix} x_{1:1} & \cdots & x_{1:3} & x_{2:1} & \cdots & x_{2:3} \end{bmatrix}^T \in \mathbb{R}^{mn} ,$$

where $n = |\mathcal{V}|$ and $m = |\mathcal{L}|$, and

$$\mathbf{x}_2 = \begin{bmatrix} x_{12:11} & \cdots & x_{11:13} & \cdots & x_{11:31} \end{bmatrix}^T \in \mathbb{R}^{|\mathcal{E}|m^2}$$
.

Similarly, we can write $\mathbf{c} = \begin{bmatrix} \mathbf{c}_1^T & \mathbf{c}_2^T \end{bmatrix}^T$, where

$$\mathbf{c}_1 = \begin{bmatrix} E_1(1) & \cdots & E_1(3) & E_2(1) & \cdots & E_2(3) \end{bmatrix}^T \in \mathbb{R}^{mn}$$

$$\mathbf{c}_2 = \begin{bmatrix} w_{12}d(1,1) & \cdots & w_{12}d(1,3) & \cdots & w_{12}d(3,1) & \cdots & w_{12}d(3,2) \end{bmatrix}^T \in \mathbb{R}^{|\mathcal{E}|m^2}.$$

Therefore, $\langle \mathbf{c}, \mathbf{x} \rangle = \langle \mathbf{c}_1, \mathbf{x}_1 \rangle + \langle \mathbf{c}_2, \mathbf{x}_2 \rangle$.

LP relaxation: uniqueness constraints

Primal-dual LP

Primal-dual principle Primal-dual schema

PD1

$$\min_{x_{i:\alpha},x_{ij:lphaeta}}\langle \mathbf{c},\mathbf{x}
angle$$
 subject to $\mathbf{A}\mathbf{x}=\mathbf{b},\mathbf{x}\geqslant \mathbf{0}$.

We can write the (uniqueness) constraints $\sum_{\alpha \in \mathcal{L}} x_{i:\alpha} = 1$ for all $i \in \mathcal{V}$ as

$$\underbrace{\begin{bmatrix} 1 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 & 1 \end{bmatrix}}_{\mathbf{A}_{11}} \begin{bmatrix} x_{1:1} \\ \vdots \\ x_{2:3} \end{bmatrix} = \mathbf{A}_{11} \mathbf{x}_1 = \mathbf{1}_n =: \mathbf{b}_1 ,$$

where $\mathbf{1}_n \in \mathbb{R}^n$ is the vector of all-ones.

LP relaxation: consistency constraints

Primal-dual LP Primal-dual principle Primal-dual schema

PD1

$$\min_{x_{i:\alpha}, x_{ij:\alpha\beta}} \langle \mathbf{c}, \mathbf{x} \rangle$$
 subject to $\mathbf{A}\mathbf{x} = \mathbf{b}, \mathbf{x} \geqslant \mathbf{0}$.

The (consistency) constraint $\sum_{\alpha \in \mathcal{L}} x_{ij:\alpha\beta} = x_{j:\beta} \Leftrightarrow -x_{j:\beta} + \sum_{\alpha \in \mathcal{L}} x_{ij:\alpha\beta} = 0$ can be expressed as

$$\left[\begin{array}{c|c} \mathbf{A}_{21} & \mathbf{A}_{22} \end{array}\right] \left[egin{matrix} \mathbf{x}_1 \\ \mathbf{x}_2 \end{array}\right] = \mathbf{0}_{2|\mathcal{E}|m} =: \mathbf{b}_2 \;.$$

LP relaxation: constraints

Primal-dual I P

Primal-dual principle Primal-dual schema

PD1

$$\min_{x_{i:\alpha},x_{ij:\alpha\beta}}\langle \mathbf{c},\mathbf{x}
angle$$
 subject to $\mathbf{A}\mathbf{x}=\mathbf{b},\mathbf{x}\geqslant \mathbf{0}$.

We can write all the constraints in a matrix-vector notation as follows.

$$\mathbf{A}\mathbf{x} = \begin{bmatrix} \mathbf{A}_{11} & \mathbf{0}_{n \times |\mathcal{E}|m^2} \\ \mathbf{A}_{21} & \mathbf{A}_{22} \end{bmatrix} \begin{bmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \end{bmatrix} = \begin{bmatrix} \mathbf{1}_n \\ \mathbf{0}_{2|\mathcal{E}|m} \end{bmatrix} = \begin{bmatrix} \mathbf{b}_1 \\ \mathbf{b}_2 \end{bmatrix} = \mathbf{b} .$$

Hence, $\mathbf{A} \in \mathbb{R}^{n+2|\mathcal{E}|m \times mn + |\mathcal{E}|m^2}$ is a sparse matrix with elements -1,0 and 1, furthermore $\mathbf{b} \in \mathbb{R}^{n+2|\mathcal{E}|m}$, where the first mn elements are equal to one and the others are equal to zero.

Primal-dual LP

Primal-dual LP

Primal-dual principle

Primal-dual schema

PD1

Consider a linear program (given in **standard form**):

$$\min_{\mathbf{x} \in \mathbb{R}^n} \langle \mathbf{c}, \mathbf{x}
angle$$
 subject to $\mathbf{A}\mathbf{x} = \mathbf{b}, \mathbf{x} \geqslant \mathbf{0}$,

for a constraint matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$, a constraint vector $\mathbf{b} \in \mathbb{R}^m$ and a cost vector $\mathbf{c} \in \mathbb{R}^n$.

The dual LP is defined as

$$\max_{\mathbf{y} \in \mathbb{R}^m} \langle \mathbf{b}, \mathbf{y} \rangle$$
 subject to $\mathbf{A}^T \mathbf{y} \leqslant \mathbf{c}$.

For feasible solutions x and y weak duality holds:

$$\langle \mathbf{b}, \mathbf{y} \rangle = \mathbf{b}^T \mathbf{y} = \mathbf{x}^T (\mathbf{A}^T \mathbf{y}) = (\mathbf{y}^T \mathbf{A}) \mathbf{x} \leqslant \mathbf{c}^T \mathbf{x} = \langle \mathbf{c}, \mathbf{x} \rangle.$$

Dual LP

Primal-dual LP

Primal-dual principle

Primal-dual schema

PD1

$$\max_{y_i,y_{ij:\alpha},y_{ji:\beta}} \langle \mathbf{b}, \mathbf{y} \rangle \quad \text{subject to } \mathbf{A}^T \mathbf{y} \leqslant \mathbf{c} .$$

Note that the dual variables y_i for all $i \in \mathcal{V}$ and $y_{ij:\alpha}$, $y_{ji:\beta}$ for all $(i,j) \in \mathcal{E}$, $\alpha, \beta \in \mathcal{L}$ correspond to the constraints of the primal LP.

We can write $\mathbf{y} = \begin{bmatrix} \mathbf{y}_1^T & \mathbf{y}_2^T & \mathbf{y}_3^T \end{bmatrix}^T$, where $\mathbf{y}_1 = \begin{bmatrix} y_1 & \cdots & y_n \end{bmatrix}^T \in \mathbb{R}^n$, and $\mathbf{y}_2 \in \mathbb{R}^{|\mathcal{E}|m}$ and $\mathbf{y}_3 \in \mathbb{R}^{|\mathcal{E}|m}$ are the vectors consisting of the variables $y_{ji:\beta}$ and $y_{ij:\alpha}$ in the same order as it is defined in the case of the primal LP.

The cost function results in

$$\langle \mathbf{b}, \mathbf{y} \rangle = \langle \mathbf{b}_1, \mathbf{y}_1 \rangle + \langle \mathbf{b}_2, \begin{bmatrix} \mathbf{y}_2^T & \mathbf{y}_3^T \end{bmatrix}^T \rangle = \langle \mathbf{1}_n, \mathbf{y}_1 \rangle = \sum_{i=1}^n y_i$$
.

The constraints $\mathbf{A}^T \mathbf{y} \leqslant \mathbf{c}$ are given by

$$\mathbf{A}^T \mathbf{y} = \begin{bmatrix} \mathbf{A}_{11}^T & \mathbf{A}_{21}^T \\ \mathbf{0}_{|\mathcal{E}|m^2 \times n} & \mathbf{A}_{22}^T \end{bmatrix} \mathbf{y} \leqslant \begin{bmatrix} \mathbf{c}_1 \\ \mathbf{c}_2 \end{bmatrix} = \mathbf{c} .$$

Dual LP

Primal-dual LP

Primal-dual principle

Primal-dual schema

PD1

$$\max_{y_i,y_{ij:\alpha},y_{ji:\beta}} \langle \mathbf{1}_n, \mathbf{y}_1 \rangle$$
subject to
$$\begin{bmatrix} \mathbf{A}_{11}^T & \mathbf{A}_{21}^T \\ \mathbf{0}_{|\mathcal{E}|m^2 \times n} & \mathbf{A}_{22}^T \end{bmatrix} \mathbf{y} \leqslant \begin{bmatrix} \mathbf{c}_1 \\ \mathbf{c}_2 \end{bmatrix} .$$

Or equivalently, we can formulate the dual LP as

$$\begin{aligned} \max_{y_i,y_{ij:\alpha},y_{ji:\beta}} \sum_{i \in \mathcal{V}} y_i \\ \text{subject to} \quad y_i - \sum_{j \in \mathcal{V},\, (i,j) \in \mathcal{E}} y_{ij:\alpha} & \leqslant \varphi_i(\alpha) & \forall i \in \mathcal{V}, \alpha \in \mathcal{L} \\ y_{ij:\alpha} + y_{ji:\beta} & \leqslant w_{ij} d(\alpha,\beta) & \forall (i,j) \in \mathcal{E}, \alpha, \beta \in \mathcal{L} \end{aligned}$$

An intuitive view of the dual variables

Primal-dual LP

Primal-dual principle

Primal-dual schema

PD1

We will use the notation $x_i \in \mathcal{L}$ for the **active label** given the vertex $i \in \mathcal{V}$.

For each vertex we have a different copy of all labels in \mathcal{L} . It is assumed that all these labels represent **balls** floating at certain heights relative to a *reference plane*.

For this sake we introduce **height** variables defined as

$$h_i(\alpha) = E_i(\alpha) + \sum_{j \in \mathcal{V}, (i,j) \in \mathcal{E}} y_{ij:\alpha}.$$

The constraints $y_i - \sum_{j \in \mathcal{V}:(i,j) \in \mathcal{E}} y_{ij:\alpha} \leq E_i(\alpha)$ can be equivalently written as

$$y_i \leqslant E_i(\alpha) + \sum_{j \in \mathcal{V}: (i,j) \in \mathcal{E}} y_{ij:\alpha} = h_i(\alpha) \quad \forall i \in \mathcal{V}, \alpha \in \mathcal{L}.$$

Since our objective is to maximize $\sum_{i \in \mathcal{V}} y_i$, the following relation holds

$$y_i = \min_{\alpha \in \mathcal{L}} h_i(\alpha) \qquad \forall i \in \mathcal{V} .$$

Balance variables and load

Primal-dual LP

Primal-dual principle Primal-dual schema

PD1

We will refer to the variables $y_{ij:\alpha}$, $y_{ji:\beta}$ as balance variables. Specially, the pair of $y_{ij:\alpha}$, $y_{ji:\alpha}$ is called **conjugate balance variables**.

The balls are not static, but may move in pairs through updating pairs of conjugate balance variables as $h_i(\alpha) = \varphi_i(\alpha) + \sum_{j \in \mathcal{V}, (i,j) \in \mathcal{E}} y_{ij:\alpha}$. Therefore, the role of balance variables is to raise or lower labels.

It is due to $y_{ij:\alpha} + y_{ji:\alpha} \leq w_{ij}d(\alpha,\alpha) = 0 \implies y_{ij:\alpha} \leq -y_{ji:\alpha}$.

We will call the variables $y_{ij:x_i}$ as active balance variable and use the following notation for the "load" between neighbors i, j, defined as

$$\mathsf{load}_{ij} = y_{ij:x_i} + y_{ji:x_j} .$$

Primal-dual LP for our multi-label problem

Primal-dual LP Primal-dual principle

Primal-dual schema

PD1

The (relaxed) primal LP:

$$\min_{x_{i:\alpha}, x_{ij:\alpha\beta} \geqslant 0} \sum_{i \in \mathcal{V}} \sum_{\alpha \in \mathcal{L}} E_i(\alpha) x_{i:\alpha} + \sum_{(i,j) \in \mathcal{E}} w_{ij} \sum_{\alpha,\beta \in \mathcal{L}} d(\alpha,\beta) x_{ij:\alpha\beta}$$
subject to
$$\sum_{\alpha \in \mathcal{L}} x_{i:\alpha} = 1 \quad \forall i \in \mathcal{V}$$

$$\sum_{\alpha \in \mathcal{L}} x_{ij:\alpha\beta} = x_{j:\beta} \quad \forall \beta \in \mathcal{L}, (i,j) \in \mathcal{E}$$

$$\sum_{\beta \in \mathcal{L}} x_{ij:\alpha\beta} = x_{i:\alpha} \quad \forall \alpha \in \mathcal{L}, (i,j) \in \mathcal{E}$$

The dual LP:

$$\begin{aligned} \max_{y_i,y_{ij:\alpha},y_{ji:\beta}} \sum_{i \in \mathcal{V}} y_i \\ \text{subject to} \quad y_i - \sum_{j \in \mathcal{V}:(i,j) \in \mathcal{E}} y_{ij:\alpha} & \leqslant E_i(\alpha) & \forall i \in \mathcal{V}, \alpha \in \mathcal{L} \\ y_{ij:\alpha} + y_{ji:\beta} & \leqslant w_{ij} d(\alpha,\beta) & \forall (i,j) \in \mathcal{E}, \alpha, \beta \in \mathcal{L} \end{aligned}$$

Primal-dual principle

Primal-dual principle

Primal-dual LP

Primal-dual principle

Primal-dual schema

PD1

Theorem 1. If x and y are integral-primal and dual feasible solutions satisfying:

$$\langle \mathbf{c}, \mathbf{x} \rangle \leqslant \epsilon \langle \mathbf{b}, \mathbf{y} \rangle$$

for $\epsilon \geqslant 1$, then x is an ϵ -approximation to the optimal integral solution \mathbf{x}^* , that is

$$\langle \mathbf{c}, \mathbf{x}^* \rangle \leqslant \langle \mathbf{c}, \mathbf{x} \rangle \leqslant \epsilon \langle \mathbf{b}, \mathbf{y} \rangle \leqslant \epsilon \langle \mathbf{c}, \mathbf{x}^* \rangle$$
.

The relaxed complementary slackness

Primal-dual LP

Primal-dual principle

Primal-dual schema

PD1

One way to estimate a pair (x, y) satisfying the fundamental inequality

$$\langle \mathbf{c}, \mathbf{x} \rangle \leqslant \epsilon \langle \mathbf{b}, \mathbf{y} \rangle$$

relies the complementary slackness principle.

Theorem 2. If the pair (x, y) of integral-primal and dual feasible solutions satisfies the so-called relaxed primal complementary slackness conditions:

$$\forall j: (x_j > 0) \implies \sum_i a_{ij} y_i \geqslant \frac{c_j}{\epsilon_j},$$

then (\mathbf{x}, \mathbf{y}) also satisfies $\langle \mathbf{c}, \mathbf{x} \rangle \leqslant \epsilon \langle \mathbf{b}, \mathbf{y} \rangle$ with $\epsilon = \max_j \epsilon_j$ and therefore \mathbf{x} is an ϵ -approximation to the optimal integral solution \mathbf{x}^* .

Proof. Exercise.

We aim to satisfy relaxed complementary slackness conditions in order to achieve an ϵ -approximation solution.

Primal-dual schema

Primal-dual schema

Primal-dual LP

Primal-dual principle

Primal-dual schema

PD1

Typically, primal-dual ϵ -approximation algorithms construct a sequence $(\mathbf{x}^k, \mathbf{y}^k)_{k=1,\dots,t}$ of primal and dual solutions until the elements \mathbf{x}^t , \mathbf{y}^t of the last pair are both **feasible** and **satisfy the relaxed primal complementary slackness conditions**, hence the condition $\langle \mathbf{c}, \mathbf{x} \rangle \leqslant \epsilon \langle \mathbf{b}, \mathbf{y} \rangle$ will be also fulfilled.

Pseudo-code of the FastPD algorithm

Primal-dual LP

Primal-dual principle

Primal-dual schema

PD1

- 1: [x,y] ←Init_Primals_Duals()
 2: labelChamas ← false
- 2: $labelChange \leftarrow false$
- 3: **for all** $\alpha \in \mathcal{L}$ **do** $\{\alpha$ -iteration $\}$
- 4: $\mathbf{y} \leftarrow \text{PreEdit_Duals}(\alpha, \mathbf{x}, \mathbf{y})$
- 5: $[\mathbf{x}', \mathbf{y}'] \leftarrow \text{Update_Duals_Primals}(\alpha, \mathbf{x}, \mathbf{y})$
- 6: $\mathbf{y'} \leftarrow \text{PostEdit_Duals}(\alpha, \mathbf{x'}, \mathbf{y'})$
- 7: if $x' \neq x$ then
- 8: $labelChange \leftarrow true$
- 9: end if
- 10: $\mathbf{x} \leftarrow \mathbf{x}'$; $\mathbf{y} \leftarrow \mathbf{y}'$
- 11: end for
- 12: **if** labelChange **then**
- 13: goto 2
- 14: **end if**
- 15: $y^{fit} \leftarrow Dual_Fit(y)$

PD1

Complementary slackness conditions

Primal-dual LP

Primal-dual principle

Primal-dual schema

PD1

From now on, in case of Algorithm PD1, we only assume that $d(\alpha, \beta) = 0 \Leftrightarrow \alpha = \beta$, and $d(\alpha, \beta) \geqslant 0$ (i.e. semi-metric).

The complementary slackness conditions reduces to

$$y_{i} - \sum_{j \in \mathcal{V}:(i,j) \in \mathcal{E}} y_{ij:x_{i}} \geqslant \frac{E_{i}(x_{i})}{\epsilon_{1}} \Rightarrow y_{i} \geqslant \frac{E_{i}(x_{i})}{\epsilon_{1}} + \sum_{j \in \mathcal{V}:(i,j) \in \mathcal{E}} y_{ij:x_{i}}$$
$$y_{ij:x_{i}} + y_{ji:x_{j}} \geqslant \frac{w_{ij}d(x_{i}, x_{j})}{\epsilon_{2}}$$

for specific values of $\epsilon_1, \epsilon_2 \geqslant 1$.

If $x_i = x_j = \alpha$ for neighboring pairs $(i, j) \in \mathcal{E}$, then

$$0 = w_{ij:\alpha}d(\alpha, \alpha) \geqslant y_{ij:i\alpha} + y_{ij:j\alpha} \geqslant \frac{w_{ij}d(\alpha, \alpha)}{\epsilon_2} = 0 ,$$

therefore we get that $y_{ij:\alpha} = -y_{ij:\alpha}$.

Complementary slackness conditions

Primal-dual LP

Primal-dual principle

Primal-dual schema

PD1

We have already known that $y_i = \min_{\alpha \in \mathcal{L}} h_i(\alpha)$. If $\epsilon_1 = 1$, then we get

$$y_i \geqslant E_i(x_i) + \sum_{j \in \mathcal{V}: (i,j) \in \mathcal{E}} y_{ij:x_i} = h_i(x_i) .$$

Therefore

$$h_i(x_i) = \min_{\alpha \in \mathcal{L}} h_i(\alpha) , \qquad (1)$$

which means that, at each vertex, the active label should have the lowest height.

If $\epsilon_2 = \epsilon_{app} := \frac{2d_{max}}{d_{min}}$, then the *complementary condition* simply reduces to:

$$y_{ij:x_i} + y_{ij:x_j} \geqslant \frac{w_{ij}d(x_i, x_j)}{\epsilon_{\mathsf{app}}} . \tag{2}$$

It requires that any two active labels should be raised proportionally to their "load".

Feasibility constraints

Primal-dual LP

Primal-dual principle

Primal-dual schema

PD1

To ensure feasibility of y, PD1 enforces for any $\alpha \in \mathcal{L}$:

$$y_{ij:\alpha} \le w_{ij} d_{\min}/2$$
 where $d_{\min} = \min_{\alpha \ne \beta} d(\alpha, \beta)$ (3)

says that there is an upper bound on how much we can raise a label.

Hence, we get the feasibility condition

$$y_{ij:\alpha} + y_{ji:\beta} \leq 2w_{ij}d_{\min}/2 = w_{ij}d_{\min} \leq w_{ij}d(\alpha,\beta)$$
.

Moreover the algorithm keeps the active balance variables non-negative, that is $y_{ij:x_i} \ge 0$ for all $i \in \mathcal{V}$.

The proportionality condition (2) will be also fulfilled as $y_{ij:x_i}, y_{ij:x_j} \geqslant 0$ and if $y_{ij:x_i} = \frac{w_{ij}d_{\min}}{2}$, then

$$y_{ij:x_i} \geqslant \frac{w_{ij}d_{\min}}{2} \frac{d(x_i, x_j)}{d_{\max}} = \frac{w_{ij}d(x_i, x_j)}{\frac{2d_{\max}}{d_{\min}}} = \frac{w_{ij}d(x_i, x_j)}{\epsilon_{\mathsf{app}}} \ .$$

Subroutine Init_Primals_Duals()

Primal-dual LP

Primal-dual principle

Primal-dual schema

PD1

- 1: x is simply initialized by a random label assignment
- 2: {Init primals}
- 3: **for all** $(i, j) \in \mathcal{E}$ with $x_i \neq x_j$ **do** {Init duals}
- 4: $y_{ij:x_i} \leftarrow w_{ij}d(x_i, x_j)/2$
- 5: $y_{ji:x_i} \leftarrow -w_{ij}d(x_i, x_j)/2$
- 6: $y_{ji:x_j} \leftarrow w_{ij}d(x_i, x_j)/2$
- 7: $y_{ij:x_j} \leftarrow -w_{ij}d(x_i, x_j)/2$
- 8: end for
- 9: for all $i \in \mathcal{V}$ do
- 10: $y_i \leftarrow \min_{\alpha \in \mathcal{L}} h_i(\alpha)$
- 11: end for
- 12: **return** $[\mathbf{x}, \mathbf{y}]$

Update primal and dual variables

Primal-dual LP

Primal-dual principle

Primal-dual schema

PD1

Dual variables update: Given the current active labels, any non-active label is raised, until it either reaches the active label, or attains the maximum raise allowed by the upper bound (3).

Primal variables update: Given the new heights, there might still be vertices whose active labels are not at the lowest height. For each such vertex i, we select a non-active label, which is below x_i , but has already reached the maximum raise allowed by the upper bound (3).

The optimal update of the α -heights can be simulated by pushing the **maximum** amount of flow through a directed graph $G' = (\mathcal{V} \cup \{s, t\}, \mathcal{E}', c, s, t)$.

Primal-dual LP

Primal-dual principle

Primal-dual schema

PD1

For each $(i, j) \in \mathcal{E}$, we insert two directed edges ij and ji into \mathcal{E}' .

The flow value f_{ij} , f_{ij} represent respectively the **increase**, **decrease of balance** variable $y_{pq:\alpha}$:

$$y'_{ij:\alpha} = y_{ij:\alpha} + f_{ij} - f_{ji}$$
 and $y'_{ji:\alpha} = -y'_{ij:\alpha}$.

According to (3), the capacities cap_{ij} and cap_{ji} are set based on

$$\mathsf{cap}_{ij} + y_{ij:\alpha} = \frac{1}{2} w_{ij} d_{\min} = \mathsf{cap}_{ji} + y_{ji:\alpha} .$$

$$\begin{aligned} \mathsf{cap}_{\mathsf{i}\mathsf{j}} &= \frac{1}{2} w_{\mathsf{i}\mathsf{j}} d_{\mathsf{min}} - y_{\mathsf{i}\mathsf{j}:\alpha} \\ & (i) \underbrace{f_{\mathsf{i}\mathsf{j}}}_{f_{\mathsf{j}\mathsf{i}}} (j) \\ & \mathsf{cap}_{\mathsf{j}\mathsf{i}} &= \frac{1}{2} w_{\mathsf{i}\mathsf{j}} d_{\mathsf{min}} - y_{\mathsf{j}\mathsf{i}:\alpha} \end{aligned}$$

Primal-dual LP

Primal-dual principle

Primal-dual schema

PD1

If α is already the active label of i (or j), then label α at i (or j) need not move.

Therefore,
$$y'_{ij:\alpha}=y_{ij:\alpha}$$
 and $y'_{ji:\alpha}=y_{ji:\alpha}$, that is

$$x_i = \alpha \text{ or } x_j = \alpha \implies \operatorname{cap}_{ij} = \operatorname{cap}_{ji} = 0.$$

Primal-dual LP

Primal-dual principle Primal-dual schema

PD1

Each node $i \in \mathcal{V}' - \{s, t\}$ connects to either the source node s or the sink node t(but not to both of them).

There are three possible cases to consider:

Case 1 ($h_i(\alpha) < h_i(x_i)$): we want to raise label α as much as it reaches label x_i . We connect source node s to node i.

Due to the flow conservation property, $f_i = \sum_{i \in \mathcal{V}:(i,j) \in \mathcal{E}} (f_{ij} - f_{ji})$.

The flow f_i through that edge will then represent the total relative raise of label α :

$$h_{i}(\alpha) + f_{i} = \left(\varphi_{i}(\alpha) + \sum_{j \in \mathcal{V}:(i,j) \in \mathcal{E}} y_{ij:\alpha}\right) + \sum_{j \in \mathcal{V}:(i,j) \in \mathcal{E}} (f_{ij} - f_{ji})$$

$$= \left(\varphi_{i}(\alpha) + \sum_{j \in \mathcal{V}:(i,j) \in \mathcal{E}} y_{ij:\alpha}\right) + \sum_{j \in \mathcal{V}:(i,j) \in \mathcal{E}} \left(y'_{ij:\alpha} - y_{ji:\alpha}\right)$$

$$= \varphi_{p}(\alpha) + \sum_{j \in \mathcal{V}:(i,j) \in \mathcal{E}} y'_{ij:\alpha} = h'_{i}(\alpha) .$$

Primal-dual LP

Primal-dual principle

Primal-dual schema

PD1

We need to raise α only as high as the current active label of i, but not higher than that, we therefore set:

$$\mathsf{cap}_{si} = h_i(x_i) - h_i(\alpha) .$$

Primal-dual LP

Primal-dual principle

Primal-dual schema

PD1

Case 2 ($h_i(\alpha) \ge h_i(x_i)$ and $c \ne x_i$): we can then afford a decrease in the height of α at i, as long as α remains above x_p .

We connect i to the sink node t through directed edge (i, t).

The flow f_i through edge it will equal the total relative decrease in the height of α :

$$h'_{i}(\alpha) = h_{i}(\alpha) - f_{i}$$

$$cap_{it} = h_{i}(\alpha) - h_{i}(x_{i}).$$

Primal-dual LP

Primal-dual principle

Primal-dual schema

PD1

Case 3 ($\alpha = x_i$): we want to keep the height of α fixed at the current iteration.

Note that the capacities of the *n*-edges for p are set to 0, since i has the active label. Therefore, $f_i=0$ and $h'_{ij:\alpha}=h_{ij:\alpha}$.

By convention $cap_{ij} := 1$.

$$f_{i}=0$$

$$cap_{ij}=0$$

$$cap_{ji}=0$$

$$cap_{ji}=0$$

$$cap_{ji}=0$$

Reassign rule

Primal-dual LP

Primal-dual principle

135 "

Primal-dual schema

PD1

Label α will be the new label of i (i.e. $x'_i = \alpha$) iff there exists unsaturated path between the source node s and node i. In all other cases, i keeps its current label (i.e. $x'_i = x_i$).

$$f_{ij} < \mathsf{cap}_{ij}$$

$$h'_i(\alpha) - h_i(\alpha) < h_i(x_i) - h_i(\alpha)$$

$$h'_i(\alpha) < h_i(x_i) = h'_i(x_i)$$

Subroutine Update_Duals_Primals(α ,x,y)

Primal-dual LP Primal-dual principle

Primal-dual schema

PD1

1:
$$\mathbf{x}' \leftarrow \mathbf{x}, \ \mathbf{y}' \leftarrow \mathbf{y}$$

- 2: Apply max-flow to G' and compute flows f_i , f_{ij}
- 3: for all $(i, j) \in \mathcal{E}$ do
- $y'_{ij:\alpha} \leftarrow y_{ij:\alpha} + f_{ij} f_{ji}$
- 5: end for
- 6: for all $i \in \mathcal{V}$ do
- $x_i \leftarrow \alpha \iff \exists$ unsaturated path $s \leadsto i$ in G'
- 8: end for
- 9: **return** $[\mathbf{x}', \mathbf{y}']$

Vite

Subroutine PostEdit_Duals(α , \mathbf{x}' , \mathbf{y}')

Primal-dual LP

Primal-dual principle

Primal-dual schema

PD1

The goal is to restore all active balance variables $y_{ij:x_i}$ to be non-negative.

- 1. $x_i' = \alpha \neq x_j'$: we have $\operatorname{cap}_{ij}, y_{ij:\alpha} \geqslant 0$, therefore $y_{ij:\alpha}' = \operatorname{cap}_{ij} + y_{ij:\alpha} \geqslant 0$.
- 2. $x_i' = x_j' = \alpha$: we have $y_{ij:\alpha}' = -y_{ji:\alpha}'$, therefore $\operatorname{load}_{ij}' = y_{ij:\alpha}' + y_{ji:\alpha}' = 0$. By setting $y_{ij}'(\alpha) = y_{ji:\alpha}' = 0$ we get $\operatorname{load}_{ij}' = 0$ as well.

Note that none of the "load" were altered.

- 1: for all $(i,j) \in \mathcal{E}$ with $(x_i' = x_j' = \alpha)$ and $(y_{ij:\alpha}' < 0 \text{ or } y_{ji:\alpha}' < 0)$ do
- 2: $y'_{ij:\alpha} \leftarrow 0, \ y'_{ji:\alpha} \leftarrow 0$
- 3: end for
- 4: for all $i \in \mathcal{V}$ do
- 5: $y_i' \leftarrow \min_{\alpha \in \mathcal{L}} h_i'(\alpha)$
- 6: end for
- 7: **return** \mathbf{y}'

Summary

Primal-dual LP

Primal-dual principle

Primal-dual schema

PD1

In summary, one can see that PD1 always leads to an ϵ -approximate solution:

Theorem 3. The final primal-dual solutions generated by PD1 satisfy

- 1. $h_i(x_i) = \min_{\alpha \in \mathcal{L}} h_i(\alpha)$ for all $i \in \mathcal{V}$,
- 2. $x_i \neq x_j \Rightarrow load_{ij} \geqslant \frac{w_{ij}d(x_p, x_q)}{\epsilon_{app}}$ for all $(i, j \in \mathcal{E})$,
- 3. $y_{ij:\alpha} \leqslant \frac{w_{ij}d_{\min}}{2}$ for all $(i,j \in \mathcal{E})$ and $\alpha \in \mathcal{L}$,

and thus they satisfy the relaxed complementary slackness conditions with $\epsilon_1=1$, $\epsilon_2=\epsilon_{app}=\frac{2d_{\max}}{d_{\min}}$.

In the **next lecture** we will learn about

- PD2 and PD3 algorithms
- Branch-and-mincut algorithm to achieve *global optimal* binary segmentation in case of prior information

Primal-dual LP

Primal-dual principle

Primal-dual schema

PD1

- 1. Nikos Komodakis and Georgios Tziritas. Approximate labeling via the primal-dual schema. Technical report, University of Crete, February 2005
- 2. Nikos Komodakis and Georgios Tziritas. Approximate labeling via graph-cuts based on linear programming. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 29(8):1436–1453, August 2007