

Csaba Domokos

Summer Semester 2015/2016

11. Parameter learning

Loss function

VIII

Loss function

The goal is to make prediction $y \in \mathcal{Y}$, as good as possible, about unobserved properties (e.g., class label) for a given data instance $x \in \mathcal{X}$.

In order to measure quality of **prediction** $f: \mathcal{X} \to \mathcal{Y}$ we define a loss function

$$\Delta: \mathcal{Y} \times \mathcal{Y} \rightarrow \mathbb{R}^+$$
 ,

that is $\Delta(y, y')$ measures the cost of predicting y' when the correct label is y.

Let us denote the model distribution by $p(\mathbf{y} \mid \mathbf{x})$ and the true (conditional) data distribution by $d(y \mid x)$. The quality of prediction can be expressed by the

$$\begin{split} \mathcal{R}_f^{\Delta}(\mathbf{x}) := & \mathbb{E}_{\mathbf{y} \sim d(\mathbf{y} \mid \mathbf{x})} [\Delta(\mathbf{y}, f(\mathbf{x}))] = \sum_{\mathbf{y} \in \mathcal{Y}} d(\mathbf{y} \mid \mathbf{x}) \Delta(\mathbf{y}, f(\mathbf{x})) \\ \approx & \mathbb{E}_{\mathbf{y} \sim p(\mathbf{y} \mid \mathbf{x})} [\Delta(\mathbf{y}, f(\mathbf{x}))] \;, \end{split}$$

assuming that $p(\mathbf{y} \mid \mathbf{x}) \approx d(\mathbf{y} \mid \mathbf{x})$.

0/1 loss *

In general, the loss function is application dependent. Arguably on of the most common loss functions for labelling tasks is the 0/1 loss, that is

$$\Delta_{0/1}(\mathbf{y}, \mathbf{y}') = [\![\mathbf{y} \neq \mathbf{y}']\!] = \begin{cases} 0, & \text{if } \mathbf{y} = \mathbf{y}' \\ 1, & \text{otherwise.} \end{cases}$$

Minimizing the expected loss of the 0/1 loss yields

$$\begin{split} \mathbf{y}^* &\in \underset{\mathbf{y}' \in \mathcal{Y}}{\operatorname{argmin}} \, \mathbb{E}_{\mathbf{y} \sim p(\mathbf{y} \mid \mathbf{x})} \big[\Delta_{0/1}(\mathbf{y}, \mathbf{y}') \big] = \underset{\mathbf{y}' \in \mathcal{Y}}{\operatorname{argmin}} \, \sum_{\mathbf{y} \in \mathcal{Y}} p(\mathbf{y} \mid \mathbf{x}) \Delta_{0/1}(\mathbf{y}, \mathbf{y}') \\ &= \underset{\mathbf{y}' \in \mathcal{Y}}{\operatorname{argmin}} \, \sum_{\mathbf{y} \in \mathcal{Y}, \, \mathbf{y} \neq \mathbf{y}'} p(\mathbf{y} \mid \mathbf{x}) = \underset{\mathbf{y}' \in \mathcal{Y}}{\operatorname{argmin}} \, \big(1 - p(\mathbf{y}' \mid \mathbf{x}) \big) = \underset{\mathbf{y}' \in \mathcal{Y}}{\operatorname{argmax}} \, p(\mathbf{y}' \mid \mathbf{x}) \\ &= \underset{\mathbf{y}' \in \mathcal{Y}}{\operatorname{argmin}} \, E(\mathbf{y}'; \mathbf{x}) \; . \end{split}$$

This shows that the *optimal* prediction $f(\mathbf{x}) = \mathbf{y}^*$ in this case is given by **MAP** inference.

Hamming-loss *

Another popular choice of loss function is the Hamming-loss, which counts the percentage of mis-labeled variables:

$$\Delta_{\mathsf{H}}(\mathbf{y}, \mathbf{y}') = \frac{1}{|\mathcal{V}|} \sum_{i \in \mathcal{V}} \llbracket y_i \neq y_i' \rrbracket.$$

For example, in pixel-wise image segmentation, the Hamming-loss is proportional to the number of mis-classified pixels, whereas the $0/1\ \mbox{loss}$ assigns the same cost to every labeling that is not pixel-by-pixel identical to the correct one.

The expected loss of the Hamming-loss takes the form (see Exercise)

$$\mathcal{R}_f^{\mathsf{H}}(\mathbf{x}) = 1 - \frac{1}{|\mathcal{V}|} p(Y_i = f(\mathbf{x})_i \mid \mathbf{x}) ,$$

which is minimized by predicting with $f(\mathbf{x})_i = \operatorname{argmax}_{y_i \in \mathcal{Y}_i} p(Y_i = y_i \mid \mathbf{x})$. To evaluate this prediction rule, we rely on probabilistic inference.

Agenda for today's lecture *

Probabilistic parameter learning

Probabilistic parameter learning is the task of estimating the parameter w that minimizes the expected dissimilarity of a parameterized model distribution $p(\mathbf{y} \mid \mathbf{x}, \mathbf{w})$ and the (unknown) conditional data distribution $d(\mathbf{y} \mid \mathbf{x})$:

$$\mathsf{KL}_{\mathsf{tot}}(d\|p) = \sum_{\mathbf{x} \in \mathcal{X}} d(\mathbf{x}) \sum_{\mathbf{y} \in \mathcal{Y}} d(\mathbf{y} \mid \mathbf{x}) \log \frac{d(\mathbf{y} \mid \mathbf{x})}{p(\mathbf{y} \mid \mathbf{x}, \mathbf{w})}.$$

Loss minimizing parameter learning is the task of finding the parameter $\ensuremath{\mathbf{w}}$ such that the expected prediction loss

$$\mathbb{E}_{(\mathbf{x},\mathbf{y}) \sim d(\mathbf{x},\mathbf{y})}[\Delta(\mathbf{y}, f(\mathbf{x}))]$$

is as small as possible, where $f(\mathbf{x}) = \operatorname{argmax}_{\mathbf{y} \in \mathcal{Y}} p(\mathbf{y} \mid \mathbf{x}, \mathbf{w})$ is a prediction function, $d(\mathbf{x}, \mathbf{y})$ is the (unknown) true data distribution, and $\Delta : \mathcal{Y} \times \mathcal{Y} \to \mathbb{R}^+$ is a loss function.

Probabilistic parameter learning

Recall: Regularized maximum conditional likelihood training *

Let $p(\mathbf{y} \mid \mathbf{x}, \mathbf{w}) = \frac{1}{Z(\mathbf{x}, \mathbf{w})} \exp(-\langle \mathbf{w}, \varphi(\mathbf{x}, \mathbf{y}) \rangle)$ be a probability distribution parameterized by $\mathbf{w} \in \mathbb{R}^D$, and let $\mathcal{D} = \{(\mathbf{x}^n, \mathbf{y}^n)\}_{n=1,\dots,N}$ be a set of i.i.d. training examples. For any $\lambda > 0$, regularized maximum conditional likelihood training chooses the parameter as

$$\begin{split} \mathbf{w}^* &\in \operatorname*{argmin}_{\mathbf{w} \in \mathbb{R}^D} L(\mathbf{w}) \\ &= \operatorname*{argmin}_{\mathbf{w} \in \mathbb{R}^D} \lambda \|\mathbf{w}\|^2 + \sum_{n=1}^N \langle \mathbf{w}, \varphi(\mathbf{x}^n, \mathbf{y}^n) \rangle + \sum_{n=1}^N \log Z(\mathbf{x}^n, \mathbf{w}) \;. \end{split}$$

$$\nabla_{\mathbf{w}} L(\mathbf{w}) = 2\lambda \mathbf{w} + \sum_{n=1}^{N} \left(\varphi(\mathbf{x}^{n}, \mathbf{y}^{n}) - \mathbb{E}_{\mathbf{y} \sim p(\mathbf{y}|\mathbf{x}^{n}, \mathbf{w})} [\varphi(\mathbf{x}^{n}, \mathbf{y})] \right) .$$

Numerical solution

In a naı̈ve way, the complexity of the gradient computation is $\mathcal{O}(K^{|\mathcal{V}|}ND)$

$$\lambda \|\mathbf{w}\|^2 + \sum_{n=1}^N \langle \mathbf{w}, \varphi(\mathbf{x}^n, \mathbf{y}^n) \rangle + \sum_{n=1}^N \log Z(\mathbf{x}^n, \mathbf{w}).$$

In a naı̈ve way, the complexity of the $\mathit{line}\ \mathit{search}\ \mathsf{is}\ \mathcal{O}(K^{|\mathcal{V}|}ND)$ (for each evaluation of L), where

- N is the number of data samples.
- D is the dimension of weight vector,
- $K = \max_{i \in \mathcal{V}} |\mathcal{Y}_i|$ is the (maximal) number of possible labels of each output

Stochastic gradient descent

If the training set $\mathcal D$ is too large, one can create a random subset $\mathcal D'\subset \mathcal D$ and estimate the gradient $\nabla_{\mathbf{w}} L(\mathbf{w})$ on \mathcal{D}' . In an extreme case, one may randomly select only one sample and calculate the gradient

$$\tilde{\nabla}_{\mathbf{w}}^{(\mathbf{x}^n, \mathbf{y}^n)} L(\mathbf{w}) = 2\lambda \mathbf{w} + \varphi(\mathbf{x}^n, \mathbf{y}^n) - \mathbb{E}_{\mathbf{y} \sim p(\mathbf{y} | \mathbf{x}^n, \mathbf{w})} [\varphi(\mathbf{x}^n, \mathbf{y})] .$$

This approach is called stochastic gradient descent (SGD).

Note that line search is not possible, therefore, we need for an extra parameter, referred to as step-size η_t for each iteration (t = 1, ..., T).

Assume a set of factors \mathcal{F} in a factor graph model, such that the vector $\varphi(\mathbf{x}, \mathbf{y})$ decomposes as $\varphi(\mathbf{x}, \mathbf{y}) = [\varphi_F(\mathbf{x}_F, \mathbf{y}_F)]_{F \in \mathcal{F}}$. Thus

Using of the output structure

$$\begin{split} \mathbb{E}_{\mathbf{y} \sim p(\mathbf{y}|\mathbf{x}, \mathbf{w})}[\varphi(\mathbf{x}, \mathbf{y})] = & [\mathbb{E}_{\mathbf{y} \sim p(\mathbf{y}|\mathbf{x}, \mathbf{w})}[\varphi_F(\mathbf{x}_F, \mathbf{y}_F)]]_{F \in \mathcal{F}} \\ = & [\mathbb{E}_{\mathbf{y}_F \sim p(\mathbf{y}_F|\mathbf{x}_F, \mathbf{w}_F)}[\varphi_F(\mathbf{x}_F, \mathbf{y}_F)]]_{F \in \mathcal{F}} \ , \end{split}$$

where

$$\mathbb{E}_{\mathbf{y}_F \sim p(\mathbf{y}_F \mid \mathbf{x}_F, \mathbf{w}_F)} [\varphi_F(\mathbf{x}_F, \mathbf{y}_F)] = \sum_{\mathbf{y}_F \in \mathcal{Y}_F} p(\mathbf{y}_F \mid \mathbf{x}_F, \mathbf{w}_F) \varphi_F(\mathbf{x}_F, \mathbf{y}_F).$$

Factor marginals $\mu_F = p(\mathbf{y}_F \mid \mathbf{x}_F, \mathbf{w}_F)$ are generally (much) easier to calculate than the complete conditional distribution $p(\mathbf{y} \mid \mathbf{x}, \mathbf{w})$.

They can be either computed exactly (e.g., by applying Belief propagation yielding complexity $\mathcal{O}(K^{|F_{\mathsf{max}}|}|\mathcal{V}|ND)$, where $|F_{\mathsf{max}}| = \max_{F \in \mathcal{F}} |N(F)|$ is the maximal factor size) or approximated.

Piecewise learning

Probabilistic parameter learning

 $\varphi(\mathbf{x}, \mathbf{y}) = [\varphi_F(\mathbf{x}_F, \mathbf{y}_F)]_{F \in \mathcal{F}}.$

$$p_{\mathsf{PW}}(\mathbf{y} \mid \mathbf{x}, \mathbf{w}) := \prod_{F \in \mathcal{F}} p_F(\mathbf{y}_F \mid \mathbf{x}_F, \mathbf{w}_F) = \prod_{F \in \mathcal{F}} \frac{\exp(-\langle \mathbf{w}_F, \varphi_F(\mathbf{x}_F, \mathbf{y}_F) \rangle)}{Z_F(\mathbf{x}_F, \mathbf{w}_F)}$$

By minimizing the negative conditional log-likelihood function $L(\mathbf{w})$, we get

$$\mathbf{w}^* \in \underset{\mathbf{w} \in \mathbb{R}^D}{\operatorname{argmin}} L(\mathbf{w}) \approx \underset{\mathbf{w} \in \mathbb{R}^D}{\operatorname{argmin}} \lambda \|\mathbf{w}\|^2 - \sum_{n=1}^N \log \prod_{F \in \mathcal{F}} p_F(\mathbf{y}_F^n \mid \mathbf{x}_F^n, \mathbf{w}_F)$$
$$= \underset{\mathbf{w} \in \mathbb{R}^D}{\operatorname{argmin}} \sum_{F \in \mathcal{F}} \lambda \|\mathbf{w}_F\|^2 + \sum_{n=1}^N \langle \mathbf{w}_F, \varphi_F(\mathbf{x}_F^n, \mathbf{y}_F^n) \rangle + \sum_{n=1}^N \log Z_F(\mathbf{x}_F^n, \mathbf{w}_F)$$

THE P

Stochastic gradient descent *

Input: Step-sizes η_1, \dots, η_T for all the T iterations.

Output: The learned weight vector $\mathbf{w} \in \mathbb{R}^D$

- 2: for $t=1,\ldots,T$ do
- $\begin{array}{l} (\mathbf{x}^n,\mathbf{y}^n) \leftarrow \text{a randomly chosen training example} \\ \mathbf{d} \leftarrow -\tilde{\nabla}_{\mathbf{w}}^{(\mathbf{x}^n,\mathbf{y}^n)}L(\mathbf{w}) \end{array}$

- 6: end for
- 7: return w

If the step-size is chosen correctly (e.g., $\eta_t = \frac{\eta}{t}$), then SGD converges to $\operatorname{argmin}_{\mathbf{w} \in \mathbb{R}^D} L(\mathbf{w})$. However, it needs more iterations than *gradient descent*, but each iteration is (much) faster.

U. I

Two-stage learning

The idea here is to split learning of energy functions into two steps:

- learning of unary energies via classifiers, and
- learning of their importance and the weighting factors of pairwise (and higher-order) energies.

$$E(\mathbf{y}; \mathbf{x}) = \sum_{i \in \mathcal{V}} w_i E_i(y_i; x_i) + \sum_{(i,j) \in \mathcal{E}'} w_{ij} E_{ij}(y_i, y_j) .$$

As an advantage, it results in a faster learning method. However, if local classifiers for E_i perform badly, then CRF learning cannot fix it.

Piecewise learning

 $\mathbf{w}^* \in \operatorname*{argmin}_{\mathbf{w} \in \mathbb{R}^D} \sum_{F \subset T} \lambda \|\mathbf{w}_F\|^2 + \sum_{n=1}^N \langle \mathbf{w}_F, \varphi_F(\mathbf{x}_F^n, \mathbf{y}_F^n) \rangle + \sum_{r=1}^N \log Z_F(\mathbf{x}_F^n, \mathbf{w}_F) \; .$

 $\mathbf{w}_F^* \in \operatorname*{argmin}_{\mathbf{w}_F \in \mathbb{R}} \lambda \|\mathbf{w}_F\|^2 + \sum_{n=1}^N \langle \mathbf{w}_F, \varphi_F(\mathbf{x}_F^n, \mathbf{y}_F^n) \rangle + \sum_{n=1}^N \log Z_F(\mathbf{x}_F^n, \mathbf{w}_F) \; .$

One can perform gradient-based training for each factor as long as the individual

Comparing $p_{PW}(\mathbf{y} \mid \mathbf{x}, \mathbf{w})$ with the exact $p(\mathbf{y} \mid \mathbf{x}, \mathbf{w})$, we see that the exact $Z(\mathbf{w})$ does not factorize into a product of simpler terms, whereas its piecewise

Consequently, piecewise training chooses the parameters $\mathbf{w}^* = [\mathbf{w}_F^*]_{F \in \mathcal{F}}$ as

Probabilistic parameter learning

Assume a set of factors $\mathcal F$ in a factor graph model, such that

We now approximate $p(\mathbf{y} \mid \mathbf{x}, \mathbf{w})$ by a distribution that is a product over the

$$\mathbf{w} \in \mathbb{R}^{D} \qquad \mathbf{w} \in \mathbb{R}^{D} \qquad \sum_{\mathbf{m}=1}^{N} \frac{1}{F} = \sum_{F \in \mathcal{F}}^{N} \left(\mathbf{w}_{F} \| \mathbf{w}_{F} \|^{2} + \sum_{n=1}^{N} \left\langle \mathbf{w}_{F}, \varphi_{F}(\mathbf{x}_{F}^{n}, \mathbf{y}_{F}^{n}) \right\rangle + \sum_{n=1}^{N} \log Z_{F}(\mathbf{x}_{F}^{n}, \mathbf{w}_{F}) .$$

approximation $Z_{PW}(\mathbf{w})$ factorizes over the set of factors. The simplification made by piece-wise training of CRFs resembles two-stage learning

Loss-minimizing parameter learning

Loss-minimizing parameter learning

Let $\mathcal{D} = \{(\mathbf{x}^1, \mathbf{y}^1), \dots, (\mathbf{x}^N, \mathbf{y}^N)\} \subseteq \mathcal{X} \times \mathcal{Y}$ be *i.i.d.* samples from the (unknown) true data distribution $d(\mathbf{x}, \mathbf{y})$ and $\Delta : \mathcal{Y} \times \mathcal{Y} \to \mathbb{R}^+$ be a loss function. The task is to find a weight vector \mathbf{w} that leads to minimal expected loss

$$\mathbb{E}_{(\mathbf{x},\mathbf{y})\sim d(\mathbf{x},\mathbf{y})}[\Delta(\mathbf{y},f(\mathbf{x}))]$$

for a prediction function $f(\mathbf{x}) = \operatorname{argmax}_{\mathbf{y} \in \mathcal{Y}} g(\mathbf{x}, \mathbf{y}; \mathbf{w})$, where $g: \mathcal{X} \times \mathcal{Y} \to \mathbb{R}$ is an **auxiliary function** that is parameterized by $\mathbf{w} \in \mathbb{R}^D$

Pros:

- We directly optimize for the quantity of interest, i.e. the expected loss.
- We do not need to compute the partition function ${\cal Z}.$

Cons:

- There is no probabilistic reasoning to find w.
- We need to know the loss function already at training time.

Ultita

Regularized loss minimization

Let us define the auxiliary function as

$$g(\mathbf{x}, \mathbf{y}; \mathbf{w}) := -E(\mathbf{y}; \mathbf{x}, \mathbf{w}) = -\langle \mathbf{w}, \varphi(\mathbf{x}, \mathbf{y}) \rangle$$
.

We aim to find the parameter \mathbf{w}^* that minimizes

$$\mathbb{E}_{(\mathbf{x}, \mathbf{y}) \sim d(\mathbf{x}, \mathbf{y})} [\Delta(\mathbf{y}, f(\mathbf{x}))] = \mathbb{E}_{(\mathbf{x}, \mathbf{y}) \sim d(\mathbf{x}, \mathbf{y})} [\Delta(\mathbf{y}, \underset{\mathbf{y} \in \mathcal{Y}}{\operatorname{argmax}} g(\mathbf{x}, \mathbf{y}; \mathbf{w}))] .$$

However, $d(\mathbf{x},\mathbf{y})$ is unknown, hence we apply approximation

$$\mathbb{E}_{(\mathbf{x},\mathbf{y}) \sim d(\mathbf{x},\mathbf{y})} [\Delta(\mathbf{y}, \underset{\mathbf{y} \in \mathcal{Y}}{\operatorname{argmax}} g(\mathbf{x}, \mathbf{y}; \mathbf{w}))] \approx \frac{1}{N} \sum_{n=1}^{N} \Delta(\mathbf{y}^{n}, \underset{\mathbf{y} \in \mathcal{Y}}{\operatorname{argmax}} g(\mathbf{x}^{n}, \mathbf{y}^{n}; \mathbf{w})) .$$

Moreover, we add the **regularizer** $\lambda \|\mathbf{w}\|^2$ in order to avoid *overfitting*.

Therefore, we get a new objective, that is

$$\mathbf{w}^* \in \operatorname*{argmin}_{\mathbf{w} \in \mathbb{R}^D} \lambda \|\mathbf{w}\|^2 + \frac{1}{N} \sum_{n=1}^N \Delta(\mathbf{y}^n, \operatorname*{argmax}_{\mathbf{y} \in \mathcal{Y}} g(\mathbf{x}^n, \mathbf{y}^n; \mathbf{w}))$$

Digression: Support Vector Machine

Let us consider the binary classification problem. Suppose we are given a set of labeled points $\{(\mathbf{x}^1, t^1), \dots, (\mathbf{x}^N, t^N)\}$, where $\mathbf{x}^n \in \mathbb{R}^D$ and $t^n \in \{-1, 1\}$ for all n = 1, ..., N

The goal is to find a hyperplane $y(\mathbf{x}) := \langle \mathbf{w}, \mathbf{x} \rangle + w_0$ separating the input data according to their label t^n

More precisely, $y(\mathbf{x}^n) > 0$ for points having $t^n = 1$ and $y(\mathbf{x}^n) < 0$ for points having $t^n = -1$, that is $t^n \cdot y(\mathbf{x}^n) \ge 1$ for all training points.

If such a hyperplane exists, then we say the training set is linearly separable.

Digression: Support Vector Machine *

We want to solve the following minimzation problem:

$$\mathbf{w}^* \in \operatorname*{argmin}_{\mathbf{w}} \|\mathbf{w}\| \;, \; \text{subject to} \; t^n(\langle \mathbf{w}, \mathbf{x}^n \rangle + w_0) \geqslant 1 \;, \; \text{for all} \; n = 1, \dots, N \;.$$

Since the training set is not necessarily linearly separable, instead, we consider the following minimization for $\lambda>0$

$$\mathbf{w}^* \in \underset{\mathbf{w}}{\operatorname{argmin}} \lambda \|\mathbf{w}\| + \frac{1}{N} \sum_{n=1}^{N} \max(0, 1 - t^n(\langle \mathbf{w}, \mathbf{x}^n \rangle + w_0)).$$

where $\ell(y) = \max(0, 1 - ty)$ is called the **hinge loss** function.

Redefining the loss function

$$\mathbf{w}^* \in \operatorname*{argmin}_{\mathbf{w} \in \mathbb{R}^D} \lambda \|\mathbf{w}\|^2 + \frac{1}{N} \sum_{n=1}^N \Delta(\mathbf{y}^n, \operatorname*{argmax}_{\mathbf{y} \in \mathcal{Y}} g(\mathbf{x}^n, \mathbf{y}^n; \mathbf{w})) \; .$$

Note that the loss function $\Delta(\mathbf{y}, \operatorname{argmax}_{\mathbf{y} \in \mathcal{Y}} g(\mathbf{x}, \mathbf{y}; \mathbf{w}))$ is piecewise constant, hence it is discontinuous, therefore we cannot use gradient-based techniques.

As a remedy we will replace $\Delta(\mathbf{y}, \mathbf{y}')$ with well behaved function $\ell(\mathbf{x}, \mathbf{y}; \mathbf{w})$, i.e. it is continuous and convex with respect to w.

Typically, ℓ is chosen such that it is an **upper bound** to Δ .

Therefore, we get a new objective, that is

$$\mathbf{w}^* \in \operatornamewithlimits{argmin}_{\mathbf{w} \in \mathbb{R}^D} \lambda \|\mathbf{w}\|^2 + \frac{1}{N} \sum_{n=1}^N \ell(\mathbf{x}^n, \mathbf{y}^n; \mathbf{w}) \;.$$

Structured hinge loss

Probabilistic parameter learning

$$\begin{split} \Delta(\mathbf{y}^n, \bar{\mathbf{y}}) \leqslant & \Delta(\mathbf{y}^n, \bar{\mathbf{y}}) + g(\mathbf{x}^n, \bar{\mathbf{y}}; \mathbf{w}) - g(\mathbf{x}^n, \mathbf{y}^n; \mathbf{w}) \\ \leqslant & \max_{\mathbf{y} \in \mathcal{Y}} (\Delta(\mathbf{y}^n, \mathbf{y}) + g(\mathbf{x}^n, \mathbf{y}; \mathbf{w}) - g(\mathbf{x}^n, \mathbf{y}^n; \mathbf{w})) \\ & \stackrel{\triangle}{=} \ell(\mathbf{x}^n, \mathbf{y}^n, \mathbf{w}) \; . \end{split}$$

The **structured hinge loss** ℓ provides an upper bound for the *loss function* Δ . Note that ℓ is continuous and convex, since it is a maximum over affine functions.

We remark that

$$\begin{split} \ell(\mathbf{x}^n, \mathbf{y}^n, \mathbf{w}) & \stackrel{\Delta}{=} \max_{\mathbf{y} \in \mathcal{Y}} (\Delta(\mathbf{y}^n, \mathbf{y}) + g(\mathbf{x}^n, \mathbf{y}; \mathbf{w}) - g(\mathbf{x}^n, \mathbf{y}^n; \mathbf{w})) \\ &= \max \left(0, \max_{\mathbf{y} \in \mathcal{Y}} \left(\Delta(\mathbf{y}^n, \mathbf{y}) + g(\mathbf{x}^n, \mathbf{y}; \mathbf{w}) - g(\mathbf{x}^n, \mathbf{y}^n; \mathbf{w}) \right) \right) \\ &= \max_{\mathbf{y} \in \mathcal{Y}} (\Delta(\mathbf{y}^n, \mathbf{y}) - \langle \mathbf{w}, \varphi(\mathbf{x}^n, \mathbf{y}) \rangle + \langle \mathbf{w}, \varphi(\mathbf{x}^n, \mathbf{y}^n) \rangle) \; . \end{split}$$

Structured Support Vector Machine

Probabilistic parameter learning

Let $g(\mathbf{x}, \mathbf{y}; \mathbf{w}) = -\langle \mathbf{w}, \varphi(\mathbf{x}, \mathbf{y}) \rangle$ be an *auxiliary function* parameterized by $\mathbf{w} \in \mathbb{R}^D$. For any C > 0, structured support vector machine (S-SVM) training chooses the parameter

 $\mathbf{w}^* \in \operatorname*{argmin}_{\mathbf{w} \in \mathbb{R}^D} \frac{1}{2} \|\mathbf{w}\|^2 + \frac{C}{N} \sum_{n=1}^N \ell(\mathbf{x}^n, \mathbf{y}^n, \mathbf{w})$

with

$$\ell(\mathbf{x}^n, \mathbf{y}^n, \mathbf{w}) = \max_{\mathbf{y} \in \mathcal{Y}} (\Delta(\mathbf{y}^n, \mathbf{y}) - \langle \mathbf{w}, \varphi(\mathbf{x}^n, \mathbf{y}) \rangle + \langle \mathbf{w}, \varphi(\mathbf{x}^n, \mathbf{y}^n) \rangle) \; .$$

Both probabilistic parameter learning and S-SVM do regularized risk minimization. For probabilistic parameter learning, the regularized conditional log-likelihood function can be written as:

$$\mathbf{w}^* \in \operatorname*{argmin}_{\mathbf{w} \in \mathbb{R}^D} \frac{\|\mathbf{w}\|^2}{2\sigma^2} + \sum_{n=1}^N \log \sum_{\mathbf{y} \in \mathcal{Y}} \exp\left(\langle \mathbf{w}, \varphi(\mathbf{x}^n, \mathbf{y}) \rangle - \langle \mathbf{w}, \varphi(\mathbf{x}^n, \mathbf{y}^n) \rangle\right) \,.$$

Consider a simple CRF model with a single variable, where $\mathcal{Y} = \{-1, +1\}$. We define the energy function as

$$E(x, y, \mathbf{w}) = w_1 \varphi_1(x, y) + w_2 \varphi_2(x, y) .$$

Assuming a training set $\mathcal{D} = \{(-10, +1), (-4, +1), (6, -1), (5, -1)\}$ with

$$\varphi_1(x,y) = \begin{cases} 0, & \text{if } y = -1 \\ x, & \text{if } y = +1 \end{cases} \quad \text{and} \quad \varphi_2(x,y) = \begin{cases} x, & \text{if } y = -1 \\ 0, & \text{if } y = +1 \end{cases}.$$

Subgradient descent minimization *

Input: Tolerance $\epsilon > 0$ and step-sizes n_t .

Output: The minimizer \mathbf{w} of L.

- 1: w ← 0
- 2: repeat
- $\mathbf{v} \in \nabla^{\mathsf{sub}}_{\mathbf{w}} L(\mathbf{w})$
- $\mathbf{w} \leftarrow \mathbf{w} \eta_t \mathbf{v}$
- 5: until L changed less than ϵ
- 6: return w

This method converges to global minimum, but rather inefficient if the objective function L is non-differentiable

Remark: For step sizes satisfying diminishing step size conditions:

$$\lim_{t\to\infty}\eta_t=0\;,\;\text{and}\;\sum_{t=0}^\infty\eta_t\to\infty$$

convergence is guaranteed. For example $\eta_t := \frac{1+m}{t+m}$ for any $m \geqslant 0$.

Calculating the subgradient

Let $\bar{\mathbf{y}} \in \operatorname{argmax}_{\mathbf{y} \in \mathcal{Y}} \Delta(\mathbf{y}^n, \mathbf{y}) - \langle \mathbf{w}, \varphi(\mathbf{x}^n, \mathbf{y}) \rangle$. A subgradient \mathbf{v} is given by

$$\begin{split} & \nabla_{\mathbf{w}}^{\mathsf{sub}} \left(\frac{1}{2} \|\mathbf{w}\|^2 + \frac{C}{N} \sum_{n=1}^{N} \max_{\mathbf{y} \in \mathcal{Y}} (\Delta(\mathbf{y}^n, \mathbf{y}) - \langle \mathbf{w}, \varphi(\mathbf{x}^n, \mathbf{y}) \rangle + \langle \mathbf{w}, \varphi(\mathbf{x}^n, \mathbf{y}^n) \rangle) \right) \\ & \ni \nabla_{\mathbf{w}} \left(\frac{1}{2} \|\mathbf{w}\|^2 + \frac{C}{N} \sum_{n=1}^{N} (\Delta(\mathbf{y}^n, \bar{\mathbf{y}}) - \langle \mathbf{w}, \varphi(\mathbf{x}^n, \bar{\mathbf{y}}) \rangle + \langle \mathbf{w}, \varphi(\mathbf{x}^n, \mathbf{y}^n) \rangle) \right) \\ & = \mathbf{w} + \frac{C}{N} \sum_{n=1}^{N} -\varphi(\mathbf{x}^n, \bar{\mathbf{y}}) + \varphi(\mathbf{x}^n, \mathbf{y}^n) =: \mathbf{v} \; . \end{split}$$

Stochastic subgradient descent S-SVM learning

Probabilistic parameter learning

Input: Training set $\mathcal{D} = \{(\mathbf{x}^1, \mathbf{y}^1), \dots, (\mathbf{x}^n, \mathbf{y}^n)\}$, energies $\varphi(\mathbf{x}, \mathbf{y})$, loss function $\Delta(\mathbf{y}, \mathbf{y}')$, regularizer C and step-sizes η_1, \ldots, η_T for all the T iterations.

 ${f Output:}\ {f The\ weight\ vector}\ w\ {f for\ the\ prediction}$

- $f(\mathbf{x}) = \operatorname{argmax}_{\mathbf{y} \in \mathcal{Y}} \langle \mathbf{w}, \varphi(\mathbf{x}, \mathbf{y}) \rangle.$ 1: $\mathbf{w} \leftarrow \mathbf{0}$
- 2: for $t=1,\ldots,T$ do
- $(\mathbf{x}^n, \mathbf{y}^n) \leftarrow$ a randomly chosen training example
- $\bar{\mathbf{y}} \leftarrow \operatorname{argmax}_{\mathbf{y} \in \mathcal{Y}} \Delta(\mathbf{y}^n, \mathbf{y}) \left\langle \mathbf{w}, \varphi(\mathbf{x}^n, \mathbf{y}) \right\rangle$
- $\mathbf{w} \leftarrow \mathbf{w} \eta_t \left(\mathbf{w} + \frac{C}{N} (-\varphi(\mathbf{x}^n, \bar{\mathbf{y}}) + \varphi(\mathbf{x}^n, \mathbf{y}^n)) \right)$
- 6: end for

Note that each update step of \boldsymbol{w} needs only one argmax-prediction, however we will generally need many iterations until convergence.

Subgradient

Let $f: \mathbb{R}^D \to \mathbb{R}$ be a convex, but not necessarily differentiable, function. A vector $\mathbf{v} \in \mathbb{R}^D$ is called a **subgradient** of f at \mathbf{w}_0 , if

$$f(\mathbf{w}) \geqslant f(\mathbf{w}_0) + \langle \mathbf{v}, \mathbf{w} - \mathbf{w}_0 \rangle$$
 for all \mathbf{w} .

Note that for differentiable f, the gradient $\mathbf{v} = \nabla f(\mathbf{w}_0)$ is the **only** subgradient.

VIII.

Numerical solution

$$\operatorname*{argmin}_{\mathbf{w} \in \mathbb{R}^D} \frac{1}{2} \|\mathbf{w}\|^2 + \frac{C}{N} \sum_{s=1}^N \max_{\mathbf{y} \in \mathcal{Y}} (\Delta(\mathbf{y}^n, \mathbf{y}) - \langle \mathbf{w}, \varphi(\mathbf{x}^n, \mathbf{y}) \rangle + \langle \mathbf{w}, \varphi(\mathbf{x}^n, \mathbf{y}^n) \rangle) \; .$$

As we have discussed, this function is non-differentiable. Therefore, we cannot use gradient descent directly, so we have to use subgradients.

For each $y \in \mathcal{Y}$, ℓ is a linear function, since it is the maximum over all $y \in \mathcal{Y}$. In order to calculate the subgradient at $\mathbf{w}_0,$ one may find the maximal (active) $\mathbf{y},$ and then use $\mathbf{v} = \nabla \ell(\mathbf{w}_0)$

Input: Training set $\mathcal{D} = \{(\mathbf{x}^1, \mathbf{y}^1), \dots, (\mathbf{x}^n, \mathbf{y}^n)\}$, energies $\varphi(\mathbf{x}, \mathbf{y})$, loss function $\Delta(\mathbf{y}, \mathbf{y}')$, regularizer C and step-sizes η_1, \dots, η_T for all the T iterations.

Subgradient descent S-SVM learning

Output: the weight vector w for the prediction function

$$f(\mathbf{x}) = \operatorname{argmax}_{\mathbf{y} \in \mathcal{Y}} - \langle \mathbf{w}, \varphi(\mathbf{x}, \mathbf{y}) \rangle.$$

- 1: w ← 0
- 2: for $t = 1, \ldots, T$ do
- for $n = 1, \dots, N$ do
- $\bar{\mathbf{y}} \leftarrow \underset{\mathbf{y} \in \mathcal{Y}}{\operatorname{argmax}} \Delta(\mathbf{y}^n, \mathbf{y}) \langle \mathbf{w}, \varphi(\mathbf{x}^n, \mathbf{y}) \rangle$ $\mathbf{v}^n \leftarrow -\varphi(\mathbf{x}^n, \bar{\mathbf{y}}) + \varphi(\mathbf{x}^n, \mathbf{y}^n)$

7:
$$\mathbf{w} \leftarrow \mathbf{w} - \eta_t \left(\underbrace{\mathbf{w} + \frac{C}{N} \sum_{n=1}^{N} \mathbf{v}^n}_{\mathbf{v}} \right)$$

The step-size can be chosen as $\eta_t = \frac{1}{t}$ for all $t = 1, \dots, T$.

Note that each update of ${f w}$ needs only one argmax-prediction.

Summary of S-SVM learning *

Probabilistic parameter learning

We are given a training set $\mathcal{D} = \{(\mathbf{x}^1, \mathbf{y}^1), \dots, (\mathbf{x}^n, \mathbf{y}^n)\} \subset \mathcal{X} \times \mathcal{Y}$ and a problem specific loss function $\Delta: \mathcal{Y} \times \mathcal{Y} \leftarrow \mathbb{R}$.

The task is to learn parameter \mathbf{w} for prediction function

$$f(\mathbf{x}) = \underset{\mathbf{y} \in \mathcal{Y}}{\operatorname{argmax}} - \langle \mathbf{w}, \varphi(\mathbf{x}, \mathbf{y}) \rangle = \underset{\mathbf{y} \in \mathcal{Y}}{\operatorname{argmin}} \langle \mathbf{w}, \varphi(\mathbf{x}, \mathbf{y}) \rangle$$

that minimizes expected loss on the training set.

S-SVM solution derived by maximum margin framework:

$$\langle \mathbf{w}, \varphi(\mathbf{x}^n, \mathbf{y}) \rangle \leqslant \langle \mathbf{w}, \varphi(\mathbf{x}^n, \mathbf{y}^n) \rangle + \Delta(\mathbf{y}^n, \mathbf{y}) ,$$

that is the predicted output is enforced to be not worse than the correct one by a

We have seen that S-SVM learning ends up a convex optimization problem, but it is non-differentiable. Furthermore it requires repeated argmax prediction.

Literature *

Loss function Probabilistic parameter learning Loss-minimizing parameter learning

Sebastian Nowozin and Christoph H. Lampert Structured prediction and learning

- Sebastian Nowozin and Christoph H. Lampert. Structured prediction and learning in computer vision. Foundations and Trends in Computer Graphics and Vision, 6(3–4), 2010
- 2. Christopher Bishop. Pattern Recognition and Machine Learning. Springer, 2006

V2329 - Probabilistic Graphical Models in Computer Vision

THE

11. Parameter learning – 34 / 34