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Probability theory 4 /61

Probability, conditional probability

A probability space is a triple (£2,.A, P), where (2, .A) is a measurable space, and P is a measure such that P(2) = 1. We called discrete probability
space, if  =# (J is countable.

Let P(B) > 0, then the conditional probability of A given B is defined as

pa| B2 PACD) (ﬁ(;)3> |
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Independence, conditional independence

If two events A and B are independent (A L B), learning that B happened does not make A more or less likely to occur:

P(A|B)=P(A)
or, equivalently, iff
P(An B)=P(A)P(B) .
P(A|C)=PA|BnC),

or, equivalently, iff
P(AnB|C)=PA|C)P(B|C).

A and B are conditionally independent given C' means that once we learned C, learning B gives us no additional information about A.
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Random variable, probability distribution

A measurable mapping X : (2, A) — (R,.A’) is called random variable.
Let X : (Q,4) - (¥ < R, A’) be a random variable and P a measure over A. Then
P'(A') = Py(A) 2 P(X™}(A))
defines a measure over A’. Px is called the image measure of P by X.
The image measure Px of P by X is called probability distribution. 'y : R — R
Fx(z)2P(X <z), zeR

is called cumulative distribution function (cdf.) of X.
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Joint and marginal distribution

Suppose a probability space (2,4, P). Let X : (2, 4) —» (', A) and Y : (2, 4) — (", A”) be discrete random variables, where x1,x2,... denote the
values of X and yi,%s,... denote the values of Y.

We introduce the notation A

pij = P(X ZQZ,L',Y:yj) i,j = 1,2,...
for the probability of the events {X = z;,Y = y;} := {X = z;} n {Y = y;}. These probabilities p;; form a distribution, called the joint distribution of X
and Y.

The distributions defined by the probabilities

A A
pi=P(X =u1;) and g¢; =P =yj)

are called the marginal distributions of X and of Y, respectively.
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Conditional distribution

Suppose a probability space (€2, 4, P). Let X and Y be discrete random variables, where 1, x5, ... denote the values of X and y1,¥s2,... denote the
values of Y.

The conditional distribution of X given Y is defined by

P(szi‘yzyj)z ) = —.
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The EM algorithm

: Choose an initial setting for the parameters 6
t—0
repeat
t—t+1
E step. Evaluate ¢~ (Z) 2 p(Z | X,00D)
M step. Evaluate 8% given by

Q@O kN

0" = argmax Q(0,0" V)
]

where Q(0,01"V) SE[lnp(X,Z | 0) | X, 60"
=Y p(Z ] X0 ) Inp(X, Z | )
V4

7: until convergence of either the parameters 6 or the log likelihood £(6;X)
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Graphical models 11 / 61

Graphical models

Probabilistic graphical models encode a joint p(x,y) or conditional p(y | x) probability distribution such that given some observations we are provided
with a full probability distribution over all feasible solutions.

The graphical models allow us to encode relationships between a set of random variables using a concise language, by means of a graph.
B Directed:

& Bayesian network
B  Undirected:

& Markov random field

m Factor graphs
s Conditional random field
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Bayesian networks

Assume a directed, acyclic graphical model G = (V, &), where £ <V x V.

The factorization is given as e e
p(Y =) =] [pi | Ypauti) »
o

where p(yi | Ypa(i)) is @ conditional probability distribution on the parents of node i € V.

The conditional independence assumption is encoded by GG that is a variable is conditionally independent of its non-descendants given its parents.
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Markov random field

An undirected graphical model G = (V, ) is called Markov Random Field (MRF) if two nodes are conditionally independent whenever they are not

connected.
In other words, for any node 7 in the graph, the local Markov property holds:

p(Yi | Yorgay) = (% | Yiveo) » Q @

where N (i) is denotes the neighbors of node i in the graph.

Alternatively, we use the following equivalent notation: @ Q

Y AL Yovaiy | Ye

where cl(i) = N (i) u {i} is the closed neighborhood of i.
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Hammersley-Clifford theorem

B An undirected graphical model G = (V, ) is called Markov random field, if the local Markov property holds,
i.e. two nodes are conditionally independent whenever they are not connected.

B A probability distribution p(y) on an undirected graphical model G = (V, &) is called Gibbs distribution if it can be factorized into potential functions
Ye(ye) > 0 defined on cliques:

p(y) = 5 [ telye)  where 7= 3 T welye)

ceCa yeY ceCa

and C¢ denotes the set of all (maximal) cliques in G.

The Hammersley-Clifford theorem tells us that the above two definitions are equivalent.
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Factor graphs
Factor graphs are undirected graphical models that make the factorization explicit of the probability function. e

A factor graph G = (V, F,E&’) consists of e
W variable nodes V' () and factor nodes F (W),

B edges &' € V x F between variable and factor nodes

B N :F — 2V is the scope of a factor, defined as the set of neighboring variables, i.e. e

N(F)={ieV:(i,F)e&}. MIRE

A family of distribution is defined that factorizes as:

py) = 5 [T orlyni) with Z= 3 []erlynm) -

FeF ye)Y FeF

Factor graph

11
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Conditional random fields

We often have access to measurements X = x, hence the conditional distribution p(Y =y | X = x) could be directly modeled, too. This can be
expressed compactly using conditional random fields (CRF) with the factorization

p(y,x) p(y,x) 1
ply [ x) = = = VE(YN(F) XN(F)) -
p(x) &Mmmzwg.NmM“
Note that the potentials become also functions of (part of) x, i.e. ¥p(yr;XxF) instead of just
Yr(yr). @

Nevertheless, X is not part of the probability model, i.e. it is not treated as random vector.

Shaded variables: The observations X = x.
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Potentials and energy functions

We typically would like to infer marginal probabilities p(Yr = yr | x) for some factors F' € F.
Assuming ¥r : Y — R, where YV = Xien(F)Yi is the product domain of the variables adjacent to F', instead of potentials, we can also work with

energies.

We define an energy function Er : Yr — R for each factor F' € F:

Er(yr;xp) = —log(¥r(yrixr)) < Yr(yr;xr) = exp(—Er(yr;xr)) .

pmw7éﬂme#7§m@2me»
FeF FeF

1

~ 700 exp(—E(y;x)) -

Hence, p(y ! Y) is rnmlnlr:-h:ly determined hy F'(y-v)

13
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Energy minimization

Assuming a finite X', the goal is to solve y* € argmaxycy p(y | x).

argmax p(y | x) = argmax exp(—E(y;x))

yey yey  Z(x)
= argmax exp(—E(y;x))
yey

= argmax —FE(y;x)
yey

= argmin E(y;x) .
yey

Energy minimization can be interpreted as solving for the most likely state of factor graph, i.e. MAP inference.
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Overview

[Graphical models]

@re@ Undirected

[Bayesian networks}

Factor graphs
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Inference 21 / 61

Inference
The inference means the procedure to estimate the probability distribution, encoded by the graphical model, for a given data (or observation).

Probabilistic inference: Given a graphical model and the observation z, find the value of the log partition function and the marginal distributions for each
factor,

log Z(x) = log ). exp(—E(y;x)) ,
yey

pr(yr) =p(Yr=yr|x) VFeF, VyreVr.
Maximum A Posteriori (MAP) inference: Given a graphical model and the observation x, find the state y* € )V of maximum probability

y* eargmaxp(Y =y | x).
yey

Both inference problems are known to be NP-hard for general graphs and factors, but they can be tractable if the underlying graphical model is suitably
restricted.
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Graph cut

Assume a weighted directed graph G = (V,E€,¢c). A cut (S,T) of G is a disjoint partition of V into S and 7 = V\S.
The capacity of the cut (S, 7) is defined as

cwt(S,T)= >, ci,j).

(4,§)ESXT

Assume distinct nodes s,t €V, a cut (S,7) iscalled s —t cutif seSandteT.

The minimum s — ¢ cut problem is to find an s — ¢ cut with the lowest cost.

16
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Regular energy functions

Let us consider an energy function E of n binary variables which can be written as the sum of functions of up to two variables, that is

E(yr, ... yn) = ZEi(yi) + > Eii(yiy;) -

1<J

E is regular, if each term E;; (i < j) satisfies
Eij((], 0) + Ez‘j(l, 1) < Ez-j((], 1) + Ezj(l,(]) .

If each term E;; is regular, then it is possible to find the global minimum of £ in polynomial time by solving a minimum s —t cut problem.
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Energy minimization via minimum s — ¢ cut: unary energies

Let us consider the unary energy function F; : {0,1} — R.

Obviously, the minimum s — ¢ cut of the flow network will correspond to
Ei(1)

argmin E; (y;) .
yie{ovl}
E;(0)

Without loss of generality we can assume that E;(1) > E;(0), then we can write

argmin F;(y;) = argmin E;(y;) — E;(0) .
y7e{071} yle{()?l}
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18



Energy minimization via minimum s — ¢t cut: pairwise energies

Let us consider the pairwise energy function E;;(y;,y;) : {0,1}? — R. The possible values of

E;j(yi,y;) are shown in the table:

We furthermore assume that E;;(y;, y;) is regular, that is

Ez-j((], 0) + Ez‘j(l, 1) SEZ‘j(O, 1) + Eij(l, 0)

A+D<B+C.
Let us note that E;;(y;,y;) can be decomposed as:
ATB]_, [0 0 0[D—C B+C—A—D
C|D| C-A|C-A 0|D-C 0
E;(1) E;(1) B+C—A-D>0

IN2329 - Probabilistic Graphical Models in Computer Vision
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Energy minimization via minimum s — ¢ cut

Putting all together we get that

Unaries Pairwise

argmin E;(y;) + E;(y;) argmin E;;(yi, y;)
y Yy

Overall energy

argmin E;(y;) + E;(y;)
y

+ Ezg

(Wi, y5)
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Multi-label problem

We define a label set £ = {1,2,..., L}, where L is a (finite) constant. Therefore the output domain is defined as )) = LY. The energy function has the

following form

E(y;x)

where x consists of an input image.

= ZEZ(yZ,x) + Z Eij(yi, Y53 %)

=y (i.§)e€
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Move making algorithms

Lt

Regions a-3 swap Qa-expansion
Assumptions:
B o — 3 swap: E;; is a semi-metric. Zos(y, o, B) ={z €V : 2z =y, if y; ¢ {, B}, otherwise z; € {a, 5}} .
B a-expansion: E;; is a metric. Zoly,a) = {(z€Y: 2 € {y;,a} for all i € V} .

\.u& }"

IN2329 - Probabilistic Graphical Models in Computer Vision

21

12. Summary — 29 / 61



a — [ swap

a — [ swap changes the variables that are labeled as ¢ € {«, $}. Each of these variables can choose either o or 3. We introduce the following notation

Zaﬁ(y’a’ﬁ) = {Z € y L2 = Y, if Yi ¢ {awB}a otherwise Z; € {Oé,ﬁ}} .

The minimization of the energy function E can be reformulated as follows:

z€ argmin FE(z) = argmin ZEi(Zi)+ Z Eij(z, zj)

2€Z45(y,o,0) 2€Z05(y,.8) jey (i,5)e€
= argmin [ Z Ei(y;) + Z E;(z)
zeZ(,g(y,a,B) Z‘eV7yi¢{a7B} iEV,yie{a,B}
con;;ant ur:;ry

+ ZEij(yiayj)+ Z Eij(zi,y5) + Z Eij(yi, z5) + ZEij(ZiaZj)]~

(4,4)e€ (4,4)e€ (4,4)e€ (4,4)e€
vi,yj#{c. B} vie{a, B}, yi#{a, B} vi¢{a, B}, yje{a,B} Yyi,yj€{.B}
con;;ant ur:;ry ur?arry pai:\:vise
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a-expansion

a-expansion allows each variable either to keep its current label or to change it to the label o € £. We introduce the following notation
Zoly,a) ={z€ ) :z €{y,a} forallieV}.
The minimization of the energy function E can be reformulated as follows:

z € argmin F(z) = argmin ZE zi) + Z Eij(z, %)

zeZa(y,a) zeZa(y,) jey (4,5)e€
= argmin [ Z Ei(a) + Z Ei(zi)
zeZo,(y,oc) €V, yi=a 1€V, y; #a
constant unary
+ Z Eij(o, @) Z Eij(o, 25) Z Eij(z;, o) Z Eij(zi, 2 ]
(4,4)e€ (4.9)€€ (i.5)€€ (3.9)e€
Yi=a, Y= yi=a, Yy #o YiFQ, Yj=a YiFQ, YjFo
constant unary ur?arry pairwise
IN2329 - Probabilistic Graphical Models in Computer Vision 12. Summary — 31 / 61
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Equivalent integer linear program

We are generally interested to find a MAP labelling x*:

xeLlV! xeLlVl % ey (i,5)e€
This can be equivalently written as an integer linear program (ILP):

Cmin >N Ei(@)ziat+ ) wy Y, da,f)Tijag
seotigaB i) el (ij)eE  aBeL
subject to . . Ti:a =1 VieV
Doer Tij:ap =Tjg VBEL,(1,5)€E
Z,@ec Tijiap = Tixa Vo €L, (i,j) €&
Ti:a, Tij:ap € B Va,B€ L,(i,j) €&

x* € argmin F(x) = argmin { Z Ei(z;) + Z wyj - d(:):i,:rj)} .

Tj.o indicates whether vertex i is assigned label «, while z;;.5 indicates whether (neighboring) vertices i, j are assigned labels «, 3, respectively.
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Interpretation of the constraints
Let us assume that £ = {1,2,3} and consider the following factor graph example:

T1:3 T2:3

t ¢

Uniqueness: The constraints )., Z;.q = 1 for all i € V simply express the fact that each vertex must receive exactly one label.

Z Tij:aB = Tia VO‘,B €L ’ (717]) €&
BeL

Consistency: The constraints Z Tijap = Tj5  and
ael

maintain consistency between variables, i.e. if 2., = 1 and z;.3 = 1 holds true, then these constraints force ;.3 = 1 to hold true as well.

12. Summary — 33 / 61
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Primal-dual LP for multi-label problem

The (relaxed) primal LP:

The dual LP:

min OZZEZ‘(OJ).I‘Z‘;Q-F Z Wij Z d(a,ﬂ)l‘ij:aﬁ

T g
TienTifab 2oy el (i.j)e€  afel

subject to Y . Ti:a =1 YieV
ZQEL Tij:aB = Tj:8 Vﬁ € ‘Cv (717]) e
Z,@ec Tij.ap = Tia VYo €L, (i,j) €€

max Z Yi
YiYij:a Yji: B8 i

%
subject to  y; — Z Vija < Ei(a) VieV,ae L
JEV:(i,5)EE
Yij:a + Yji:B < wijd(a76) V(’L,j) € ga aaﬁ eL
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Primal-dual principle
_le,x) _
by >
4—7" <C x> \€—>
" (e, x")

i i >

i
|-><b,.v> |-><c,x*> (e, x) €

dual cost of cost of optimal primal cost of
integral solution x* integral solution x

< =

solution y

Theorem 1. Ifx and y are integral-primal and dual feasible solutions satisfying:
(c,x) < elb,y)
for € > 1, then x is an e-approximation to the optimal integral solution x*, that is
<C7X > < <07X> == 6<07X*> .
IN2329 - Probabilistic Graphical Models in Computer Vision 12. Summary — 35 / 61
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FastPD

Dual variables update: Given the current active labels, any £750 £,=50

non-active label is raised, until it either reaches the active label, or cap;=30 cap=s0
. . y ' cap;=100 /cap;=500

attains the maximum raise allowed by the upper bound.

Primal variables update: Given the new heights, there might still cap =100

be vertices whose active labels are not at the lowest height. For each
such vertex i, we select a non-active label, which is below z;, but

has already reached the maximum raise allowed by the upper bound. 7]
135-4--Q)
a=x;
74

The optimal update of the a-heights can be simulated by pushing the maximum amount of flow through a directed graph G' = (V u {s,t},&’, ¢, s,1).
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Best-first branch-and-bound optimization

{2
()
Mtap 2
=iery 2
o ~=Gione
— —— _-—~
) -‘"'-.__ _______,-— ﬁ_:gaj -
o o H{}'Quf &
) () () —
a = ot M
o gaey 1A L =1~ =u o Tl i ~— ®
L= - | =) e e e s s !

"‘_,_, e AR . N #; . - ”," \\ A .
g S - = . o ; ]
(4100 g 0 |0 966 ¢ - :
\\ L : 93 . ‘.‘,f’ . ’," h/a- -------- il B e ,"’
N e - e i - oY — il T -

. p————— '_‘_,.d-" e lf. (.'lf S];ﬁ—{w{} p o

globally-optimal w

At each step the active node with the smallest lower bound is removed from the active front, while two of its children are added to the active front (due to
monotonicity property they have higher or equal lower bounds).

If the active node with the smallest lower bound turns out to be a leaf w’ and y’ is the corresponding optimal segmentation, then E(y’,w’) = L(w’) due to
the tightness property. Consequently, (y’,w’) is a global minimum.
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Belief propagation

For tree-structured factor graphs there always exist at least one message that can be computed initially, hence all the dependencies can be resolved.

1. Select one variable node as root of the tree (e.g., Yy;,)
2. Compute leaf-to-root messages (e.g., by applying depth-first-search)
3. Compute root-to-leaf messages (reverse order as before)

IN2329 - Probabilistic Graphical Models in Computer Vision 12. Summary — 38 / 61
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Messages

Message: pair of vectors at each factor graph edge (i, F') € £.

1. Variable-to-factor message qy, . € RYi is given by

wvi-rw) =[]  reovi),
FreM(i)\(F)

where M (i) = {F € F : (i, F) € £} denotes the set of factors adjacent to Y;.

2. Factor-to-variable message: 75y, € RY:.

IN2329 - Probabilistic Graphical Models in Computer Vision
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Factor-to-variable message

2. Factor-to-variable message rr_,y; € RY is given by

resvw) = Y, |ep(=EBryp) [ avier) |,
YR€EYVF, leN (F)\{4}
Yi=yi

where N(F) = {i eV : (i, F) € £} denotes the set of variables adjacent to F'.

IN2329 - Probabilistic Graphical Models in Computer Vision 12. Summary — 40 / 61
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Inference result
Partition function is evaluated at the (root) node 4

Z—Z 1_[ rEoy; (Yi) -

yi€Y; FeM (i

The marginal distribution for each factor can be computed

as
1
pr(yr) =— exp(=Er(yr)) ) ] avier() -
iEN(F)
IN2329 - Probabilistic Graphical Models in Computer Vision 12. Summary — 41 / 61
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Sum-product and Max-sum comparison *

B Sum-product algorithm

B  Max-sum algorithm

wvi-r) = ] reoviw)
FreM()\{F}

reovi(yi) = D, (exp(=Eryp) || avi-r()
YoEVr, leN(F)\{i}

Yi=yi

wvi-r(y) = Y, ey ()
FreM@)\{F}

resy(yi) = max | —Er(yp)+ Y, avi-r(y)

Ye€VF, NN £
e leN (F)\{i}
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Loopy belief propagation

A e
i ! |
o | ) | En

l

l l
@*i*m*ﬁ*@T

=

y

H.T ].T
|

l
e () —e—)

Loopy belief propagation is very popular, but has some problems:

B It might not converge (e.g., it can oscillate).
B Even if it does, the computed probabilities are only approximate.
B If there is a single cycle only in the graph, then it converges.

...... Ao o B .
. > - m > -
v v v
o | Dm En
: :
\: ...... o F e f\: ...... s Coa :
)—w—()—=—()
v v v
om I J N
: g
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Y, = Q/y L Y,
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Mean field approximation

For general (discrete) factor graph models, performing probabilistic inference is hard. Assume we are given an intractable distribution p(y | x). We
consider an approximate distribution ¢(y), which is tractable, for p(y | x).

One way of finding the best approximating distribution is to pose it as an optimization problem over probability distributions: given a distribution p(y | x)
and a family @) of tractable distributions q € () on ), we want to solve

q* e argmin Dk, (q(y)|p(y | x))

qeQ
=argmin{ D a(y)loga(y) — Y q(y) logp(y | X)} :
°€Q  Cyey yey
*;{r(q)
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Naive mean field

Take a set () as the set of all distributions in the form:

a(y) = Jaiwi) -

i€V

T ql T q2 T q3
For example, in case of the following factor graph: T . T ” T ”
4 5 6
q7 qs q9

Original factor graph Mean field approximation
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Naive mean field: Optimization

Block coordinate ascent: (
We hold all variables fixed except for a single block ¢,,, then we obtain a tractable concave . ‘l‘ @
maximization problem N . . ______
— closed-form update for each g;,. pr
n
qQ T qm an
o

The update equation for the Naive mean field method is given by

1
G i) = —=exp | — D, Z( 1 qJ(yj)>EF(YF§XF) :
Zi(xF) Ferl()y! . ,
1) Y€V, jEN(F)\{i}
Yi=Yi
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Gibbs sampling

Each step of the Gibbs sampling procedure involves replacing the value of one of the variables y; by a value drawn from the distribution of that variable
conditioned on the values of the remaining variables, that is

1
Yy~ i |y %)

This requires only the unnormalized distribution p and the normalization over a single variable:

HFeM(z‘) exp(—Er(yi, Y%)(F)\{i} i XF))

(t)
p(i Iy, x) = :
' Zyieyi HFEM(i) exp(—Er(yi, yy;)(p)\{i} SXF))

The basic idea is that while sampling from p(y | x) is hard, sampling from the conditional distributions p(y; | y\;,%) can be performed efficiently.

37



IN2329 - Probabilistic Graphical Models in Computer Vision 12. Summary — 47 / 61

38



Overview

Inference

Belief prop.

Gibbs sampling

Approx.

Loopy belief propagation]

Probabilistic

Mean field
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Parameter learning 49 / 61

Parameter learning

Learning graphical models (from training data) is a way to find among a large class of possible models a single one that is best in some sense for the task at
hand.

We assume a fixed underlying graphical model with parameterized conditional probability distribution

p(y | x,w) = exp(—E(y;x,w)) = exp(—(w, p(x,y))) ,

Z(x,w) Z(x,wW)

where Z(x, w) = >y, exp(—w, ¢(x,y))). The only unknown quantity is the parameter vector w, on which the energy E(y;x,w) depends linearly.

IN2329 - Probabilistic Graphical Models in Computer Vision 12. Summary — 50 / 61

40



Probabilistic parameter learning

We aim at identifying a weight vector w* that makes p(y | x, w) as close to the true conditional label distribution d(y | x) as possible. The label
distribution itself is unknown to us, but we have an i.i.d. sample set D = {(x",y")}n=1,.. ~ from d(x,y) that we can use for learning.

We measure the dissimilarity by making use of Kullback-Leibler (KL) divergence:

d(y | %)

KL(d|p) = Z d(y | x) logm .

yey
We obtain a total measure of how much p differs from d by their expected dissimilarity over all x € X:

d(y | x)
p(y | x,w)

KLiot(d]lp) = D d(x) D" dly | x)log

xeX yey
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Regularized maximum conditional likelihood training

Let p(y | X, W) = 750
training examples. For any A > 0, regularized maximum conditional likelihood training chooses the parameter as

w* € argmin L(w)

weRD
N N
= argmin )‘HWHQ + Z <W’ @(Xnv yn)> + Z log Z(Xn’ W) :
weRDP n=1 n=1

7 exp(—(W, ¢(x,y))) be a probability distribution parameterized by w € RP, and let D = {(x",y")}n=1,...n be a set of i.id.

IN2329 - Probabilistic Graphical Models in Computer Vision
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Stochastic gradient descent

N
vWL(VV) =2 \w + Z (¢(Xn’yn) - IEy~p(y|x”,w) [@(Xn,)’)]) .
n=1
If the training set D is too large, one may randomly select only one sample and calculate the gradient
Ve IL(w) = 20w 4+ 9(x"3") = By oy [0 )] -

Note that line search is not possible, therefore, we need for an extra parameter, referred to as step-size n; for each iteration.
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Using of the output structure

Assume the set of factors F in a graphical model representation, such that ¢(x,y) decomposes as ¢(x,y) = [¢r(xr,yr)]Fer. Thus

Ey~p(ylw) [0, ¥)] =[Ey pwpiyrixpew)F (xp, yF)]]Fer ,

where

By (e xrwe) [0, yE) = Y. p(yr | X6, Wr)or(xe,yF).
YFEVF

Factor marginals urp = p(yr | X, wr) are generally (much) easier to calculate than the complete conditional distribution p(y | x, w).
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Two-stage learning

The idea here is to split learning of energy functions into two steps:

1. learning of unary energies via classifiers, and
2. learning of their importance and the weighting factors of pairwise (and higher-order) energies.

E(y;x) = > wiEBi(yszi) + Y, wiiEi(yi, ) -
ieV (ir)e€’

As an advantage, it results in a faster learning method. However, if local classifiers for E; perform badly, then CRF learning cannot fix it.
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Piecewise learning
Assume a set of factors F in a factor graph model, such that the vector p(x,y) = [¢r(XF,YF)]Fer.

We now approximate p(y | x, w) by a distribution that is a product over the factors:

exp(—(WF, oF (XF, ¥F)))

prw(y [ x,w) = HPF(YF | xp, Wr) = H

FeF FeF Zr(xp, Wr)
Piecewise training chooses the parameters w* = [w}|per as
N N
wh € argmin \|wg|? + Z<WF, or(Xp, yF)) + Z log Zp(xp, Wr) .
wreR n=1 n=1

One can perform gradient-based training for each factor as long as the individual factors remain small.

IN2329 - Probabilistic Graphical Models in Computer Vision
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Loss-minimizing parameter learning

Let D = {(x!,y"),...,(x",yV)} € X x ) be i.i.d. samples from the (unknown) true data distribution d(x,y) and A : ) x Y — R™ be a loss function.
The task is to find a weight vector w that leads to minimal expected loss

IE(x,y)~d(x,y) [A(Y? f(X))]

for a prediction function f(x) = argmaxycy g(X,y;w), where g : X x ) — R is an auxiliary function that is parameterized by w € RP.

Let g(x,y;w) = —(w, p(x,y)) be an auxiliary function parameterized by w € R”. For any C' > 0, structured support vector machine (S-SVM) training

chooses the parameter 1 o X
w* € argmin - [w|® + = Y 6(x", 3", w)
weRD 2 N =

with £(x",y", w) = maxycy(A(y",y) — (W, p(x™,y)) + {w, p(x",¥"))).

S-SVM learning ends up a convex optimization problem, but it is non-differentiable. Furthermore it requires repeated argmax prediction.
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Overview

[Parameter Iearning]

[Probabilistic [Loss—minimiz/ng}

Subgradient [&]
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[SGD] [Structu re]
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Overview
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Announcement: Computer Vision Group

Inquiries for Bachelor and Master projects are always welcome!

We currently work on the following research topics:

3D reconstruction Optical flow Shape analysis Robot vision RGB-D vision

Sl
oo 8

e

eamenksnnel
rrlrsnrk

LT

Image segmentation Convex relaxation Visual SLAM Scene flow Deep learning

Please complete the form: https://vision.in.tum.de/application
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