Probabilistic Graphical Models in Computer Vision (IN2329)

Csaba Domokos

Summer Semester 2015/2016

8. Belief Propagation	. 2
Agenda for today's lecture *	
	•
Sum-product algorithm	5
Probabilistic inference on chains	6
Partition function	7
Elimination	8
Inference on trees	
Inference on trees (cont.)	. 10
Messages	. 11
Factor-to-variable message	. 12
Message scheduling *	13
Message scheduling on trees	
Inference result: partition function Z	1 F
Inference result: the marginals $\mu_F(\mathbf{y}_F)$	
Optimality and complexity $*$	17
Optimality and complexity *	11
Max-sum algorithm	18

MAP inference	19
MAP inference	20
MAP inference on trees (cont.)	21
Messages	22
Choosing an optimal state *	23
Sum-product and Max-sum comparison *	24
Example *	25
Example (cont.) *	26
Loopy belief propagation	27
Message passing in cyclic graphs	27
Message passing in cyclic graphs	29
Message passing in cyclic graphs	29
Message passing in cyclic graphs Messages Beliefs Beliefs (cont.) *	
Message passing in cyclic graphs Messages Beliefs Beliefs (cont.) *	
Message passing in cyclic graphs	

8. Belief Propagation 2 / 34

Recall: Inference

Inference means the procedure to estimate the *probability distribution*, encoded by a *graphical model*, for a *given data* (or observation). Assume we are given a factor graph $G = (\mathcal{V}, \mathcal{E}, \mathcal{F})$ and the observation \mathbf{x} .

■ Maximum A Posteriori (MAP) inference: find the state $y^* \in \mathcal{Y}$ of maximum probability,

$$\mathbf{y}^* \in \underset{\mathbf{y} \in \mathcal{Y}}{\operatorname{argmax}} p(\mathbf{y} \mid \mathbf{x}) = \underset{\mathbf{y} \in \mathcal{Y}}{\operatorname{argmin}} E(\mathbf{y}; \mathbf{x}) .$$

■ Probabilistic inference: find the value of the partition function $Z(\mathbf{x})$ and the marginal distributions $\mu_F(\mathbf{y}_F) \in \mathcal{Y}_F$ for each factor $F \in \mathcal{F}$,

$$Z(\mathbf{x}) = \sum_{\mathbf{y} \in \mathcal{Y}} \exp(-E(\mathbf{y}; \mathbf{x})) ,$$

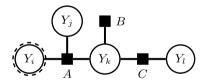
$$\mu_F(\mathbf{y}_F) = p(\mathbf{y}_F \mid \mathbf{x}) .$$

IN2329 - Probabilistic Graphical Models in Computer Vision

8. Belief propagation - 3 / 34

Agenda for today's lecture $\ensuremath{^*}$

Today we are going to learn about **belief propagation** to perform **exact** inference on graphical models having **tree structure**.



- Probabilistic inference: Sum-product algorithm
- MAP inference: Max-sum algorithm

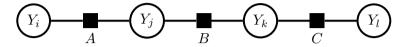
We also extend belief propagation for **general** factor graph, which results in an **approximate** inference.

Sum-product algorithm

5 / 34

Probabilistic inference on chains

Assume that we are given the following factor graph and a corresponding energy function $E(\mathbf{y})$, where $\mathcal{Y} = \mathcal{Y}_i \times \mathcal{Y}_j \times \mathcal{Y}_k \times \mathcal{Y}_l$.



We want to compute p(y) for any $y \in \mathcal{Y}$ by making use of the factorization

$$p(\mathbf{y}) = \frac{1}{Z} \exp(-E(\mathbf{y})) = \frac{1}{Z} \exp(-E_A(y_i, y_j)) \exp(-E_B(y_j, y_k)) \exp(-E_C(y_k, y_l)).$$

Problem: we also need to calculate the partition function

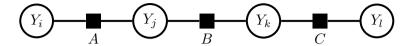
$$Z = \sum_{\mathbf{y} \in \mathcal{Y}} \exp(-E(\mathbf{y})) = \sum_{y_i \in \mathcal{Y}_i} \sum_{y_j \in \mathcal{Y}_j} \sum_{y_k \in \mathcal{Y}_k} \sum_{y_l \in \mathcal{Y}_l} \exp(-E(y_i, y_j, y_k, y_l)),$$

which looks expensive (the sum has $|\mathcal{Y}_i| \cdot |\mathcal{Y}_j| \cdot |\mathcal{Y}_k| \cdot |\mathcal{Y}_l|$ terms).

IN2329 - Probabilistic Graphical Models in Computer Vision

8. Belief propagation - 6 / 34

Partition function



We can expand the partition function as

$$Z = \sum_{y_i \in \mathcal{Y}_i} \sum_{y_j \in \mathcal{Y}_j} \sum_{y_k \in \mathcal{Y}_k} \sum_{y_l \in \mathcal{Y}_l} \exp(-E(y_i, y_j, y_k, y_l))$$

$$= \sum_{y_i \in \mathcal{Y}_i} \sum_{y_j \in \mathcal{Y}_j} \sum_{y_k \in \mathcal{Y}_k} \sum_{y_l \in \mathcal{Y}_l} \exp\left(-\left(E_A(y_i, y_j) + E_B(y_j, y_k) + E_C(y_k, y_l)\right)\right)$$

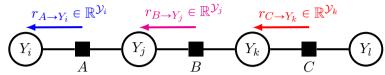
$$= \sum_{y_i \in \mathcal{Y}_i} \sum_{y_j \in \mathcal{Y}_j} \sum_{y_k \in \mathcal{Y}_k} \sum_{y_l \in \mathcal{Y}_l} \exp(-E_A(y_i, y_j)) \exp(-E_B(y_j, y_k)) \exp(-E_C(y_k, y_l))$$

$$= \sum_{y_i \in \mathcal{Y}_i} \sum_{y_j \in \mathcal{Y}_j} \exp(-E_A(y_i, y_j)) \sum_{y_k \in \mathcal{Y}_k} \exp(-E_B(y_j, y_k)) \sum_{y_l \in \mathcal{Y}_l} \exp(-E_C(y_k, y_l)).$$

IN2329 - Probabilistic Graphical Models in Computer Vision

8. Belief propagation -7/34

Elimination



Note that we can successively eliminate variables, that is

$$Z = \sum_{y_i \in \mathcal{Y}_i} \sum_{y_j \in \mathcal{Y}_j} \exp(-E_A(y_i, y_j)) \sum_{y_k \in \mathcal{Y}_k} \exp(-E_B(y_j, y_k)) \sum_{y_l \in \mathcal{Y}_l} \exp(-E_C(y_k, y_l))$$

$$= \sum_{y_i \in \mathcal{Y}_i} \sum_{y_j \in \mathcal{Y}_j} \exp(-E_A(y_i, y_j)) \sum_{y_k \in \mathcal{Y}_k} \exp(-E_B(y_j, y_k)) r_{C \to Y_k}(y_k)$$

$$= \sum_{y_i \in \mathcal{Y}_i} \sum_{y_j \in \mathcal{Y}_j} \exp(-E_A(y_i, y_j)) r_{B \to Y_j}(y_j) = \sum_{y_i \in \mathcal{Y}_i} r_{A \to Y_i}(y_i) .$$

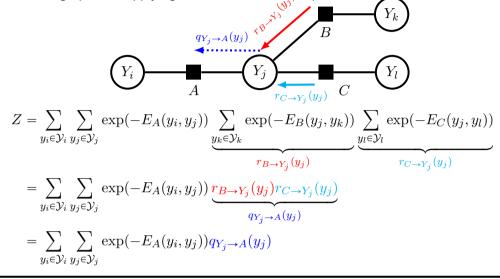
$$r_{A \to Y_i}(y_i)$$

IN2329 - Probabilistic Graphical Models in Computer Vision

8. Belief propagation - 8 / 34

Inference on trees

Now we are assuming a tree-structured factor graph and applying the same elimination procedure as before.

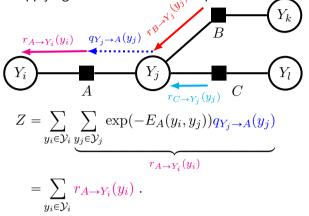


IN2329 - Probabilistic Graphical Models in Computer Vision

8. Belief propagation – 9 / 34

Inference on trees (cont.)

Now we are assuming a tree-structured factor graph and applying the same elimination procedure as before.

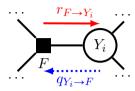


IN2329 - Probabilistic Graphical Models in Computer Vision

8. Belief propagation -10/34

Messages

Message: pair of vectors at each factor graph edge $(i, F) \in \mathcal{E}$.

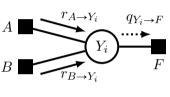


1. Variable-to-factor message $q_{Y_i o F} \in \mathbb{R}^{\mathcal{Y}_i}$ is given by

$$q_{Y_i \to F}(y_i) = \prod_{F' \in M(i) \setminus \{F\}} r_{F' \to Y_i}(y_i) ,$$

where $M(i) = \{F \in \mathcal{F} : (i, F) \in \mathcal{E}\}$ denotes the set of factors adjacent to Y_i .

2. Factor-to-variable message: $r_{F \to Y_i} \in \mathbb{R}^{\mathcal{Y}_i}$.



:

IN2329 - Probabilistic Graphical Models in Computer Vision

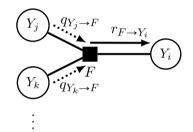
8. Belief propagation -11/34

Factor-to-variable message

2. Factor-to-variable message $r_{F \to Y_i} \in \mathbb{R}^{\mathcal{Y}_i}$ is given by

$$r_{F \to Y_i}(y_i) = \sum_{\substack{\mathbf{y}_F' \in \mathcal{Y}_F, \\ y_i' = y_i}} \left(\exp(-E_F(\mathbf{y}_F')) \prod_{l \in N(F) \setminus \{i\}} q_{Y_l \to F}(y_l') \right),$$

where $N(F) = \{i \in V : (i, F) \in \mathcal{E}\}$ denotes the set of variables adjacent to F.



IN2329 - Probabilistic Graphical Models in Computer Vision

8. Belief propagation - 12 / 34

Message scheduling *

One can note that the message updates depend on each other.

$$r_{F \to Y_i}(y_i) = \sum_{\substack{\mathbf{y}_F' \in \mathcal{Y}_F, \\ y_i' = y_i}} \left(\exp(-E_F(\mathbf{y}_F')) \prod_{l \in N(F) \setminus \{i\}} \mathbf{q}_{Y_l \to F}(y_l') \right)$$

$$(1)$$

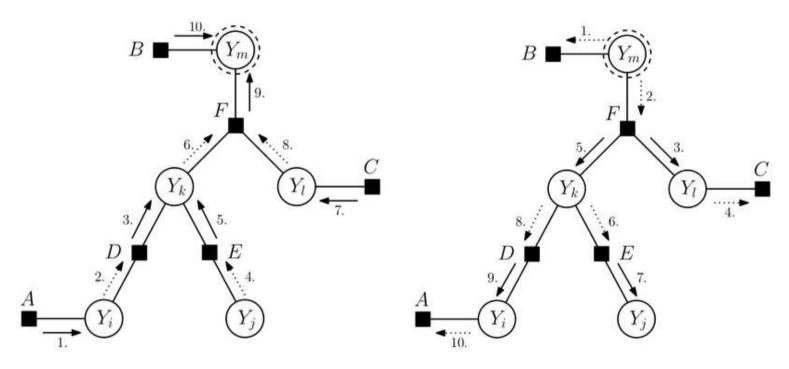
$$q_{Y_i \to F}(y_i) = \prod_{F' \in M(i) \setminus \{F\}} r_{F' \to Y_i}(y_i) \tag{2}$$

The messages that do not depend on previous computation are the following.

- The factor-to-variable messages in which no other variable is adjacent to the factor; then the product in (1) will be empty.
- The variable-to-factor messages in which no other factor is adjacent to the variable; then the product in (2) is empty and the message will be one.

Message scheduling on trees

For tree-structured factor graphs there always exist at least one such message that can be computed initially, hence all the dependencies can be resolved.



- 1. Select one variable node as root of the tree (e.g., Y_m)
- 2. Compute leaf-to-root messages (e.g., by applying depth-first-search)
- 3. Compute root-to-leaf messages (reverse order as before)

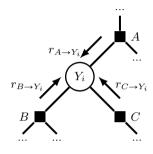
IN2329 - Probabilistic Graphical Models in Computer Vision

8. Belief propagation – 14 / 34

Inference result: partition function \boldsymbol{Z}

Partition function is evaluated at the (root) node i

$$Z = \sum_{y_i \in \mathcal{Y}_i} \prod_{F \in M(i)} r_{F \to Y_i}(y_i) .$$



IN2329 - Probabilistic Graphical Models in Computer Vision

8. Belief propagation -15/34

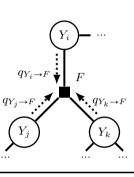
Inference result: the marginals $\mu_F(\mathbf{y}_F)$

The marginal distribution for each factor can be computed as

$$\mu_{F}(\mathbf{y}_{F}) = \sum_{\substack{\mathbf{y}' \in \mathcal{Y}, \\ \mathbf{y}'_{F} = \mathbf{y}_{F}}} p(\mathbf{y}) = \sum_{\substack{\mathbf{y}' \in \mathcal{Y}, \\ \mathbf{y}'_{F} = \mathbf{y}_{F}}} \frac{1}{Z} \exp\left(-\sum_{H \in \mathcal{F}} E_{H}(\mathbf{y}'_{H})\right)$$

$$= \frac{1}{Z} \exp\left(-E_{F}(\mathbf{y}_{F})\right) \sum_{\substack{\mathbf{y}' \in \mathcal{X}, \\ H \in \mathcal{F} \setminus \{F\}}} y_{H} \exp\left(\sum_{H \in \mathcal{F} \setminus \{F\}} -E_{H}(\mathbf{y}'_{H})\right)$$

$$= \frac{1}{Z} \exp\left(-E_{F}(\mathbf{y}_{F})\right) \prod_{i \in N(F)} q_{Y_{i} \to F}(y_{i}).$$



IN2329 - Probabilistic Graphical Models in Computer Vision

8. Belief propagation – 16 / 34

Optimality and complexity *

Assume a tree-structured factor graph. If the messages are computed based on depth-first search order for the sum-product algorithm, then it converges after 2|V| iterations and provides the **exact** marginals.

If $|\mathcal{Y}_i| \leq m$ for all $i \in V$, then the complexity of the algorithm $\mathcal{O}(|V| \cdot m^K)$, where $K = \max_{F \in \mathcal{F}} |N(F)|$.

$$r_{F \to Y_i}(y_i) = \sum_{\substack{\mathbf{y}_F' \in \mathcal{Y}_F, \\ y_i' = y_i}} \left(\exp(-E_F(\mathbf{y}_F')) \prod_{l \in N(F) \setminus \{i\}} q_{Y_l \to F}(y_l') \right).$$

Note that the complexity of the naı̈ve way is $\mathcal{O}(K \cdot m^{|V|})$.

Reminder: Assuming $f,g:\mathbb{R}\to\mathbb{R}$, the notation $f(x)=\mathcal{O}(g(x))$ means that there exists C>0 and $x_0\in\mathbb{R}$ such that $|f(x)|\leqslant C|g(x)|$ for all $x>x_0$.

Max-sum algorithm 18 / 34

MAP inference

$$\mathbf{y}^* \in \underset{\mathbf{y} \in \mathcal{Y}}{\operatorname{argmax}} p(\mathbf{y}) = \underset{\mathbf{y} \in \mathcal{Y}}{\operatorname{argmax}} \frac{1}{Z} \tilde{p}(\mathbf{y}) = \underset{\mathbf{y} \in \mathcal{Y}}{\operatorname{argmax}} \tilde{p}(\mathbf{y}) .$$

Similar to the *sum-product algorithm* one can obtain the so-called **max-sum algorithm** to solve the above maximization.

By applying the \ln function, we have

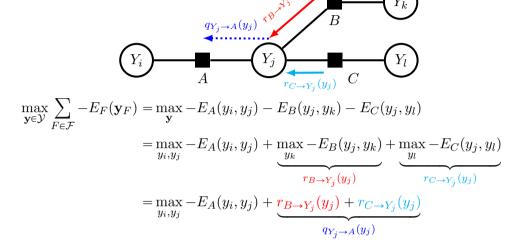
$$\ln \max_{\mathbf{y} \in \mathcal{Y}} \tilde{p}(\mathbf{y}) = \max_{\mathbf{y} \in \mathcal{Y}} \ln \tilde{p}(\mathbf{y})
= \max_{\mathbf{y} \in \mathcal{Y}} \ln \prod_{F \in \mathcal{F}} \exp(-E_F(\mathbf{y}_F))
= \max_{\mathbf{y} \in \mathcal{Y}} \sum_{F \in \mathcal{F}} -E_F(\mathbf{y}_F) .$$

IN2329 - Probabilistic Graphical Models in Computer Vision

8. Belief propagation -19/34

MAP inference on trees

Now we are assuming a tree-structured factor graph and applying elimination procedure as before.

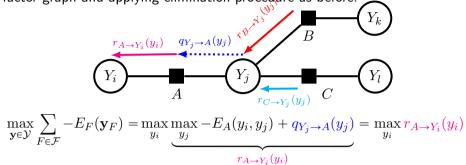


IN2329 - Probabilistic Graphical Models in Computer Vision

8. Belief propagation - 20 / 34

MAP inference on trees (cont.)

Now we are assuming a tree-structured factor graph and applying elimination procedure as before.



The solution is then obtained as:

$$y_i^* \in \underset{y_i}{\operatorname{argmax}} r_{A \to Y_i}(y_i), \qquad \qquad y_j^* \in \underset{y_j}{\operatorname{argmax}} E_A(y_i^*, y_j) + q_{Y_j \to A}(y_j),$$

$$y_k^* \in \underset{y_k}{\operatorname{argmax}} E_B(y_j^*, y_k), \qquad \qquad y_l^* \in \underset{y_l}{\operatorname{argmax}} E_C(y_j^*, y_l)$$

IN2329 - Probabilistic Graphical Models in Computer Vision

8. Belief propagation -21/34

Messages

The messages become as follows

$$q_{Y_i \to F}(y_i) = \sum_{F' \in M(i) \setminus \{F\}} r_{F' \to Y_i}(y_i)$$

$$r_{F \to Y_i}(y_i) = \max_{\substack{y'_F \in \mathcal{Y}_F, \\ y'_i = y_i}} \left(-E_F(y'_F) + \sum_{l \in N(F) \setminus \{i\}} q_{Y_l \to F}(y'_l) \right).$$

The max-sum algorithm provides exact MAP inference for tree-structured factor graphs.

In general, for graphs with cycles there is no guarantee for convergence.

Choosing an optimal state *

The following **back-tracking** algorithm is applied for choosing an optimal y^* .

1. Initialize the procedure at the root node (Y_i) by choosing any

$$y_i^* \in \underset{y_i \in \mathcal{Y}_i}{\operatorname{argmax}} \max_{\mathbf{y}' \in \mathcal{Y}, y_i' = y_i} \tilde{p}(\mathbf{y}')$$
,

and set $\mathcal{I} = \{i\}$.

- 2. Based on (reverse) depth-first search order, for each $j \in \mathcal{V} \setminus \mathcal{I}$
 - (a) choose a configuration y_i^* at the node Y_j such that

$$y_j^* \in \underset{y_j \in \mathcal{Y}_j}{\operatorname{argmax}} \underset{\mathbf{y}' \in \mathcal{Y}, \\ y'_j = y_j, \\ y'_i = y_i^* \ \forall i \in \mathcal{I}}{\operatorname{max}} \tilde{p}(\mathbf{y}')$$

(b) update $\mathcal{I} = \mathcal{I} \cup \{j\}$.

IN2329 - Probabilistic Graphical Models in Computer Vision

8. Belief propagation -23/34

Sum-product and Max-sum comparison *

■ Sum-product algorithm

$$q_{Y_i \to F}(y_i) = \prod_{F' \in M(i) \setminus \{F\}} r_{F' \to Y_i}(y_i)$$

$$r_{F \to Y_i}(y_i) = \sum_{\substack{y'_F \in \mathcal{Y}_F, \\ y'_i = y_i}} \left(\exp(-E_F(y'_F)) \prod_{l \in N(F) \setminus \{i\}} q_{Y_l \to F}(y'_l) \right)$$

■ Max-sum algorithm

$$q_{Y_i \to F}(y_i) = \sum_{F' \in M(i) \setminus \{F\}} r_{F' \to Y_i}(y_i)$$

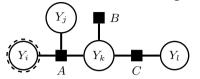
$$r_{F \to Y_i}(y_i) = \max_{\substack{y'_F \in \mathcal{Y}_F, \\ y'_i = y_i}} \left(-E_F(y'_F) + \sum_{\substack{l \in N(F) \setminus \{i\}}} q_{Y_l \to F}(y'_l) \right)$$

IN2329 - Probabilistic Graphical Models in Computer Vision

8. Belief propagation – 24 / 34

Example *

Let us consider the following factor graph with binary variables:



_					
	$E_A(0,$	$y_j, y_k)$	$E_A(1,$	$y_j, y_k)$	
		y_k		y_k	
		0 1		0 1	
	0	1 0	0	0 -1	
	y_j 1	0 1	y_j 1	0 0	

$E_B(y_k)$		Ι	
	y_k		
0	1		
1	0.5		
			y_k

$E_C(y_k, y_l)$			
	y_l		
	0 1		
0	0 0.5		
y_k 1	0.5 0		

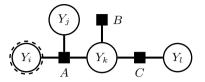
Let us chose the node Y_i as root. We calculate the messages for the max-sum algorithm from leaf-to-root direction in a topological order as follows.

- 1. $q_{Y_l \to C}(0) = q_{Y_l \to C}(1) = 0$
- 2. $r_{C \to Y_k}(0) = \max_{y_l \in \{0,1\}} \{-E_C(0, y_l) + q_{Y_l \to C}(0)\} = \max_{y_l \in \{0,1\}} -E_C(0, y_l) = 0$ $r_{C \to Y_k}(1) = \max_{y_l \in \{0,1\}} \{-E_C(1, y_l) + q_{Y_l \to C}(1)\} = \max_{y_l \in \{0,1\}} -E_C(1, y_l) = 0$
- 3. $r_{B \to Y_k}(0) = -1$ $r_{B \to Y_k}(1) = -0.5$
- 4. $q_{Y_k \to A}(0) = r_{B \to Y_k}(0) + r_{C \to Y_k}(0) = -1 + 0 = -1$ $q_{Y_k \to A}(1) = r_{B \to Y_k}(1) + r_{C \to Y_k}(1) = -0.5 + 0 = -0.5$

IN2329 - Probabilistic Graphical Models in Computer Vision

8. Belief propagation – 25 / 34

Example (cont.) *



5.
$$q_{Y_i \to A}(0) = q_{Y_i \to A}(1) = 0$$

6.
$$r_{A \to Y_i}(0) = \max_{y_j, y_k \in \{0,1\}} \{-E_A(0, y_j, y_k) + q_{Y_j \to A}(y_j) + q_{Y_k \to A}(y_k)\} = -0.5$$

 $r_{A \to Y_i}(1) = \max_{y_j, y_k \in \{0,1\}} \{-E_A(1, y_j, y_k) + q_{Y_j \to A}(y_j) + q_{Y_k \to A}(y_k)\} = 0.5$

In order to calculate the maximal state y^* we apply back-tracking

1.
$$y_i^* \in \operatorname{argmax}_{y_i \in \{0,1\}} r_{A \to Y_i}(y_i) = \{1\}$$

2.
$$y_j^* \in \operatorname{argmax}_{y_j} \max_{y_j, y_k \in \{0,1\}} \{-E_A(1, y_j, y_k) + q_{Y_k \to A}(y_k)\} = \{0\}$$

3.
$$y_k^* \in \operatorname{argmax}_{y_k \in \{0,1\}} \{ -E_A(1,0,y_k) + r_{B \to Y_k}(y_k) + r_{C \to Y_k}(y_k) \} = \{1\}$$

4.
$$y_l^* \in \operatorname{argmax}_{y_l \in \{0,1\}} \{ -E_C(1, y_l) + r_{C \to Y_k}(1) \} = \{1\}$$

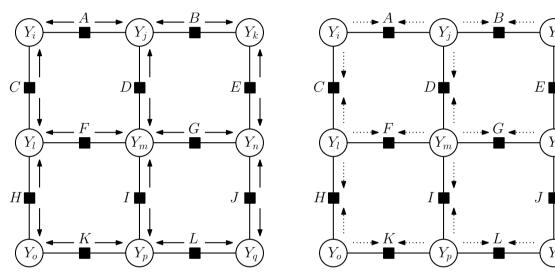
Therefore, the optimal state $y^* = (y_i^*, y_i^*, y_k^*, y_l^*) = (1, 0, 1, 1)$.

IN2329 - Probabilistic Graphical Models in Computer Vision

8. Belief propagation – 26 / 34

Message passing in cyclic graphs

When the graph has cycles, then there is no well-defined *leaf–to–root* order. However, one can apply message passing on cyclic graphs, which results in **loopy belief propagation**.



- 1. Initialize all messages as constant 1
- 2. Pass factor-to-variables and variables-to-factor messages alternately until convergence
- 3. Upon convergence, treat **beliefs** μ_F as approximate marginals

IN2329 - Probabilistic Graphical Models in Computer Vision

8. Belief propagation – 28 / 34

Messages

The factor-to-variable messages $r_{F \to Y_i}$ remain well-defined and are computed as before.

$$r_{F \to Y_i}(y_i) = \sum_{\substack{\mathbf{y}_F' \in \mathcal{Y}_F, \\ y_i' = y_i}} \left(\exp(-E_F(\mathbf{y}_F')) \prod_{j \in N(F) \setminus \{i\}} q_{Y_j \to F}(y_j') \right)$$

The variable-to-factor messages are normalized at every iteration as follows:

$$q_{Y_i \to F}(y_i) = \frac{\prod_{F' \in M(i) \setminus \{F\}} r_{F' \to Y_i}(y_i)}{\sum_{y_i' \in \mathcal{Y}_i} \prod_{F' \in M(i) \setminus \{F\}} r_{F' \to Y_i}(y_i')}.$$

In case of tree structured graphs, in the sum-product algorithm these normalization constants are equal to 1, since the marginal distributions, calculated in each iteration, are exact.

IN2329 - Probabilistic Graphical Models in Computer Vision

8. Belief propagation - 29 / 34

Beliefs

The approximate marginals, i.e. **beliefs**, are computed as before but now a factor-specific normalization constant z_F is also used.

The factor marginals are given by

$$\mu_F(y_F) = \frac{1}{z_F} \exp(-E_F(y_F)) \prod_{i \in N(F)} q_{Y_i \to F}(y_i) ,$$

where the factor specific normalization constant is given by

$$z_F = \sum_{y_F \in \mathcal{Y}_F} \exp(-E_F(y_F)) \prod_{i \in N(F)} q_{Y_i \to F}(y_i) .$$

IN2329 - Probabilistic Graphical Models in Computer Vision

8. Belief propagation - 30 / 34

Beliefs (cont.) *

In addition to the factor marginals the algorithm also computes the variable marginals in a similar fashion.

$$\mu_i(y_i) = \frac{1}{z_i} \prod_{F' \in M(i)} r_{F' \to Y_i}(y_i) ,$$

where the normalizing constant is given by

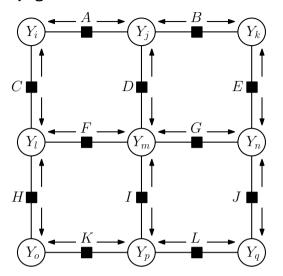
$$z_i = \sum_{y_i \in \mathcal{Y}_i} \prod_{F' \in M(i)} r_{F' \to Y_i}(y_i) .$$

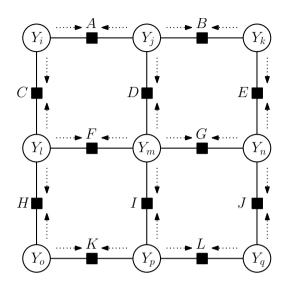
Since the local normalization constant z_F differs at each factor for loopy belief propagation, the exact value of the normalizing constant Z cannot be directly calculated. Instead, an approximation to the log partition function can be computed.

IN2329 - Probabilistic Graphical Models in Computer Vision

8. Belief propagation - 31 / 34

Remarks on loopy belief propagation





Loopy belief propagation is very popular, but has some problems:

- It might not converge (e.g., it can oscillate).
- Even if it does, the computed probabilities are only *approximate*.
- If there is a single cycle only in the graph, then it converges.

IN2329 - Probabilistic Graphical Models in Computer Vision

8. Belief propagation – 32 / 34

Summary *

■ We have discussed inference methods on *tree-structured* graphical models

◆ Probabilistic inference: Sum-product algorithm

◆ MAP inference: Max-sum algorithm

■ For general factor graphs: Loopy belief propagation

In the **next lecture** we will learn about

■ Human-pose estimation

■ Mean-field approximation: probabilistic inference via optimization (a.k.a. variational inference)

IN2329 - Probabilistic Graphical Models in Computer Vision

8. Belief propagation – 33 / 34

Literature *

- 1. Sebastian Nowozin and Christoph H. Lampert. Structured prediction and learning in computer vision. Foundations and Trends in Computer Graphics and Vision, 6(3–4), 2010
- 2. Daphne Koller and Nir Friedman. Probabilistic Graphical Models: Principles and Techniques. MIT Press, 2009
- 3. Judea Pearl. Probabilistic Reasoning in Intelligent Systems: Network of Plausible Inference. Morgan Kaufmann, 1988

IN2329 - Probabilistic Graphical Models in Computer Vision

8. Belief propagation - 34 / 34