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Recall: Primal-dual LP for multi-label
problem ˚
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The (relaxed) primal LP:

min
xi:α,xij:αβě0

ÿ

iPV

ÿ

αPL
Eipαqxi:α `

ÿ

pi,jqPE
wij

ÿ

α,β PL
dpα, βqxij:αβ

subject to
ř

αPL xi:α “ 1 @i P V
ř

αPL xij:αβ “ xj:β @β P L, pi, jq P E
ř

βPL xij:αβ “ xi:α @α P L, pi, jq P E

The dual LP:

max
yi,yij:α,yji:β

ÿ

iPV
yi

subject to yi ´
ÿ

jPV:pi,jqPE
yij:α ď Eipαq @i P V, α P L

yij:α ` yji:β ď wijdpα, βq @pi, jq P E , α, β P L

Recall: Primal-dual schema ˚
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Typically, primal-dual ǫ-approximation algorithms construct a sequence
pxk,ykqk“1,...,t of primal and dual solutions until the elements xt, yt of the last
pair are both feasible and satisfy the relaxed primal complementary slackness
conditions, hence the condition xc,xy ď ǫxb,yy will be also fulfilled.

Recall: Complementary slackness conditions
˚

FastPD PD2 PD3 Branch-and-MinCut
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From now on, in case of Algorithm PD1, we only assume that
dpα, βq “ 0 ô α “ β, and dpα, βq ě 0 (i.e. semi-metric).

The complementary slackness conditions reduces to

yi ´
ÿ

jPV:pi,jqPE
yij:xi ě Eipxiq

ǫ1
ñ yi ě Eipxiq

ǫ1
`

ÿ

jPV:pi,jqPE
yij:xi

yij:xi ` yji:xj ě wijdpxi, xjq
ǫ2

for specific values of ǫ1, ǫ2 ě 1.

If xi “ xj “ α for neighboring pairs pi, jq P E , then

0 “ wijdpα, αq ě yij:α ` yji:α ě wijdpα, αq
ǫ2

“ 0 ,

therefore we get that yij:α “ ´yji:α.

Recall: Update primal and dual variables ˚
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Dual variables update: Given the current active labels, any non-active label is
raised, until it either reaches the active label, or attains the maximum raise allowed
by the upper bound.

Primal variables update: Given the new heights, there might still be vertices
whose active labels are not at the lowest height. For each such vertex i, we select
a non-active label, which is below xi, but has already reached the maximum raise
allowed by the upper bound.

The optimal update of the α-heights can be simulated by pushing the maximum
amount of flow through a directed graph G1 “ pV Y ts, tu, E 1, c, s, tq.

Recall: Reassign rule ˚
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Label α will be the new label of i (i.e. x1
i “ α) iff there exists unsaturated path

(i.e. fij ă capij) between the source node s and node i. In all other cases, i keeps
its current label (i.e. x1

i “ xi).

fij ă capij

h1
ipαq ´ hipαq ă hipxiq ´ hipαq

h1
ipαq ă hipxiq “ h1

ipxiq



The APF function ˚
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APFx
1,y1 ď APFx,y, where APFx,y is defined as

APFx,y
∆“

ÿ

iPV
hipxiq “

ÿ

iPV

´
Eipxiq `

ÿ

jPV,pi,jqPE
loadij

¯

“
ÿ

iPV
Eipxiq `

ÿ

pi,jqPE
pyij:xi ` yji:xj q

ď
ÿ

iPV
Eipxiq `

ÿ

pi,jqPE
wijdpxi, xjq “ Epxq .

This condition shows that the algorithm terminates (assuming integer capacities),
due to the reassign rule, which ensures that a new active label has always lower
height than the previous active label, i.e. h1

ipx1
iq ď hipxiq.

PD2

FastPD PD2 PD3 Branch-and-MinCut

Parameterization of the PD2 algorithm
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We now assume that d is a metric.

In fact, PD2 represents a family of algorithms parameterized by µ P r 1
ǫapp

, 1s.
Algorithm PD2µ will achieve complementary slackness conditions with

ǫ1
∆“ µǫapp ě 1

ǫapp
ǫapp ě 1 and ǫ2 “ ǫapp .

Algorithm PD1 always generates a feasible dual solution at any of its inner
iterations, whereas PD2µ may allow any such dual solution to become
infeasible.

Dual-fitting: PD2µ ensures that the (probably infeasible) final dual solution is “not
too far away from feasibility”, which practically means that if that solution is
divided by a suitable factor, it will become feasible again.

Complementary slackness conditions ˚

FastPD PD2 PD3 Branch-and-MinCut
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Similarly to Algorithm PD1, the equalities will hold for i P V

yi “ min
αPL hipαq “ hipxiq “ Eipxiq `

ÿ

iPV,pi,jqPE
yij:xi .

PD2µ generates a series of intermediate pairs satisfying complementary slackness
conditions for ǫ1 ě 1 and ǫ2 ě 1

µ “ 1
1{ǫapp “ ǫapp:

Eipxiq
ǫ1

`
ÿ

iPV,pi,jqPE
yij:xi ď Eipxiq `

ÿ

iPV,pi,jqPE
yij:xi “ hipxiq “ yi @i P V .

wijdpxi, xjq
ǫ2

ď µwijdpxi, xjq “ loadij @pi, jq P E .

Like PD1, PD2µ also maintains non-negativity of active balance variables.

Dual fitting
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The dual solution of the last intermediate pair may be infeasible, since, instead of
the feasibility condition yij:α ` yji:β ď wijdpα, βq, PD2µ maintains the conditions:

yij:α ` yji:β ď 2µwijdmax @pi, jq P E , @α, β P L .

These conditions also ensure that the last dual solution y, is not “too far away
from feasibility”.By replacing y with yfit “ y

µǫapp
we get that

yfitij:α ` yfitji:β “ yij:α ` yji:β
µǫapp

ď 2µwijdmax

µǫapp
“ 2µwijdmax

µ2dmax{dmin
“ wijdminď wijdpα, βq.

This means that yfit is feasible.

1: function Dual Fit(y)
2: return yfit Ð y

µǫapp
3: end function

Update primal and dual variables
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The main/only difference in the subroutine Update Duals Primals(α,x,y) is
the definition of the capacities corresponding to the n-edges. More precisely,
assuming an α-iteration, where xi “ β ‰ α and xj “ γ ‰ α for a given pi, jq P E :

capij “ µwijpdpβ, αq ` dpα, γq ´ dpβ, γqq , (1)

capji “ 0 .

All the capacities in the flow must be non-negative. This motivates that d must be
a metric.

By applying loadij “ yij:β ` yji:γ “ µwijdpβ, γq one can get
y1
ij:α “ yij:α ` capij “ yij:α ` µwijpdpβ, αq ` dpα, γq ´ dpβ, γqq

“ yij:α ` yij:β ` yji:α ` µwijdpα, γq ´ yij:β ´ yji:γ “ µwijdpα, γq ´ yji:γ ,

which ensures that
loadx,yij “ yij:α ` yji:γ “ `

µwijdpα, γq ´ yji:γ
˘ ` yji:γ “ µwijdpα, γq .

Subroutine PreEdit Duals(α,x,y) ˚

FastPD PD2 PD3 Branch-and-MinCut
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The role of this routine is to edit current solution y, before the subroutine
Update Duals Primals(α,x), so that

loadx,yij “ yij:α ` yji:γ “ µwijdpα, γq .
1: function PreEdit Duals(α,x,y)
2: for all pi, jq P E with xi ‰ α, xj ‰ α do
3: yij:α Ð µwijdpα, γq ´ yji:γ
4: yji:α Ð yji:γ ´ µwijdpα, γq
5: end for
6: return y
7: end function

Equivalence of PD2µ“1 and α-expansion

FastPD PD2 PD3 Branch-and-MinCut
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One can show that PD2µ“1 indeed generates an ǫapp solution.

If µ “ 1, then loadij “ wijdpxi, xjq. It can be shown that APFx,y “ Epxq,
whereas in any other case APFx,y ď Epxq.
If µ ă 1, then the primal (dual) objective function necessarily decreases (increases)
per iteration. Instead, APF constantly decreases.

Recall that APF is the sum of active labels’ heights and PD2µ“1 always tries to
choose the lowest label among xi and α. During an α-iteration, PD2µ“1 chooses
an x1 that minimizes APF with respect to any other α-expansion x̄ of current
solution x.

Theorem 1. Let px1,y1q denote the next primal-dual pair due to an α-iteration
and let x̄ denote α-expansion of the current primal. Then

Epx1q “ APFx
1,y1 ď APFx̄,y

1 ď Epx̄q .

Epx1q ď Epx̄q shows that the α-expansion algorithm is equivalent to PD2µ“1.



PD3

FastPD PD2 PD3 Branch-and-MinCut

Algorithm PD3a
˚
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By modifying the Algorithm PD2µ“1, we will get Algorithm PD3, which can be
applied even if d is non-metric function.

Recall that PD2µ“1 maintains the optimality criterion: loadij ď wijdpxi, xjq.
Since d is not metric, we have conflicting label-triplet pα, β, γq:

dpβ, γq ą dpβ, αq ` dpα, γq .

Algorithm PD3a: During the primal-dual variable update, in an α-iteration, when
xi ‰ α and xj ‰ α, i.e. in (1), we set capij “ 0.

It can be shown that for a conflicting triplet

loadij “ wij

`
dpβ, γq ´ dpβ, αq˘ ě wijdpα, γq .

Intuitively, PD3a overestimates the distance between labels α, γ in order to
restore the triangle inequality for the current conflicting label-triplet pα, β, γq.

PD3b
˚

FastPD PD2 PD3 Branch-and-MinCut
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We choose to set capij “ `8 and no further differences between PD3b and
PD2µ“1 exist.

This has the following important effect: the solution x1 produced at the current
iteration, can never assign the pair of labels γ, β to the objects i, j respectively.

PD3c
˚
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PD3c first adjusts the dual solution y for any pi, jq P E :

loadij ď wijdpα, γq ` dpγ, βq .
After this initial adjustment, PD3c proceeds exactly as PD2µ“1, except for the fact
that the term dpα, βq (1) is replaced by

d̄pβ, γq ∆“ loadij
wij

ď dpβ, αq ` dpα, γq ă dpβ, γq .

Intuitively, PD3c works in a complementary way to PD3a algorithm, i.e. in order to
restore the triangle inequality for the conflicting label-triplet pα, β, γq, it chooses to
underestimate the distance between labels pβ, γq (instead of overestimating the
distance between either labels α, γ or α, β).

Results: Stereo matching ˚

FastPD PD2 PD3 Branch-and-MinCut
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Original (left) PD1 PD2µ“1 with Potts

Distance dpα, βq ǫPD1
app ǫ

PD2µ“1
app ǫPD3a

app ǫPD3b
app ǫPD3c

app ǫapp
Jα ‰ βK 1.0104 1.0058 1.0058 1.0058 1.0058 2
minp5, |α ´ β|q 1.0226 1.0104 1.0104 1.0104 1.0104 10
minp5, |α ´ β|2q 1.0280 - 1.0143 1.0158 1.0183 10

Branch-and-MinCut

FastPD PD2 PD3 Branch-and-MinCut

Introduction
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We address the problem of binary image segmentation, where we also consider
non-local parameters that are known a priori.

For example, one can assume prior knowledge about the shape of the foreground
segment or the color distribution of the foreground and/or background.

Let us consider an undirected graphical model G “ pV, Eq, where V is the set of
pixels and E consists of 8-connected pairs of pixels. We define the energy function
E : t0, 1uV ˆ Ω Ñ R for non-local parameter ω P Ω:

Epy, ωq “ Cpωq `
ÿ

iPV
F ipωq ¨ yi `

ÿ

iPV
Bipωq ¨ p1 ´ yiq `

ÿ

pi,jqPE
P ijpωq ¨ |yi ´ yj | ,

where Cpωq is a constant energy w.r.t. y, and F ipωq and Bipωq are the unary
energies defining the cost of assigning the pixel i to the foreground and to the
background, respectively. P ijpωq P R`

0 is non-negative for each pi, jq P E
ensuring the tractability of Epx, ωq.

Globally optimal segmentation ˚
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The segmentation is given by binary labeling y P BV “ t0, 1uV , where individual
pixel labels are denoted by yi P B (1:foreground, 0:background). We assume that
non-local parameter ω P Ω are taken from a discrete set.

Shape priors will be encoded as a product space of various poses and deformations
of the template, while color priors will correspond to the set of parametric color
distributions.

The goal is to achieve a globally optimal segmentation under non-local priors.
The applied optimization method relies on two techniques: graph cuts and
branch-and-bound.

Although a global minimum can be achieved, the worst case complexity of the
method is large (essentially, the same as the exhaustive search over the space of
non-local parameters).

An alternative way to solve the problem is to apply alternating minimization.



Lower bound
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LpΩq denotes the lower bound for Epy, ωq over BV ˆ Ω:

min
yPBV ,ωPΩ

Epy, ωq

“ min
yPBV ,ωPΩ

!
Cpωq `

ÿ

iPV
F ipωq ¨ yi `

ÿ

iPV
Bipωq ¨ p1 ´ yiq `

ÿ

pi,jqPE
P ijpωq ¨ |yi ´ yj |

)

ě min
yPBV

!
min
ωPΩ Cpωq `

ÿ

iPV
min
ωPΩ F ipωq ¨ yi `

ÿ

iPV
min
ωPΩ Bipωq ¨ p1 ´ yiq`

ÿ

pi,jqPE
min
ωPΩ P ijpωq ¨ |yi ´ yj |

)

“ min
yPBV

!
CΩ `

ÿ

iPV
F i
Ωpωq ¨ yi `

ÿ

iPV
Bi

Ωpωq ¨ p1 ´ yiq `
ÿ

pi,jqPE
P ij
Ω pωq ¨ |yi ´ yj |

)

“LpΩq .

CΩ, F
i
Ω, B

i
Ω, P

ij
Ω denote the minima of Cpωq, F ipωq, Bipωq, P ijpωq over ω P Ω

referred to as aggregated energies.

Monotonicity
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Suppose Ω1 Ă Ω2, then the inequality LpΩ1q ě LpΩ2q holds.

Proof. Let us define Apy,Ωq as

Apy,Ωq ∆“min
ωPΩ Cpωq `

ÿ

iPV
min
ωPΩ F ipωq ¨ yi `

ÿ

iPV
min
ωPΩ Bipωq ¨ p1 ´ yiq

`
ÿ

pi,jqPE
min
ωPΩ P ijpωq ¨ |yi ´ yj | .

Assume Ω1 Ă Ω2. Then, for any y P BV

Apx,Ω1q
“ min

ωPΩ1

Cpωq`
ÿ

iPV
min
ωPΩ1

F ipωqyi`
ÿ

iPV
min
ωPΩ1

Bipωqp1 ´ yiq`
ÿ

pp,qqPE
min
ωPΩ1

P ijpωq|yi ´ yj |

ě min
ωPΩ2

Cpωq`
ÿ

iPV
min
ωPΩ2

F ipωqyi`
ÿ

iPV
min
ωPΩ2

Bipωqp1 ´ yiq`
ÿ

pi,jqPE
min
ωPΩ2

P ijpωq|yi ´ yj |

“ Apy,Ω2q .

Monotonicity

FastPD PD2 PD3 Branch-and-MinCut
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Proof. Continued

Note that LpΩq “ minyPBV Apy,Ωq.
Let y1 P argminyPBV Apy,Ω1q and y2 P argminyPBV Apy,Ω2q, then from the
monotonicity, one gets:

LpΩ1q “ Apy1,Ω1q ě Apy1,Ω2q ě Apy2,Ω2q “ LpΩ2q .

Computability and tightness
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Computability: the lower bound LpΩq equals the minimum of a regular function,
which can be globally minimized via graph-cuts.

Tightness: for a singleton Ω “ tωu (i.e. |Ω| “ 1) the bound LpΩq is tight, that is

Lptωuq “ min
yPBV

Epy, ωq .

Best-first branch-and-bound optimization

FastPD PD2 PD3 Branch-and-MinCut
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The discrete domain Ω can be hierarchically clustered and the binary tree of its
subregions can be considered.

At each step the active node with the smallest lower bound is removed from the
active front, while two of its children are added to the active front (due to
monotonicity property they have higher or equal lower bounds).

Best-first branch-and-bound optimization

FastPD PD2 PD3 Branch-and-MinCut
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If the active node with the smallest lower bound turns out to be a leaf ω1 and y1 is
the corresponding optimal segmentation, then Epy1, ω1q “ Lpω1q due to the
tightness property. Consequently, py1, ω1q is a global minimum.

Remark that in worst-case any optimization has to search exhaustively over Ω.

Pseudo code of Branch-And-Mincut ˚

FastPD PD2 PD3 Branch-and-MinCut
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1: Front Ð H Ź initializing the priority queue
2:

“
C0, tF i

0u, tBi
0u, tP ij

0 u‰ ÐGetAggregPotentials(Ω0)

3: LB0 ÐGetMaxFlowValue(tF i
0u,tBi

0u,tP ij
0 u)`C0

4: Front.InsertWithPriority(Ω0,´LB0)

5: while true do Ź advancing front
6: Ω Ð Front.PullHighestPriorityElement()
7: if IsSingleton(Ω) then Ź global minimum found

8: ω Ð Ω
9:

“
C, tF iu, tBiu, tP iju‰ ÐGetAggregPotentials(ω)

10: x ÐFindMinimumViaMincut(tF iu,tBiu,tP iju)
11: return px, ωq
12: end if

13: rΩ1,Ω2s ÐGetChildrenSubdomains(Ω)
14:

“
C1, tF i

1u, tBi
1u, tP ij

1 u‰ ÐGetAggregPotentials(Ω1)

15: LB1 ÐGetMaxFlowValue(tF i
1u,tBi

1u,tP ij
1 u)`C1

16: Front.InsertWithPriority(Ω1,´LB1)

17:
“
C2, tF i

2u, tBi
2u, tP ij

2 u‰ ÐGetAggregPotentials(Ω2)

18: LB2 ÐGetMaxFlowValue(tF i
2u,tBi

2u,tP ij
2 u)`C2

19: Front.InsertWithPriority(Ω2,´LB2)

20: end while

Segmentation with shape priors

FastPD PD2 PD3 Branch-and-MinCut
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The prior is defined by the set of exemplar binary segmentations txω | ω P Ωu,
where Ω is a discrete set indexing the exemplar segmentations.

We define a joint prior over the segmentation and the non-local parameter:

Epriorpy, ωq “
ÿ

iPV
p1 ´ xωi q ¨ yi `

ÿ

iPV
xωi ¨ p1 ´ yiq .

This encourages the segmentation y to be close in the Hamming-distance
(dHpa,bq “ 1

N

řN
i“1Jai ‰ biK) to one of the exemplar shapes.

The segmentation energy may be defined by adding a standard contrast-sensitive
Potts-model for λ, σ ą 0:

Epy, ωq “ Epriorpy, ωq ` λ
ÿ

pi,jqPE

e´ }Ii´Ij}
σ

|i ´ j| ¨ |yi ´ yj | ,

where Ii denotes RGB colors of the pixel i.



Parameterization: multiple templates ˆ
translations
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The shape prior is given by a set of templates, whereas each template can be
located anywhere within the image.

Ω “ ∆ ˆ Θ, where the set ∆ indexes the set of all exemplar segmentations xδ and
Θ corresponds to translations.

Any exemplar segmentation xω for ω “ pδ, θq is then defined as some exemplar
segmentation xδ centered at the origin and then translated by the shift θ.

Clustering tree

FastPD PD2 PD3 Branch-and-MinCut
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For ∆ we use agglomerative bottom-up clustering resulting in a (binary) clustering
tree T∆ “ t∆ “ ∆0,∆1, . . . ,∆Nu.
To build a clustering tree for Θ, we recursively split along the “longer” dimension.
This leads to a (binary) tree TΘ “ tΘ “ Θ0,Θ1, . . . ,ΘNu.

Branch operation

FastPD PD2 PD3 Branch-and-MinCut
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Each nodeset Ωt in the combined tree is defined by a pair ∆t ˆ Θt.

The looseness of a nodeset Ωt is defined as the number of pixels that change their
mask value under different shapes in Ωt (i.e. neither background nor foreground):

ΛpΩtq “ |ti | Dω1, ω2 : x
ω1
i “ 0 and xω2

i “ 1u| .
The tree is built in a recursive top-down fashion as follows.

We start by creating a root nodeset Ω0 “ ∆0 ˆ Θ0. Given a nodeset Ωt “ ∆t ˆΘt

we consider (recursively) two possible splits: 1) split along the shape dimension or
2) split along the shift dimension. The split that minimizes the sum of loosenesses
is preferred.

The recursion stops when the leaf level is reached within both the shape and the
shift trees.

Results ˚

FastPD PD2 PD3 Branch-and-MinCut
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Yellow: global minimum of E; Blue: feature-based car detector; Red: global minimum of
the combination of E with detection results (detection is included as a constant potential)

The prior set ∆ was built by manual segmentation of 60 training images coming
with the dataset.

Summary ˚
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■ Primal-dual schema:

Epxq “
ÿ

iPV
Eipxiq `

ÿ

pi,jqPE
wij ¨ dpxi, xjq

◆ PD1: d is a semi-metric
◆ PD2: d is a metric (equivalent to α-expansion)
◆ PD3: d is a non-metric function

■ For binary image segmentation we learned a global optimal solution, based
on branch and bound optimization, in the presence of (shape) prior information.

In the next lecture we will learn about exact inference (probabilistic and MAP)
on tree structured factor graphs.

Literature ˚
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