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Agenda for today’s lecture *

Primal-dual LP Primal-dual principle Primal-dual schema PD1

Consider an undirected graphical model given by G = (V, ) which takes values
from an arbitrary (finite) label set £. More specially, assume that the
corresponding energy function E : LY — R is given by

E(X) = Z Ez(Xz) + Z Wij - d(XZ',Xj) ;
1€y (Zaj)eg
where I; stands for a unary energy function, w;; € R are weighting factors, and d

is a metric or a semi-metric (i.e. the triangle inequality is not necessary satisfied).

In the previous lecture we learnt about the move making algorithms (i.e. o — 3
swap, a-expansion) as a possible way to approximately solve this problem.

Today we are going to learn about the FastPD algorithm which is an approximate
solution via primal-dual linear programming.
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Equivalent integer linear program

Primal-dual LP Primal-dual principle Primal-dual schema PD1

We are generally interested to find a MAP labelling x*:

x* € argmin F(x) = argmin { Z Ei(x;) + Z wi; - d(x, xj)} .
xe LIV xeLIVl ™ ey (i,5)€€

This can be equivalently written as an integer linear program (ILP):
P, 2 2 BTt 2wy ), (e B
1€V aeLl (z,])eg a,BeL
subject to >, ., Tiw =1 VieV
Zaeﬁ Lij:af — Lj:8 Vﬁ S ,C, (Z,]) e &
2.5er Tijaf = Tia VAEL (i,j)€E
Li:as Lij:aB € B V()é, 6 = E? (27]) €&

T;.o Indicates whether vertex 7 is assigned label a, while x;;.,5 indicates whether
(neighboring) vertices i, j are assigned labels a, 3, respectively.
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Interpretation of the constraints

Primal-dual LP Primal-dual principle Primal-dual schema PD1

Let us assume that £ = {1, 2,3} and consider the following factor graph example:
Fy Fio Fo
1:1 E T11:11 H r2:1 H
L1:2 - > T11:23 T2:2
L1:3 L2:3

t t

Uniqueness: The constraints ), - ;.o = 1 for all i € V simply express the fact
that each vertex must receive exactly one label.

Consistency: The constraints
Z Tij:a8 = T3  and Z TijaB = Ti:a Vo,B€L,(1,j) €&
ael Bel

maintain consistency between variables, i.e. if ;. = 1 and x;.3 = 1 holds true,
then these constraints force x;;.3 = 1 to hold true as well.
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Primal-dual LP Primal-dual principle Primal-dual schema PD1

Primal-dual LP




LP relaxation

Primal-dual LP Primal-dual principle Primal-dual schema PD1

The ILP defined before is in general NP-hard. Therefore we deal with the LP
relaxation of our ILP. The relaxed LP can be written in standard form as follows:

min {c,x)
Li:aLij:a8

subject to Ax =b,x > 0.

IN2329 - Probabilistic Graphical Models in Computer Vision 6. FastPD: Approximate Labeling via Primal-Dual Schema -7 / 40



LP relaxation: cost function m

Primal-dual LP Primal-dual principle Primal-dual schema PD1

min {c,x) subject to Ax =b,x>0.

Li:arLij:aB
: T 71T
We may write x = [x{ x3 |, where
T mn
x| = |11 -+ T3 Tea - Ta3| R,

where n = |V| and m = |L|, and

T Elm2
X2 = [3712:11 o 211:13 0 L11:31 xll:Sl] S R| | .

Similarly, we can write ¢ = [c{ cg]T, where
T mn
ci =|Ei(1) -+ Ei(3) Ex(1) --- E(3)] eR
o =[wiad(1,1) - wipd(1,3) -+ wied(3,1) - wied(3,2)]" e REM

Therefore, (c,x) = {c1,x1) + {(Cc2,X2).
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LP relaxation: uniqueness constraints

Primal-dual LP Primal-dual principle Primal-dual schema PD1

min {c,X) subject to Ax =b,x>0.

Li:arLij:a8
We can write the (uniqueness) constraints >, . ;.o = 1 for all i € V as

L1:1

11100 0] | L

[0 001 1 1] | A= 1n =by

N " - ZC23
Ay B N

where 1,, € R" is the vector of all-ones.
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LP relaxation: consistency constraints m

Primal-dual LP Primal-dual principle Primal-dual schema PD1

min {c,X) subject to Ax =b,x>0.

Li:asLij:af

The (consistency) constraint >, - Tij.ag = T3 < —Tj:8 + Xncy Tij:ap = 0 can
be expressed as

"0 0 0 -1 0 0]1 0010010 0T7]["
0 0 0 0 -1 0]010010010
000 0 0 0 -1/001001001||ax|_,
-1 0 0 0 0 0|1 11000O0TU0O0/|]|zun ’
0 -1 0 0 0 0]000111000
0 0 -1 0 0 0/000O00GO0T1 11
- - [ 411:33
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LP relaxation: constraints

Primal-dual LP Primal-dual principle Primal-dual schema PD1

min {(c,X) subject to Ax =b,x>0.

Li:asLij:af

We can write all the constraints in a matrix-vector notation as follows.

e )= o = [0
Ax = nx[€]m — — |2 =b.
[ Ao | Ay X2 026|m b2
Hence, A e RPT2l€lmxmn+[€lm? g 4 sparse matrix with elements -1,0 and 1,

furthermore b € R*T2I€Im \yhere the first mn elements are equal to one and the
others are equal to zero.
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Primal-dual LP

Primal-dual LP Primal-dual principle Primal-dual schema PD1

Consider a linear program (given in standard form):

e

subject to Ax =b,x >0

for a constraint matrix A € R™*"™ a constraint vector b € R™ and a cost vector
c e R"™.

The dual LP is defined as
§H§§<b y)
subject to Aly < c.

For feasible solutions x and y weak duality holds:

Mb,y)=bly =xl'(Aly) = (yTA)x <clx={(c,x).
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Dual LP

Primal-dual LP Primal-dual principle Primal-dual schema PD1

max <{b,y) subject to Aly < c.
YiYij:arYji:8

Note that the dual variables y; for all 7 € V and y;j.q, yji: for all (¢,7) € &,
a, 0 € L correspond to the constraints of the primal LP.

We can write y = [y{ yi y3T]T, where y1 = [y1 yn]T e R™, and
yo € RI€I™ and y3 € RI€I™ are the vectors consisting of the variables y;;.53 and y;;.
in the same order as it is defined in the case of the primal LP.

The cost function results in

(b.y) = by + ba [y ¥E]) = Quy) = Y ui

The constraints A’y < c are given by

AT ‘ Al C
AT _ [ 11 21 :| < [ 1:| —cC.
Y O|5|m2><n ‘ ACQFQ Y
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Dual LP

Primal-dual LP Primal-dual principle Primal-dual schema

max <]—n> YI>
YiYij:aYji: B

. Al | AL
subject to [ = ‘ ] y < [Cl]
O|5|m2><n ‘ A22 C2
Or equivalently, we can formulate the dual LP as

max Z Vi

YisYij:aYji: ﬂ

subject to yz- — Z Vija < @ila) VieV,ae Ll
JeV, (i,5)e€
Yij:oo + Yji: g < wijd(a, B) V(i,5) €&, a,Be L
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An intuitive view of the dual variables

Primal-dual LP Primal-dual principle Primal-dual schema PD1

We will use the notation z; € L for the active label given the vertex 1 € V.

For each vertex we have a different copy of all labels in L. It is assumed that all
these labels represent balls floating at certain heights relative to a reference plane.

For this sake we introduce height e [t L [F]
variables defined as o) 4O h@-O
a=x; 773 — O
B
hrL (OC) — Efl/ (OC) —|_ Z y’L]Oé . T I — 9 Ijx;) 1 O Il/.('xl‘)/)g:)xk
. . . a=X;
J EV, (7'7.7 )Eg (/L //I/J////// /L

The constraints y; — ZjeV:(z’j)eS Vii:a < Ei(a) can be equivalently written as

y; < Fi(a) + Z Yij:a = hi(a) VieV,ae L.
jeVv:(i,j)e€

Since our objective is to maximize ) ., ¥;, the following relation holds

y; = min h;(«) VieV.

acel
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Balance variables and load

Primal-dual LP Primal-dual principle Primal-dual schema PD1

We will refer to the variables y;;.o, y;:.3 as balance variables. Specially, the pair
of Yij:ar Yji:a 15 Called conjugate balance variables.

The balls are not static, but may move in pairs through updating pairs of

conjugate balance variables as h;(a) = @;(a) + Zjev,(i,j)eé’ Yij:a- | herefore, the
role of balance variables is to raise or lower labels.

v

W w.
Fa ij . jk _l
i |« J |« > K

hi(x;) e O B h(ay}-- O

o=X; [T J 1 Se—— (F
+0 -0
o (g o5 O /TG Ee— O

p 0=X;

j
(/L

It is due to Yij:au + Yji:a < wijd(a, Oé) =0 = Yij:a < —Yji:a-

We will call the variables y;;... as active balance variable and use the following
notation for the “load” between neighbors 7, 7, defined as

load;; = Yijiz; + Yjia; -
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Primal-dual LP for our multi-label problem

Primal-dual LP Primal-dual principle Primal-dual schema PD1

The (relaxed) primal LP:

min ZOZ Z E’i(a)xi:a+ Z Wij Z d(a,ﬂ)xij:aﬁ

TizasTij:ap 2V (255 (=0 (i,j)e€  a,BeLl

subject to >, ., Ti:a =1 VieV
Zaeﬁ Lij.aB = Lj:8 Vﬁ € ,C, (Z,]) e €&
2iger Tijia = Tia V€L, (i,j) €E
The dual LP:

YiYij:arYji:B
€

5
subject to  y; — Z Yijra S E,L(Oé) VieV,ae L
jeVv:(i,j)e€
Yij:a T Yji:B < w'ijd(av 6) V(’L,]) < ga a, 6 e L
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Primal-dual principle

Primal-dual LP Primal-dual principle Primal-dual schema PD1

|—><b,y> |—><c,x*> (c,x) €—
dual cost of cost of optimal primal cost of
solution y integral solution x* integral solution x

Theorem 1. /f x and y are integral-primal and dual feasible solutions satisfying:

¢, x) < eb,y)

for e > 1, then x is an e-approximation to the optimal integral solution x*, that is

(c,x")y < {(c,x)y < eb,y) < elc,x").
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The relaxed complementary slackness

Primal-dual LP Primal-dual principle Primal-dual schema PD1

One way to estimate a pair (x,y) satisfying the fundamental inequality

¢, x) < eb,y)

relies the complementary slackness principle.

Theorem 2. If the pair (x,y) of integral-primal and dual feasible solutions
satisfies the so-called relaxed primal complementary slackness conditions:

C.
: J
Vji: (x; >0) = Zaijyz’ = g )
1
then (x,y) also satisfies (c,x) < e(b,y) with e = max; €; and therefore x is an
e-approximation to the optimal integral solution x*.
Proof. Exercise. ]

We aim to satisfy relaxed complementary slackness conditions in order to achieve
an e-approximation solution.
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Primal-dual schema

Primal-dual LP Primal-dual principle Primal-dual schema PD1

t
c,X .
| sequence of dual costs \ zb t>> <€ | sequence of primal costs \

<b,y1>—><b,y2>—>"'<b,yt>T (c,x")4—(c,x*) 4= {(c,x')

{e,x")

Typically, primal-dual e-approximation algorithms construct a sequence
(x*,y*)k=1.... ¢ of primal and dual solutions until the elements x!, y! of the last
pair are both feasible and satisfy the relaxed primal complementary slackness
conditions, hence the condition {c,x) < (b, y) will be also fulfilled.
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Pseudo-code of the FastPD algorithm

Primal-dual LP Primal-dual principle Primal-dual schema PD1

1: |X,y]| < Init Primals Duals()
2: labelC'hange <—false

3: for all « € £ do {a-iteration}

4: y «PreEdit_Duals(a,X,y)
5. [x',y'] «Update Duals Primals(a,x,y)
6: y' <«PostEdit_Duals(a,x’,y’)

7. if X' # x then

8 labelChange <true

9: end if

10 x<—x;y<y

11: end for

12: if labelChange then

13: goto 2

14: end if

15: y't «Dual Fit(y)
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Complementary slackness conditions

Primal-dual LP Primal-dual principle Primal-dual schema PD1

From now on, in case of Algorithm PD1, we only assume that
d(a, ) =0< a=pf, and d(a, 3) = 0 (i.e. semi-metric).

The complementary slackness conditions reduces to

Yi — Z Yijix; = i) = Y2 d Z>+ Z Yij:z;

jeVi(i,j)eE €1 €1 jeVi(i,j)e€
wiid(zi, x;)
Yij:x; T Yjix, = Y e
€2
for specific values of €1,¢e9 > 1.
If z; = x; = « for neighboring pairs (i, j) € £, then
wiid(a, @)
0 = wijiad(@, @) = Yijia + Yijija = — =0,

€2

therefore we get that y;.0. = —Vij.a-
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Complementary slackness conditions

Primal-dual LP Primal-dual principle Primal-dual schema PD1

We have already known that y; = minges hi(a). If € = 1, then we get

vi = Ei(x;) + Z Yijix; = hi(x;) .

jeV:(i,j)e€
Therefore
h;(z;) = min h; () , (1)
ael
which means that, at each vertex, the active label should have the lowest
height.
If €2 = €app 1= 25;?, then the complementary condition simply reduces to:

wijd(xi,xj)

Yijx; + Yijiz; =

(2)

Capp

It requires that any two active labels should be raised proportionally to their
“load” .
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Feasibility constraints

Primal-dual LP Primal-dual principle Primal-dual schema PD1

To ensure feasibility of y, PD1 enforces for any a € L:

Vij:a < Wijdmin/2 wWhere dpin = m;:% d(a, ) (3)

says that there is an upper bound on how much we can raise a label.

Hence, we get the feasibility condition

Yij:a + Yji < 2W;i5dmin/2 = W;ijdmin < wiid(a, B) .

Moreover the algorithm keeps the active balance variables non-negative, that
IS Yij.z; = 0 forallce V.

The proportionality condition (2) will be also fulfilled as ¥;j.2;, ¥ij:e; = 0 and if

Yijiw, = —L5™%, then
N < wijdmin d(xi,xj) . wijd(xi,xj) . wijd(xi,xj)
yzg:xi = d = 9d = .
2 max ﬁ €app
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Subroutine Init. Primals Duals() *

Primal-dual LP Primal-dual principle Primal-dual schema

1: x is simply initialized by a random label assignment
2: {Init primals}

3: for all (7, 7) € £ with x; # z; do {Init duals}
4 Y, — Wigd(Ti, 5)/2

5. Yjir; — —Wijd(wi, T5)/2

6:  Yjirw; < Wid(wi, 75)/2

T Yijay < —wigd (T, 75)/2

8: end for

9: for all : € V do

10:  y; < minger hi(o)

11: end for

12: return [x,y]|
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Update primal.and dual variables

Primal-dual LP Primal-dual principle Primal-dual schema PD1

hy(x;) e O ) I (@)t O

0=X; hj([)’)_ ........................ (F
(E"é - .-5 [T S—— O

N7 — hic)1-Q i B=x;

B 0=X;

j
/s

Dual variables update: Given the current active labels, any non-active label is
raised, until it either reaches the active label, or attains the maximum raise allowed

by the upper bound (3).

Primal variables update: Given the new heights, there might still be vertices
whose active labels are not at the lowest height. For each such vertex 7, we select
a non-active label, which is below z;, but has already reached the maximum raise

allowed by the upper bound (3).

The optimal update of the a-heights can be simulated by pushing the maximum
amount of flow through a directed graph G’ = (V u {s,t},&’, ¢, s,1t).
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Flow construction: n-links

Primal-dual LP Primal-dual principle Primal-dual schema PD1

For each (i,7) € £, we insert two directed edges ij and ji into &’.

The flow value f;;, fi; represent respectively the increase, decrease of balance
variable y,,..:

, JR— . . o e . , _— ,
Yijia = Yijia + fij — i and - Y0 = —Yijq -

According to (3), the capacities cap;; and cap; are set based on

| |
cap;; + Yijia = §wijdmin = cap;; + Yjia - cap; = 5“”gdmm — Vi
&
1
Capji — Eufzj'dmin _.yji:a'
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Flow construction: n-links

Primal-dual LP Primal-dual principle Primal-dual schema PD1

If v is already the active label of ¢ (or j), then label o at @ (or j) need not move.

Therefore, y,gj:a = Yij:o and y}i:a = Yiji:a, that is

Ti=aorzrj =« = cap;; =cap;; =0.

hixc;) - O
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Flow. construction: t-links

Primal-dual LP Primal-dual principle Primal-dual schema PD1

Each node i € V' — {s,t} connects to either the source node s or the sink node ¢

(but not to both of them).
There are three possible cases to consider:

Case 1 (h;(«) < hi(x;)): we want to raise label v as much as it reaches label x;.
We connect source node s to node <.

Due to the flow conservation property, fi = > icy.(; jjes (fij — f5i)-
The flow f; through that edge will then represent the total relative raise of label a:

hi(a) + fi = (goi(oz) + Z yij:a) + Z (fis — fji)

jeV:(i,5)e€ JjeV:(i,5)€€
= (Spi(a) + Z yij:oz) + Z (yéj:a - yji:a)
JeV:(i,5)€€ jeV:(i,5)e€
=pp(@)+ Y Wi = hila) .
jeV:(i,j)€€
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Flow. construction: t-links

Primal-dual LP Primal-dual principle Primal-dual schema PD1

We need to raise o only as high as the current active label of ¢, but not higher
than that, we therefore set:

h i(xi) i O ......
X; i
cap,;
fl f; ca psi
hi(lj’) SN SRR (ﬂ)
/e
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Flow construction: t-links

Primal-dual LP Primal-dual principle Primal-dual schema PD1

Case 2 (h;(a) = hi(x;) and ¢ # x;): we can then afford a decrease in the height
of o at ¢, as long as « remains above ).

We connect 7 to the sink node ¢ through directed edge (i,1).
The flow f; through edge it will equal the total relative decrease in the height of a:

hi(a) = hi(a) — fi
Cap;; = hz(a) — hz(CEZ) .

[T O B |+

hi(xi) I — O
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Flow. construction: t-links

Primal-dual LP Primal-dual principle Primal-dual schema PD1

Case 3 (o = x;): we want to keep the height of « fixed at the current iteration.

Note that the capacities of the n-edges for p are set to 0, since ¢ has the active
label. Therefore, f; =0 and h}.. = hij.qa.

1]«

By convention cap;; := 1.

hi(xi) e T O
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Reassign rule

Primal-dual LP Primal-dual principle Primal-dual schema PD1

Label a will be the new label of i (i.e. 2, = «) iff there exists unsaturated path
between the source node s and node . In all other cases, 7 keeps its current label

(i.e. xfb = l‘z)
j}=50 f:=50
=50 cap;~>50

fij < capy; “aP L

h! (Oé) — hz(()é) < hZ(SCZ)

1

— hz (Oé)
hi(a) < hi(z;) = hi(2;)

i |e > | J |« »| k
13 St o
O=X; [ D eteesmemenenemsssensnes O/} Bl T Oﬁ
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1'%:t» Subroutine Update:Duals_Primals(c,x,y) m

Primal-dual LP Primal-dual principle Primal-dual schema

X —x,y «—y
Apply max-flow to G" and compute flows f;, fi;

for all (i,j) € £ do
Yija < Yijia t fij — fii
end for
for all : €V do
x; < o < 7 unsaturated path s v~ 7 in G’
end for
return [x'y’]

© 0 NSO R
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Subroutine PostEdit Duals(a,x’,y’) *

Primal-dual LP Primal-dual principle Primal-dual schema PD1

The goal is to restore all active balance variables y;;...; to be non-negative.

/ /. r N

1. ol =a# Tt we have cap;;, Yijia = 0, therefore yz-j:? = cap;; + Yijia = 0.
A A / o )/ / _

2. x, = T, = Qr we have Yiia = ~Yjizar therefore Ioad,L-j = Yijia T Yjia = 0.

setting y;,(a) = ., = 0 we get load;; = 0 as well.

By

Note that none of the “load” were altered.

for all (i,7) € € with (2} = o
y’ﬁj:a N O' y;i:a <0

end for

for all : €V do
Yy < minger b (a)

end for

return y’

.

= «a) and (y;;., < 0oryj., <0)do

N s
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Summary

Primal-dual LP Primal-dual principle Primal-dual schema PD1

In summary, one can see that PD1 always leads to an e-approximate solution:

Theorem 3. The final primal-dual solutions generated by PD1 satisfy

1. hi(x;) = minger hi(a) forall i eV,

2. x; # x; = load;; > wijci(;i’%) for all (i,7 € &),

3. Yijuo < a0 for o] (i,5 € £) and a € L,
and thus they satisfy the relaxed complementary slackness conditions with €1 = 1,
€2 = €app = .

In the next lecture we will learn about

B PD2 and PD3 algorithms
B Branch-and-mincut algorithm to achieve global optimal binary
segmentation in case of prior information
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