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10. Sampling & Parameter learning

Csaba Domokos

Summer Semester 2015/2016

Agenda for today’s lecture * ‘ m

Sampling Parameter learning Sampling Parameter learning

Today we are going to learn about

m  Sampling
We wish to draw samples in general from a distribution. Moreover, we aim to
estimate expectations

E[f] = ) f(2)pz(2) . Sampling

Parameter learning
Consider an energy function for a parameter vector w:

E(y;x,w) = ’U’1Z Ei(yi
i€V

We aim to estimate optimal parameter vector w consisting of (positive)
weighting factors (like wy,we € RT) for E(y;x, w).
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Monte Carlo h Monte Carlo

Sampling Parameter learning Sampling Parameter learning

We wish to evaluate the expectation

E[f] =), f(2)pz(2) .

Note that the accuracy of the estimator f does not depend on the dimensionality
Monte Carlo is the art of approximating an expectation by the sample mean of a of z, but the number of samples n.
given function f. The general idea behind sampling is to obtain a set of i.i.d.
samples z() drawn from pz(z). If we have a method to obtain samples {y™®, ... y(™} from the distribution

We define the Monte Carlo estimator as p(y | x), then we can form an estimator, that is

1 n 1
Eypypole(e )]~ = 3 o(x,y®) .
i=1

The (weak) law of large numbers states that for any € > 0

lim P(|f ~E[f]| <€) =0.
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Basicisampling Rejection sampling *
Sampling Parameter learning Sampling Parameter learning

Let Z be a uniformly distributed random variable on the interval [0, 1] and h(y) be Suppose we wish to sample from a distribution p(z) that can be a relatively
a continuous and strictly monotonic cumulative distribution function. Then complex distributions, and that sampling directly from p(z) is difficult.

Y =hY(2) Furthermore suppose that we are easily
able to evaluate p(z) for any given
value of z, up to some normalizing
constant Z, so that

is a random variable with cumulative
distribution function (cdf.) h(y),
where h=1(y) is the inverse of h(y).
1.
The cdf. of the uniformly distributed Z ~ 1(0, 1) is given by B Z,p(‘) ’
?f z<0 where p(z) can readily be evaluated,
ifo<z<1 but Z, is unknown.

ifl<z.
We need for some simpler distribution ¢(z), called a proposal distribution, from

Therefore, the cdf. of Y is given by which we can readily draw samples. Let & be a constant such that kq(z) > p(z)
Fy(y) & P(Y <y) = P(h™}(2) < y) = P(Z < h(y)) = Fz(h(y)) = h(y) - for all values of z.
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Rejection.sampling *

Sampling Parameter learning

Adaptive rejection sampling *

Tnin

Sampling Parameter learning

1. Generate a sample 2y from the
distribution ¢(z).

2. Generate a sample
ug ~ U0, kq(z0)).

This pair of random samples has
uniform distribution under the curve of
the function kq(z).

If up > p(20) then the sample is rejected, otherwise wy is retained. Note that the
remaining pairs then have uniform distribution under the curve of p(z). Hence the
corresponding z values are distributed according to p(z).

The values of z are generated from ¢(z), and these samples are accepted with
probability p(z)/kq(z), therefore

b(2)

P('z is accepted’) = J Fa(2)

q(z)dz = %Jﬁ(z)dz .
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Markov chain *

1

Given a finite set )V and a matrix T € RY*Y| then a series of random variables

Sampling Parameter learning

Y1,Ys,. .. taking values from Y is called a (homogeneous) Markov chain with
transition matrix T, if

p(Ver1 =y | v =y, v = @Y, = y®)

=p(Yir1 =y | v =)

= Ty(t) D) -

Example: Let us consider a Markov chain with T € RY*Y where ) = {A,B, C}.
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T

If p(y*) converges to an invariant distribution as t — oo, then the Markov chain is
called ergodic.

Ergodic:Markov chain *

Parameter learning

Sampling

An ergodic Markov chain can have only one invariant distribution, which is referred
to as its equilibrium distribution.

The next theorem answers the question of when a Markov chain is ergodic.

Theorem 1. If a homogeneous Markov chain on a finite state space with
transition probabilities T, s has p* as an invariant distribution and

) . Ty,
min  min 2L
vy (y)>0 p*(Y)

)

then the Markov chain is ergodic, i.e., regardless the initial probabilities p(y(o))

lim p(y™®) = p*(y) -

t—0o0
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I

Metropolis-Hastings algorithm *

Sampling Parameter learning

In the case of log concave distributions, an envelope function can be constructed
using the tangent lines computed at a set of grid points.

A sample value is drawn from the envelope function considering as the scaled
proposal distribution kq(z).

Inp(2)

£

If a sample point is rejected, it is added to the set of grid points and used to refine
the envelope distribution.
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Il

Given the initial probabilities p(y(©)), this determines the behavior of the chain at
all times. By making use of T one can find p(Yi;1 = y**1) as follows:

P ) = > p@ Y,y D) = 3 D [y )py) = DTy yeropy?) -
¥o) ¥o) ¥o)
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Invariant.distribution *

Sampling Parameter learning

The distribution p*(y) is called invariant if
P = 2Ty ") -
v
The so-called detailed balance:
W) Ty =1 ) Ty y
provides a sufficient condition for a distribution to be invariant, since

Ty 0" () = 20" W) Ty = p* (1) Y, Ty = " () 2.0 | ) = p*(¥) -
y y Y y
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Markov Chain/Monte Carlo (MCMC) lm

Sampling Parameter learning

Let us consider rejection sampling, where the proposal distribution ¢(y’ | y) is a
conditional distribution such that the next sample 3’ depends only on the current
sample value y (i.e. Markov chain).

The probability of the acceptance of a new sample, therefore, can be written as
Py |y) =ay [ 9)AY,y) -
If the candidate sample is accepted, then y(t+1) =y’ otherwise the candidate

point y' is discarded, y(**1) is set to y(*) and another candidate sample is drawn
from the distribution g(y | y V).

Note that in rejection sampling, rejected samples are simply discarded.
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Metropolis-Hastings algorithm * m

Sampling Parameter learning
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Let us assume a proposal distribution q (that is not necessarily symmetric, i.e.
q@' | y) # q(y | v')) and let

A /
A y) = min <1vp(y)q(y \ y)) 4
'v) p(y)aly | y)
The detailed balance is satisfied, since

p(¥)aly | y’))

"p(W)ay | y)

’ %) =p(¥)aly [¥)AW:Y) = p(y) Ty y |

pW)Tyy =p(W)a¥ | Y) AW, y) = p(y)a(y' | y) min (1
50ty |/ i (1

A sample y’ is accepted with probability

Py 1x) " V1Y)
TPy [ x) gy’ | yE)

Aly',y*) = min (1

Input: 5(y | x) o p(y | ), unnormalized target distribution and ¢(y | y~1),
proposal distribution
Output: y®, sequence of samples with approximately y® ~ p(y | x)

1: y¥ « arbitrary in Y

2. fort=1,...,7 do

3 y ~aly | y®Y) > Generate candidate
. : #(y'[x) ay D]y’

4: 0 < min (17 Syt q(y,‘y(t_l))> > Compute accept. prob.
5 v y with pr-obabil?ty o (accept) = Update

y=1  otherwise (reject)
6. output y(®
7: end for
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Gibbs:sampling

Sampling Parameter learning

Geman and Geman proposed a simple MCMC algorithm which can be seen as a
special case of Metropolis-Hasting algorithm.

As usual ; will denote the it component of y. Moreover, we will use the notation
Y for yy\(iy. i-e. y; is omitted.

Each step of the Gibbs sampling procedure involves replacing the value of one of
the variables y; by a value drawn from the distribution of that variable conditioned
on the values of the remaining variables, that is

(t+1)

t
yY ey~ iy |y %)

This requires only the unnormalized distribution p and the normalization over a
single variable:
t
Py | %)
i
ey, P(i, y{i) [ x)

ey %)

iy [ %)
Py %)

P |y, %) O NERS
Zy,ey, p(yiv Y\i | X)
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Gibbs sampling as the special case of the
Metropolis-Hastings algorithm *

Sampling

1

Parameter learning

Consider a Metropolis-Hastings sampling step involving the variable y; in
which the remaining variables y\; remain fixed.

The transition probability from y*=1) to y’ is given by

a(y' | y"™) = p; | v %) -

Note that y{i = y{lt,_

step.

1 because these components are unchanged by the sampling

One can see that each proposal is then always accepted, i.e.

p(y' %) aily"V |y
Py [x) @iy’ [ ytD)
P ¥ %) iyl [ %)

p ™ 1y ) plyY

Ay, y ) =

- M ylx)

%) (! [y, %)
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Sampling Parameter learning

Parameter learning

Parameter learning

Sampling Parameter learning

Learning graphical models (from training data) is a way to find among a large class
of possible models a single one that is best in some sense for the task at hand.

We assume a fixed underlying graphical model with parameterized conditional
probability distribution
exp(—E(y;x, w)) =

Py | % w) = ;w)exp(—wa(x, ),

Z(x,w) Z(x,

where Z(x,w) = Zyey exp(—(w, p(x,y))). The only unknown quantity is the
parameter vector w, on which the energy E(y;x,w) depends linearly.

In principle each part of a graphical model (i.e. random variables, factors, and
parameters) can be learned. However we assume that the model structure and
parameterization are specified manually, and learning amounts to finding a vector
of real-valued parameters.

Gibbs:sampling

Tnin

Sampling Parameter learning

iy | %)
S yen By [ %)

()

pli vy x) =

HFEM(i) exp(—Er (¥, Y%)(p)\(i}Q xr))

2iev; renry xp(—Er (vi, yg\tl)(F)\(i}; xr))

The basic idea is that while sampling from p(y | x) is hard, sampling from the
conditional distributions p(y; | y\;,x) can be performed efficiently.
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Input: p(y | x,w) o p(y | x, w), unnormalized target distribution

Output: y®), sequence of samples with approximately y(© ~ p(y | x, w)
1: y(© « arbitrary in Y
2. fort=1,...,7 do

Gibbs sampler *

Sampling Parameter learning

3. y® — yt-1)
4: for i€V do eI
i, X
5 Sample ygt) ~ p(yi | y{?,x) = #;;y{?\x) > sweep
6: end for
7: output y(®
8: end for
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I

Parameterization

Sampling Parameter learning

Let us consider the following example for an energy function:

Bly;x)=Y Ei(yisxi) + Y, Eij(yi.yy) -
i€V (i,5)e€

Instead, one may want to apply weighting factors wq, w2 € Ry :

ey Bilyis xi)) ] )

. — . L. . .. . . _ wl
E(Ya X, W) = wlZ E’L(y’uxl) + U)ZZEU (yla y]) = <|:w2] 5 [Z(z‘,je}:') Eij(yivyj)

i€V (i,5)e€

In a more general form, one can write the energy functions as a linear
combination for a parameter vector w e RP, D = | F|:

wy EFl(yFl;xFl))
E(y;x?w) = < )

wp

= W,p(x,y))

Erp, (yFD§xFD))
[ ————

Probabilistic: parameter learning m

Sampling Parameter learning

Let d(y | x) be the (unknown) conditional distribution of labels for a problem to
be solved. For a parameterized conditional distribution p(y | x, w) with parameters
w € R, probabilistic parameter learning is the task of finding a point estimate
of the parameter w* that makes p(y | x, w*) closest to d(y | x).
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Probabilistic: parameter learning

Sampling Parameter learning

We aim at identifying a weight vector w* that makes p(y | x, w) as close to the
true conditional label distribution d(y | x) as possible. The label distribution

itself is unknown to us, but we have an i.i.d. sample set D = {(x",y")}n=1,..N

from d(x,y) that we can use for learning.

We now define what we mean by “closeness” between conditional distributions
p(y | x,w) and d(x,y) for any x € X, we measure the dissimilarity by making use
of Kullback-Leibler (KL) divergence:

d(y | x)

> d(y | x)log (

L{dlp) = poviy Bl
= ply [x,w)

From this we obtain a total measure of how much p differs from d by their
expected dissimilarity over all x € X:

D d(X)ZdY\X)log

xeX yey

d(y |x)

KLtot dHP yIx w)
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Maximum_conditional likelihood *

Sampling Parameter learning

By making use of i.i.d. assumption of the sample set D, we can write that

argmax By ) 108 P | 3, w)]

WE.

~ argmax Z logp(y™ | x", w)
weRPDP (xm,y")eD
N
=argmax log Hp " x" w)
weRP n=1
= argmax H p(y™ | x",w)
weRP g
=argmaxp(y',...,y" |x!,...,xV,w)
weRD

from which the name maximum conditional likelihood (MCL) stems.
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Probabilistic: parameter learning

Sampling Parameter learning

We choose the parameter w* that minimizes expected dissimilarity, i.e.

w* eargmm KLtot(d|p) = argmin Z d(x) Z (y | x)log Ay %)
weR weRP oy yey ( |X,W)
—argmax Y 3 dly | x)d0x) logp(y | x,w)
weRP sy yey
= argrna’x]]:T‘(x,y)wd(x,y) [Ing(y | X, W)] .
weRD

Unfortunately, we cannot compute this expression directly, because d(x,y) is
unknown to us. However, we can approximate it using the sample set D.

log p(y™ | x", w) = argmax Z log egxp(ig(v;(f(j;’yn»)

weRP T

A argmax Z
weRDP (xn y™)eD

N
X" y") + Z log Z(x",w) .

n=1

= argmin Z (W, p(x

weRP T
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Prior belief on p(w)

Sampling Parameter learning

When the number of training instances is small compared to the number of

degrees (D) of freedom in w, then the approximation
argmax B y)~agy) [log p(y | x, w)] ~ argmax D, logp(y™ | x",w)
weRP weRD (xn,y")eD

becomes unreliable, and w* will vary strongly with respect to the training set D,
which means MCL training is prone to overfitting.

To overcome this limitation, we treat w not as a deterministic parameter but as
yet another random variable. For any prior distribution p(w) over the space of
weight vectors, the posterior probability of w for given observations

D = {(x",y")}n=1,...~ is given by (see Exercise):

N

p(w | D) = p(w) [ [ 222

n=1

py" | X" w)
p(y™ [ x")
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Negative conditional log-likelihood *

Parameter learning

Sampling

Assume a prior distribution of p(w), then we can get

w* € argmax p(w | D)
weRP

= argmin{—log p(w | D)}

weRP
ply" [ x", w)
=argmin{ —log [ p(w) [ | =——2=
weRP { < 71_[1 ply™ | xm)
=argmin{ log p(w) — 2 log p(y" | x", w)
D

N
+ > logp(y™ | X")}
n=1

weR n=1
=argmin { — logp(w) — 2 logp(y"™ | x",w) } .
weRP n=1
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Regularized maximum conditional likelihoo

training

Sampling Parameter learning

Regularized. conditional log-likelihood *

Parameter learning

N
> logp(y™ | X",W)}

Sampling

w* = argmin {— log p(w) —

weRP

. . . 2
Assuming a zero-mean Gaussian prior p(w) o exp(—”;’i;”2 )

s cargmin {19 S
w argmm{ 952 Z ogp(y™ | x*,w)

weRP

N
fargmm{/\HWHQ + Z<w,eo LY, logZ(X",W)} ;
RD n=1 n=1
1
where A = 575.

The parameter \ is generally considered as a free hyper-parameter that determines
the regularization strength. Unregularized situation can be seen as the limit case
for A — 0.
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Negative conditional -leg-likelihood:
Toy example *

Sampling Parameter learning

Let p(y | x,w) = ﬁ exp(—(w, ¢(x,y))) be a probability distribution
parameterized by w € R?, and let D = {(x",y")}n=1,..n be a set of training
examples. For any A > 0, regularized maximum conditional likelihood

(RMCL) training chooses the parameter as

N
w e aurgmln)\HwH2 + Z(w,Ap(x YU+ Z log Z(x",w) .
n=1 n=1
For A = 0 the simplified rule
N N
w € argmin Z<w, e(x"y") + Z log Z(x", w)
weRP T n=1

results in maximum conditional likelihood (MCL) training.

Consider a simple CRF model with a single variable, where Y = {—1, +1}. We
define the energy function as

E(z,y,w) = wip1(z,y) + wapa(2,y) -

Assuming a training set D = {(—10, +1), (-4, +1), (6, —1), (5, —1)} with
0, ify=-1 z, ify=-1

T,y) = and T,y) = .
#1(@9) {x ify=+1 e2(@3) {0, fy=+1

©a=1 @ar=0

M)+ Xl log Z(a", w).

) A=10

1<W, 30(

() A =100

L(w) = M|w|? + 37
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Steepest_descent minimization *

Sampling Parameter learning

Gradient-based optimization

Sampling Parameter learning

Let us consider the negative conditional log-likelihood function

N N
L(w) = Alw|* + Y (w,o(x"y") + 3, log Z(x", w) .

n=1 n=1
Obviously, L is C*-differentiable, i.e. smooth function, on all RD,

1 Weyr < 0

2: repeat

3 d — —VwL(Weyr)

4 7« argmin, o L(Weyr + 7d)
5: Weur < Weur +1d

6: until |d| <e

7: return wg,,
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Hessian.of L(w) *

Sampling Parameter learning

By differentiating of Vy,L(w), the Hessian matrix (cf. Analysis I/Il) of L(w) is
given by (see Exercise):

N
AwL(w) = 2MI + Z (Ey~p(y\x",w) [p(x", y)p(x", Y)T]
n=1

- IEy~p(y|x",w) [Lp(xnv Y)]Ey'vp(y\x",w) [‘p(xnv y)]T> .

Reminder: for any random vector X the covariance Cov(X,X) can be written as:
Cov(X, X) 2 B[(X — E[X])(X — E[X])7] = E[XX"] — E[X]E[X]” .

Note that Ay L(w) is a covariance matrix, hence it is positive semi-definite.
Therefore, L(w) is convex, which guarantees that every local minimum will also
be a global one minimum of L(w).
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_Summary *

Sampling Parameter learning

The gradient vector (cf. Analysis I/Il) of L(w) is given by

N N
Vwl(w) =V <>\|\VV\|2 + ) (wop(x" ") + ) log Z(X"7W)>

n=1 n=1

N
:2)\w+2 (gp(x",y") + Z
n=1

yey

exp(—(w, p(x", ¥)))
Zy’ey exp(7<w7 W(Xnv y/)>)

(—w(X"yy))>

N
=2\w + Y (@(X”,y") -2y X"7W)<P(X"7Y)>
n=1

yey

=2 \w +

M=

(‘P(X"vyn) - IEy~p(y\x",w) [‘p(xan)]) .

n=1
Interpretation: we aim for expectation matching, i.e.
n

Sp(xnv y") = ]Ey'vp(y\x“,w) [‘P(Xna y)] for X11 e X0
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Gradient approximation via sampling

Sampling Parameter learning

M=

vWL(VV) =2\w + (@(x”, y") - ]Ey~p(y|x",w) [W(xnf Y)]) .

1

n:
In a naive way, the complexity of the gradient computation is O(KMND), where

B N is the number of samples,
B D is the dimension of weight vector, and
B K = max;ey |Vi| is (maximal) number of possible labels of each output nodes.

The computationally demanding part in the gradient computation has the form of
the expectation of p(x,y) with respect to the distribution p(y | x, w).

As we have seen sampling methods often offer a viable alternative, as they provide
a universal tool for evaluating expectations over random variables.
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Literature *

Sampling Parameter learning

Probabilistic parameter learning aims at identifying a weight vector w* that
makes p(y | x,w) close to the true conditional label distribution d(y | x) in
terms of the expected KL divergence.

This is achieved by regularized maximum conditional likelihood training for
A>0as

N N
w* € argmin L(w) = argmin A|w|? + Z(w, e(x"y") + Z log Z(x",w) .
weRD

weRP n=1 n=1

In the next lecture we will learn about various numerical solutions to calculate the
gradient

M=

vWL(VV) =2\w + (W(xnvyn) - IEy~p(y\x",w) [‘P(xnv}’)]) .

3
Il
—

Sampling
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