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Recall: Inference

Sum-product algorithm Max-sum algorithm Loopy belief propagation

Inference means the procedure to estimate the probability distribution, encoded
by a graphical model, for a given data (or observation).

Assume we are given a factor graph G = (V, £, F) and the observation x.
B Maximum A Posteriori (MAP) inference: find the state y* € ) of
maximum probability,
y* € argmaxp(y | x) = argmin E(y; x) .
yey yey

B Probabilistic inference: find the value of the partition function Z(x) and the
marginal distributions up(yr) € Y for each factor F' € F,

Z(x) = ) exp(—E(y; %)),
yey

pr(yr) =p(yr|x) .
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Partition function
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We can expand the partition function as
2= 2 2 2 exp(—Eyi v )
Yi€Yi Y;€Y5 ykEVk YIEV!

=000 D e < — (Balyi,yj) + Ep(yj. ) + Ec,'(ymyz)))
Yi€Yi Y;€V; Y€k MEN
=32 DS exn(—Ealyi,vy) exp(—En(y;, k) exp(—Eo (v, w)

Yi€Vi Y;€Vj Y€V YIEV

=2 X exp(—Ealyny)) Y, ep(=Ep(y;,u) Y, exp(—Ec(yrm)) -

Yi€Yi Y;€V; YkEVk YEN
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8. Belief Propagation

Agenda for today’s lecture *

Sum-product algorithm Max-sum algorithm Loopy belief propagation

Today we are going to learn about belief propagation to perform exact inference
on graphical models having tree structure.

B Probabilistic inference: Sum-product algorithm
B MAP inference: Max-sum algorithm

We also extend belief propagation for general factor graph, which results in an
approximate inference.
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Probabilistic inference on chains
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Assume that we are given the following factor graph and a corresponding energy
function E(y), where Y = V; x V; x Vi x Y.

O+ 0O=+0O=0

We want to compute p(y) for any y € Y by making use of the factorization

1 1 . )
p(y)= Z exp(—E(y))= Z exp(—Ea(yi, ;) exp(=EB(yj, yr)) exp(—=Ec (yr, wi

Problem: we also need to calculate the partition function

Yi€Vi Y;€Yj y€Vr YIEV

which looks expensive (the sum has |Y;| - |V;| - |Vk| - |Vi| terms).
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Elimination
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Aoy, € RV rB-Y; € %

G e G— e E—
A i B C :

Note that we can successively eliminate variables, that is

Z=3"> exp(—Ea(yi,y)) Y, exp(—Ep(y; ) Y, exp(—Ec(yr,u))
yi€Yi Y;€Y; Yk€Vk YIEV
S —

re—y;, (Yk)

= Z Z exp(—Ea(yi, v5)) Z exp(—Ep(yj. yx))rc v, (Uk)

Yi€i y;€Yj

= >0 D) ep(—Ealiy))rey, (W) = D) rasvi(w) -

Yi€i y;€Yj Yi€Yi

ra-y; (i)
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Inference on trees (cont.)
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Now we are assuming a tree-structured factor graph and applying the same
av,-a(yy)

elimination procedure as before. ~N
@\
4
e -
e
O " U c

reoy, (47)

Z=73, > exp(—Ealyny;) Y, exp(—Er(y;,u) Y, exp(—Ec(y;,u))

Yi€Yi Y;€Y;5 Yk€Vk YEVL

r-y; ;)

= Z Z exp(—Ea(yi,y;)) re—y; (Wi)re -y, (y)
[ ———

Yi€Vi y;€V;

re—y; (Y;)

qv;—a(Y;5)

= Z Z exp(—Ea(yi, y;))av;—A(y;)

Messages

Sum-product algorithm Max-sum algorithm
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Now we are assuming a tree-structured factor graph and applying the same
elimination procedure as before.

®

racy (i) av;—a(;)
—a—
C

S
O—=
A ro—y; (Y5)

Z=73, ) exp(—Eaysy;)av,-ay;)

Yi€Vi Y;€V;

rasy, (yi)
i

= D ra-vi(w) -

yi€Yi
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Factor-to-variable message

Loopy belief propagation
Message: pair of vectors at each factor graph edge (i, F) € £.

TF-Y;

1. Variable-to-factor message qy,_.r € RY: is
given by

wvi-rw) =[]

FreM(i)\{F}

Ty (Yi) s

where M (i) = {F € F: (i, F) € £} denotes
the set of factors adjacent to Y;.
2. Factor-to-variable message: 75y, € RV,
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Messageischeduling
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2. Factor-to-variable message rr_,y; € RYi is given by

resy,w) = Y [ep(=Er(yr) ]
y}iEyFy leN(F)\{i}
Yi=Yi

qYl"F(yl,) k]

where N(F) = {ie V : (i,F) € £} denotes the set of variables adjacent to F'.
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Message scheduling on trees

Sum-product algorithm

One can note that the message updates depend on each other.

reov) = Y, [ep(-Erye) [ avier() (1)
YpeYVr, leN(F)\{i}
Yi=vi

wvierw) =[] reev) (2
FreM(i)\{F}

The messages that do not depend on previous computation are the following.

B The factor-to-variable messages in which no other variable is adjacent to the
factor; then the product in (1) will be empty.

B The variable-to-factor messages in which no other factor is adjacent to the
variable; then the product in (2) is empty and the message will be one.
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Inference result: i partition function Z
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For tree-structured factor graphs there always exist at least one such message that
can be computed initially, hence all the dependencies can be resolved.

1. Select one variable node as root of the tree (e.g., Y,,)
2. Compute leaf-to-root messages (e.g., by applying depth-first-search)
3. Compute root-to-leaf messages (reverse order as before)
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Inference result: the marginals ;7 (yr)

Sum-product algorithm Max-sum algorithm Loopy belief propagation

Partition function is evaluated at the (root) node ¢

Z=3 ] re-viw).

yi€Yi FeM (i)
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The marginal distribution for each factor can be computed as

pelyr) = Y p) = Y o= ) Bulyh)

y'ey, y'ey, HeF
Yr=YF Yp=YF
1
=7 xp(=Er(yr)) >, en( Y, —Eulyy)
y'e X Yu HeF\{F}
HeF\{F} .
1 :
=7 xp(=Er(yr)) [ aviertwi) - ity
ieN(F)

qy; QF‘.’ ‘..qyk-'p
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Optimality:and complexity *
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Assume a tree-structured factor graph. If the messages are computed based on
depth-first search order for the sum-product algorithm, then it converges after 2|V/|
iterations and provides the exact marginals.

If |V;] < m for all i € V, then the complexity of the algorithm O(|V| - m®), where

K = N(F)|. .
maxper [N (F)| Max-sum algorithm

reov () = Y, |ep(—Eryr) ] avier)
YREVF, leN(F)\{i}
Yi=Yi

Note that the complexity of the naive way is O(K - m/V1).

Reminder. Assuming f,g: R — R, the notation f(z) = O(g(x)) means that there
exists C' > 0 and zp € R such that |f(z)| < Cl|g(x)] for all z > xy.

MARP: inference MAP inference on trees

Sum-product algorithm Max-sum algorithm Loopy belief propagation Sum-product algorithm Max-sum algorithm Loopy belief propagation

" B 1.0 ~ Now we are assuming a tree-structured factor graph and applying elimination
y'e argg;aXp(y) = argmax 7P = ar;e,;g}aw(}') : procedure as before. N
Similar to the sum-product algorithm one can obtain the so-called max-sum p
A <
algorithm to solve the above maximization. av; (Y

By applying the In function, we have @ u Y u @
7
A c

Inmax p(y) = maxInp(y) raoy; (U5)
yey yey

max Z —Ep(yr) = max —Ealyi,y;) — Es(yj, ur) — Ec(yj,y1)

= ye%gcln H exp(—Er(yr)) yey f
FeF
€ =max —E4(y;, y;) + max —Ep(y;, yx) + max —Ec(y;, yi)
=max 2 —Er(yr) - YisY; Y u
ey Fer TB-Y; (y5) roy; (y5)

= max —Ea(yi,y5) + -y, (y) + romy, (y))
s

av;—a(y;)
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MAP inference ‘on trees (cont.) hi __Messages
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Now we are assuming a tree-structured factor graph and applying elimination The messages become as follows
procedure as before. N
O —@ or) = Y. rTeey.(u)
4 FreM(i)\{F}

<
rasy, (yi)  av;—a(y;)

! !
Y, Y, Y, rroy, (i) = max | —Er(yp) + Y, avi-r(y))
@ ’ e — L o @ VreYr, IEN(F)\(i}

rc-y; (Y5) Yi=vi

max Z —Er(yr) = maxmax —Ea(yi, y;) + qv;—»A(yj) = maxra_y; (y;) The max-sum algorithm provides exact MAP inference for tree-structured factor
Y for LN i graphs.
ra-y; (¥i)

In general, for graphs with cycles there is no guarantee for convergence.
The solution is then obtained as:

y; € argmaxray; (vi), y; € argmax Ea(y, y;) + qv;—a(y)),
Yi Yj

vk € argmax E(y}, yk), yi' € argmax Ec(y], 1)
Yk Y
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Choosing an optimal state

Sum-product _and: Max-sum comparison
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The following back-tracking algorithm is applied for choosing an optimal y*. B Sum-product algorithm

1. Initialize the procedure at the root node (Y;) by choosing an

itializ p! u (i) by Ing any av,-r(yi) = H ey (i)
y¥ € argmax max p(y’), FrEMNFY
vieYi YeEVyi=vyi

and set T = (i), reoy, i) = Y. |exp(=Er(yr) || avier)

. . #EVF, leN(F)\{i
2. Based on (reverse) depth-first search order, for each j € V\T yfz;j SN
(a) choose a configuration y7 at the node Y such that B Max-sum algorithm
* e argmax max Py’
Up € argmox Ak ), ier) = Y ey
Y=Y, FleM(i)\{F}
yi=y} VieT
(b) update T =T u {j}. rroy, () = max | —Bp(yp) + Y, avier(y)
il NP\ )

IN2329 - Probabilistic Graphical Models in Computer Vision 8. Belief propagation — 23 / 34 - Graphical Models in Computer Vision 8. Belief propagation — 24 / 34



__Example *
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Es(yr) Ec(yr, y1)
Yk Uk k| u ‘
01 01| [0] 1 01
10 ojo-1| | 1] 05 0] 0 05
01‘3’11 00 ! 0450‘

Let us chose the node Y; as root. We calculate the messages for the max-sum
algorithm from leaf-to-root direction in a topological order as follows.

L qv-c(0) = ay-c(1) =0
2. 1oy (0)=maxy (0,13 {—Ec(0, y)+gy,—-c(0) }=maxye (0,13~ Ec (0, y)=0
re-yi (D=maxye013{—Ec (1, y)tavi-c (1) }=maxyeq01y~Eo (1, 41)=0
3. ’I‘Bﬁyk(o) =—1
TBﬂyk(l) =-0.5
4. qkaA(O) =TBoY, (0) + Tcﬂyk(o) =—-1+0=-1
qykﬂA(l) = TBﬁyk(l) =+ Tcﬂyk(l) =—-05+0=-0.5
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Loopy belief propagation

Messages

Sum-product algorithm Max-sum algorithm Loopy belief propagation

The factor-to-variable messages 7r_,y, remain well-defined and are computed
as before.

reevi(y) = Y |ep(=Er(yp) [ av-r(y)
VieVr, JEN(P)\(i}
Yi=yi

The variable—to—factor messages are normalized at every iteration as follows:

HF’GM(i)\{F} rr—y, (i)

qvi—r(Yi) = .
U Yy Hmenran ey re—vi(4))

In case of tree structured graphs, in the sum—product algorithm these
normalization constants are equal to 1, since the marginal distributions, calculated
in each iteration, are exact.
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Beliefs (cont.) *

Sum-product algorithm Max-sum algorithm Loopy belief propagation

Example (cont.) *
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5. qv;-a(0) = gv;—a(1) =0
6. rasy,(0)=maxy, 013 {—Ea(0, 45, yr) +av;—aY;) +av,—a(yr)} =—0.5
rasy, (1) =maxy, 01 {—Ea(l, 95, y&) +av;-a(y;) +av—»a(yr)} =0.5

In order to calculate the maximal state y* we apply back-tracking

Ly} e argmax, (1) 7a-v; (y:) = {1}

2. y; € argmax,, maxy]yyke{oyl){—EA(l, Yj: k) + av—a(ye)} = {0}

3. yi € argmaxy, g0, 13 {—Ea(1, 0, yk) + 5oy, (Yk) + rooy, (Y} = {1}
4. yfe argmaxyle{o,l}{fEc(l,yl) +resy, (1)} = {1}

Therefore, the optimal state y* = (y?‘,y]’-‘,y,’:,yf‘) =(1,0,1,1).
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Message passing in cyclic graphs
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When the graph has cycles, then there is no well-defined leaf~to—root order.
However, one can apply message passing on cyclic graphs, which results in loopy
belief propagation.

1. Initialize all messages as constant 1

2. Pass factor—to—variables and variables—to—factor messages alternately until
convergence

Upon convergence, treat beliefs 1 as approximate marginals

‘Beliefs

Sum-product algorithm Max-sum algorithm Loopy belief propagation

The approximate marginals, i.e.beliefs, are computed as before but now a
factor-specific normalization constant zp is also used.

The factor marginals are given by

1
pr(yr) = —~exp(=Er(yr)) [ avier),
F ieN(F)

where the factor specific normalization constant is given by

=), ep(=Er(yr) [ avier()-

yreYr ieN(F)
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Remarks on loopy belief propagation
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In addition to the factor marginals the algorithm also computes the variable
marginals in a similar fashion.

1
i(yi) = P H rry; (Yi)
" FreM(i)

where the normalizing constant is given by

[T reviw)-

yi€Vi F'eM (i)

Z; =

Since the local normalization constant zp differs at each factor for loopy belief
propagation, the exact value of the normalizing constant Z cannot be directly
calculated. Instead, an approximation to the log partition function can be
computed.

Loopy belief propagation is very popular, but has some problems:

B It might not converge (e.g., it can oscillate).
B Even if it does, the computed probabilities are only approximate.
W If there is a single cycle only in the graph, then it converges.
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_Summary * Literature *

Sum-product algorithm Max-sum algorithm Loopy belief propagation Sum-product algorithm Max-sum algorithm Loopy belief propagation
B We have discussed inference methods on tree-structured graphical models 1. Sebastian Nowozin and Christoph H. Lampert. Structured prediction and learning in
e . computer vision. Foundations and Trends in Computer Graphics and Vision, 6(3-4),
& Probabilistic inference: Sum-product algorithm 2010
¢ MAP inference: Max-sum algorithm 2. Daphne Koller and Nir Friedman. Probabilistic Graphical Models: Principles and
B For general factor graphs: Loopy belief propagation Techniques. MIT Press, 2009

3. Judea Pearl. Probabilistic Reasoning in Intelligent Systems: Network of Plausible

. Inference. Morgan Kaufmann, 1988
In the next lecture we will learn about

B Human-pose estimation

B Mean-field approximation: probabilistic inference via optimization (a.k.a.
variational inference)
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