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The goal is to make prediction y € ), as good as possible, about unobserved
properties (e.g., class label) for a given data instance x € X.

In order to measure quality of prediction f : X — ) we define a loss function

. A:YxY R,
Loss function

that is A(y,y’) measures the cost of predicting y’ when the correct label is y.

Let us denote the model distribution by p(y | x) and the true (conditional) data
distribution by d(y | x). The quality of prediction can be expressed by the
expected loss:

RF(x) =By aiyio[Aly, f(x)] = 3] dly | x)A(y, f(x)
yey
x]Epr(y\x) [Ay, f(x)],
assuming that p(y | x) ~ d(y | x).
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0/1 loss * Hamming-loss *
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In general, the loss function is application dependent. Arguably on of the most Another popular choice of loss function is the Hamming-loss, which counts the
common loss functions for labelling tasks is the 0/1 loss, that is percentage of mis-labeled variables:

1, otherwise. i€V

0, ify—y
Aonly,y') [[yiy’]}f{ y=y Auly.y') = MZ[[yl#m

For example, in pixel-wise image segmentation, the Hamming-loss is proportional
to the number of mis-classified pixels, whereas the 0/1 loss assigns the same cost
to every labeling that is not pixel-by—pixel identical to the correct one.

Minimizing the expected loss of the 0/1 loss yields

y* ezngmm Ey<pyl) [Dop (v y')] = argmin Z p(y | x) A (y, y)
VY yey The expected loss of the Hamming-loss takes the form (see Exercise)
= argmin Z p(y | x) = argmin (1 — p(y’ | x)) = argmaxp(y’ | x) 1
YV yey, vy y'ey ey RY(x) =1- Mp(),i = f(x)ilx),
which is minimized by predicting with f(x); = argmax,,cy, p(Y; = y; | x).
This shows that the optimal prediction f(x) = y* in this case is given by MAP To evaluate this prediction rule, we rely on probabilistic inference.
inference.

= argmin E(y’;x) .
yey
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Agenda for today’s lecture *
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Probabilistic parameter learning is the task of estimating the parameter w that
minimizes the expected dissimilarity of a parameterized model distribution
p(y | x,w) and the (unknown) conditional data distribution d(y | x):

iy | %)
KLeot(dlp) = S dx) Y d(y | x) log —2 12 e L .
- ,; y% p(y | %, w) Probabilistic parameter learning

Loss minimizing parameter learning is the task of finding the parameter w such
that the expected prediction loss

E(x,y)wd(x‘y) [A(Y7 f(x))]

is as small as possible, where f(x) = argmaxyy p(y | x, w) is a prediction
function, d(x,y) is the (unknown) true data distribution, and A: Y x Y — R* is
a loss function.
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Recall: Regularized maximum: conditional

likelihood training
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Let p(y | x,w) = m exp(—w, p(x,y))) be a probability distribution
parameterized by w € RP, and let D = {(x",y™")}n=1,...n be aset of iid.
training examples. For any A > 0, regularized maximum conditional likelihood
training chooses the parameter as

w* € argmin L(w)

weRP
N N
= argmin A|w]|? + Z:<w7 px"y") + Z log Z(x",w) .
weRD n=1 n=1
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Stochastic gradient descent
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Numerical solution
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N
vWL(VV) =2Aw + Z (w(xn7yn) - ]Eywp(y|x",w) [W(xn,y)]) .

n=1

In a naive way, the complexity of the gradient computation is O(KMND).

N N
AJw[? + Y (w o(x", y™) + . log Z(x", w) .
n=1

n=1

In a naive way, the complexity of the line search is O(KIYIN D) (for each
evaluation of L), where

B N is the number of data samples,
B D is the dimension of weight vector,
B K = max;ey |Vi| is the (maximal) number of possible labels of each output

nodes.

IN2329 - Probabilistic Graphical Models in Computer Vision 11. Parameter learning — 10 / 34

Stochastic/gradient descent *
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If the training set D is too large, one can create a random subset D' = D and
estimate the gradient V L(w) on D’. In an extreme case, one may randomly
select only one sample and calculate the gradient

eg",y“)[/(w) =2\w + ‘P(X"ayn) - ]Ey'vp(y\x",w) [‘P(X"7Y)] .

This approach is called stochastic gradient descent (SGD).
Note that line search is not possible, therefore, we need for an extra parameter,
referred to as step-size 7, for each iteration (t =1,...,T).
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Using of theoutput structure
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Input: Step-sizes 1, ..., nr for all the T iterations.
Output: The learned weight vector w € RP.

1. w20

2. fort=1,...,7 do

3 (x™,y™) < a randomly chosen training example

a0 de -V L(w)

5: W — w + nd

6: end for

7: return w

If the step-size is chosen correctly (e.g., 7: = 7), then SGD converges to
argming,pp L(w). However, it needs more iterations than gradient descent, but
each iteration is (much) faster.
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Two-stage learning
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Assume a set of factors F in a factor graph model, such that the vector ¢(x,y)
decomposes as ¢(x,y) = [¢r(xp,yF)|rer. Thus

]Ey~p(y|x,w) [90(x7 Y)] = [Ey~p(y|x,w) [‘pF(va yF)]]FE]:
=[By s~y plxrwi) [P (XF Y )]l FeF |

where

Ey o p(yplxewe) [9F(XF, YF)] = Z p(yr | Xp, Wr)or(Xp,yF) -
YFEYFR

Factor marginals pup = p(yr | xp, wr) are generally (much) easier to calculate
than the complete conditional distribution p(y | x, w).

They can be either computed exactly (e.g., by applying Belief propagation yielding
complexity O(KFmaxl|V|N D), where |Finax| = maxper |N(F)] is the maximal
factor size) or approximated.
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Piecewise learning
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The idea here is to split learning of energy functions into two steps:

1.
2.

learning of unary energies via classifiers, and
learning of their importance and the weighting factors of pairwise (and
higher-order) energies.

BE(y;x) = Y wiBi(ys; o) + Y, wigEy(yi, ;) -
€V (i,4)e€’

As an advantage, it results in a faster learning method. However, if local classifiers
for E; perform badly, then CRF learning cannot fix it.
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Piecewise learning
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Loss function

Assume a set of factors F in a factor graph model, such that
o(x,y) = [¢r(xF, yF)]Fer-

We now approximate p(y | x, w) by a distribution that is a product over the
factors:

exp(—(Wr, or(XF,yF))) _

pew(y [x,w) = [ [ prlyr |xp,we) =[] Zp(xp, W)

FeF FeF

By minimizing the negative conditional log-likelihood function L(w), we get

N
w* e argmin L(w) ~ argmin A|w|? — Z log H pr(yr | Xp, WF)
weRP

weRP n=1 FeF
N N
=argmin )} N|wr® + Y (wr,or(xp.yE) + Y log Zr (xjp, wr) -
weRP per n=1 n=1

N N
w* eargmin Y Nwr|® + > (wp, or(xp, y5) + ) log Zp(xp, wr) .
weRP per n=1 n=1

Consequently, piecewise training chooses the parameters w* = [w}]rer as

N N
D W, or(xE,YE) + ) log Zp(xh, W) .

wi € argmin A|wrg|? +
wreR n=1

n=1
One can perform gradient-based training for each factor as long as the individual
factors remain small.

Comparing ppw(y | x, W) with the exact p(y | x, w), we see that the exact Z(w)
does not factorize into a product of simpler terms, whereas its piecewise
approximation Zpw (w) factorizes over the set of factors.

The simplification made by piece-wise training of CRFs resembles two-stage
learning.
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Loss-minimizing parameter learning

Regularized loss minimization
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Let us define the auxiliary function as
9(x,y;w) = —E(y;x,w) = ~(w,¢(x,y)) .

We aim to find the parameter w* that minimizes

]E(x,y)~d(x,y) [A(Y7 f(X)] = ]E(x,y)~d(x,y) [A(yv argn)l]axg(x, Y W))] .
ye

However, d(x,y) is unknown, hence we apply approximation:

N
1
Exy)~dpey) [A(Y, argmax g(x, y; w))] ~ D Ay, argmax g(x", y";w)) -
yey yey

n=1
Moreover, we add the regularizer \|w|? in order to avoid overfitting.
Therefore, we get a new objective, that is

N
1
w* € argmin \|w|? + — E A(y", argmax g(x",y"; w)) .
weRP anl yey
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Loss-minimizing parameter learning
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Let D = {(x!,y"),...,(x",y")} € X x Y be i.i.d. samples from the (unknown)
true data distribution d(x,y) and A : Y x Y — R™ be a loss function. The task is
to find a weight vector w that leads to minimal expected loss

B (x y)~dey) [A(Y, £(x))]

for a prediction function f(x) = argmaxycy g(X,y;w), where g: X' x ¥ > Ris
an auxiliary function that is parameterized by w € R”.

Pros:

B We directly optimize for the quantity of interest, i.e. the expected loss.

B We do not need to compute the partition function Z.

Cons:

B There is no probabilistic reasoning to find w.
B We need to know the loss function already at training time.

Digression: . Support Vector Machine *
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Let us consider the binary classification problem. Suppose we are given a set of
labeled points {(x!,t1),..., (xN,tV)}, where x™ € RP and t" € {—1,1} for all
n=1...,N.
The goal is to find a hyperplane y(x) := (w,x) + wy separating the input data
according to their label ¢™.
y=1
y=0
y=-1

margin

More precisely, y(x™) > 0 for points having t™ = 1 and y(x") < 0 for points
having t" = —1, that is " - y(x™) > 1 for all training points.

If such a hyperplane exists, then we say the training set is linearly separable.
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Digression: . Support Vector Machine *
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We want to solve the following minimzation problem:
w* € argmin |w| , subject to t"({w,x") +wp) =1, foralln=1,...,N.
w

Since the training set is not necessarily linearly separable , instead, we consider the
following minimization for A > 0

1
w* e argglin A|w| + N Z max(0,1 — t"((w,x") + wp)) .

n=1

where £(y) = max(0,1 — ty) is called the hinge loss function.
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Structured hinge loss
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Redefining the loss function

Loss function

Probabilistic parameter learning

Loss-minimizing parameter learning

w* € argmin A|w]|? +

N

1

~ 2 Aly", argmax g(x", y"; w)) .
weRP N Z yey

n=1

Note that the loss function A(y,argmax,.y g(x,y; w)) is piecewise constant,
hence it is discontinuous, therefore we cannot use gradient-based techniques.

As a remedy we will replace A(y,y’) with well behaved function £(x,y; w), i.e. it
is continuous and convex with respect to w.

Typically, ¢ is chosen such that it is an upper bound to A.
Therefore, we get a new objective, that is

N
1
w* € argmin \|w|? + — L(x"y" s w) .
remi [w] NE " y";w)

n=1
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Structured Support Vector Machine
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Let y = argmaxycy g(x",y; W), then
A", y) <A™ Y) + 9" 7 w) — g(x", ¥ W)
Smax(A(y",y) + g(x",y; W) — g(x", y"; w))

L0(x"y" W) .

The structured hinge loss ¢ provides an upper bound for the loss function A.
Note that ¢ is continuous and convex, since it is a maximum over affine functions.

We remark that
(3", w) Smax(Ay",y) + g(x", yiw) = g(<", ¥ w))
Y
= max (0, max (A(y",y) + g(x", y;w) — g(x", y"; W)))
yey

= ma'X(A(ynv y) - <W7 Sp(xn7 Y)> + <Wa @(xna yn)>) .
yey

Let g(x,y; W) = —(w, ¢(x,y)) be an auxiliary function parameterized by w € RP.

For any C' > 0, structured support vector machine (S-SVM) training chooses

the parameter 1 , C N
* e T -~ i n . n

w argmmZHWH + an=:1 (x",y",w)

weRP

with
Lx",y" W) = I;lgf(A(y”,y) = (W, o(x", y)) + (W, o(x", ")) -

Both probabilistic parameter learning and S-SVM do regularized risk minimization.
For probabilistic parameter learning, the regularized conditional log-likelihood
function can be written as:

N
+ Y log Y exp ((w,p(x", ) = (W, p(x",y™))) -

n=1 yey

Iw]?
202

w* € argmin
weRP
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S-SVM:: Toy example *
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Subgradient *
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Consider a simple CRF model with a single variable, where Y = {—1, +1}. We
define the energy function as

E(z,y,w) = wip1(z,y) + waepa(z,y) -
Assuming a training set D = {(—10, +1), (—4, +1), (6, —1), (5, —1)} with

0, ify=-1
z, ify=+1

z, ify=-1
0, ify=+1"

e1(z,y) = { and  @o(z,y) = {

() € =001 (b) C=0.10 (¢) € =100

w2+ § 20 maxyey (A(y™, ) — (W, p(x", y)) + (W, p(x™, y"))).
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Subgradient descent minimization *
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Let f:R” — R be a convex, but not necessarily differentiable, function. A vector
v € R is called a subgradient of f at wyg, if

f(w) = f(wo) +{v,w —wp) forall w.

f(Wo)+{v, w-wo)

Wo

Note that for differentiable f, the gradient v = V f(wyg) is the only subgradient.
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Numerical solution
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Input: Tolerance € > 0 and step-sizes 7;.
Output: The minimizer w of L.
1. w0
2: repeat
3 veVI¥L(w)
4 W — W — 1V
5: until L changed less than ¢
6: return w
This method converges to global minimum, but rather inefficient if the objective
function L is non-differentiable.

Remark: For step sizes satisfying diminishing step size conditions:
0

Jim 7 =0, and ;)m -

_ 1+m

convergence is guaranteed. For example 1, := ¢, for any m > 0.
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Calculating the subgradient
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. 1 2 c . n n n n
argmin 5wl + N;r;lgfm(y JY) — (WL p(x"y)) + (w, p(x™,y"))) -

As we have discussed, this function is non-differentiable. Therefore, we cannot use
gradient descent directly, so we have to use subgradients.

2(w)

For each y € ), £ is a linear function, since it is the maximum over all y € ). In
order to calculate the subgradient at wy, one may find the maximal (active) y,
and then use v = V{(wy).
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Subgradient _descent S-SVM learning
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1 c
argmin S [w|? + = > max(A(y",y) — (w, p(x",y)) + (w,0(x",y"))) -
wWeRD 2 N = yey

Let y € argmaxyey A(y™,y) — (W, p(x",y)).
A subgradient v is given by

N
v (%uww 1 2 m(AL"y) — o) + <W,¢(X",y”)>)>
1 cJ
>V <§HwH2 o D AR Y) — g9 + <w,¢<x",y")>>>
n=1

C N
=W+ N ngl _(p(xnvy) + (p(xn7yn) =V
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Stochastic subgradient descent S-SVM
learning *
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Input: Training set D = {(x',y!),...,(x",y")}, energies p(x,y), loss function
Aly,y’), regularizer C and step-sizes 7y, ..., nr for all the T iterations.
Output: the weight vector w for the prediction function
F(x) = argmaxyey —(w, 9(x,y)).
1. w0
2. fort=1,...,7 do
3: forn=1,...,N do

4 y < argma‘xyey A(y"7 y) - <W¢ @(xn7 Y)>
5: Ve —p(x",§) + e(x",y")
6 end for

o X
7: wewfnt(w+NZv")

n=1
[ —
v
8: end for
The step-size can be chosen as 7, = % forallt=1,...,T.
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Summary of S-SVM learning *

Loss function Probabilistic parameter learning Loss-minimizing parameter learning

Input: Training set D = {(x!,y!),...,(x",¥")}, energies p(x,y), loss function
Aly,y’), regularizer C' and step-sizes 11, ..., ny for all the T iterations.
Output: The weight vector w for the prediction function
F(x) = argmaxy ey —(w, 9(x,¥)).
1. w0
2. fort=1,...,7 do
3 (x™,y™) < a randomly chosen training example
4§ < argmaxy.y A(y",y) —<{w, o(x",y))
5: W W 1) (W + %(—go(x",y) + ‘P(xnvyn)))
6: end for

Note that each update step of w needs only one argmax-prediction, however we
will generally need many iterations until convergence.
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We are given a training set D = {(x,y'),...,(x",y")} = X x J and a problem
specific loss function A : Y x Y «— R.

The task is to learn parameter w for prediction function
f(x) = argmax —(w, ¢(x,y)) = argmin(w, ¢(x,y))
yey yey

that minimizes expected loss on the training set.

S-SVM solution derived by maximum margin framework:

(W, p(x",y)) < (W, o (™, y")) + Aly"™,y) »

that is the predicted output is enforced to be not worse than the correct one by a
margin.

We have seen that S-SVM learning ends up a convex optimization problem, but

it is non-differentiable. Furthermore it requires repeated argmax prediction.
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Next lecture: Summary of the course *
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Proba-
Bayesian bilistic
network EEET

learning

Graphical

Learning
models

Computer
Inference b

Proba- Vision
bilistic
inference
Object
detection
MAP Stereo
inference matching
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